xref: /linux/drivers/spi/spi-mt65xx.c (revision d619b0b70dc4f160f2b95d95ccfed2631ab7ac3a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 MediaTek Inc.
4  * Author: Leilk Liu <leilk.liu@mediatek.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/ioport.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/platform_data/spi-mt65xx.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22 #include <linux/dma-mapping.h>
23 
24 #define SPI_CFG0_REG			0x0000
25 #define SPI_CFG1_REG			0x0004
26 #define SPI_TX_SRC_REG			0x0008
27 #define SPI_RX_DST_REG			0x000c
28 #define SPI_TX_DATA_REG			0x0010
29 #define SPI_RX_DATA_REG			0x0014
30 #define SPI_CMD_REG			0x0018
31 #define SPI_STATUS0_REG			0x001c
32 #define SPI_PAD_SEL_REG			0x0024
33 #define SPI_CFG2_REG			0x0028
34 #define SPI_TX_SRC_REG_64		0x002c
35 #define SPI_RX_DST_REG_64		0x0030
36 #define SPI_CFG3_IPM_REG		0x0040
37 
38 #define SPI_CFG0_SCK_HIGH_OFFSET	0
39 #define SPI_CFG0_SCK_LOW_OFFSET		8
40 #define SPI_CFG0_CS_HOLD_OFFSET		16
41 #define SPI_CFG0_CS_SETUP_OFFSET	24
42 #define SPI_ADJUST_CFG0_CS_HOLD_OFFSET	0
43 #define SPI_ADJUST_CFG0_CS_SETUP_OFFSET	16
44 
45 #define SPI_CFG1_CS_IDLE_OFFSET		0
46 #define SPI_CFG1_PACKET_LOOP_OFFSET	8
47 #define SPI_CFG1_PACKET_LENGTH_OFFSET	16
48 #define SPI_CFG1_GET_TICK_DLY_OFFSET	29
49 #define SPI_CFG1_GET_TICK_DLY_OFFSET_V1	30
50 
51 #define SPI_CFG1_GET_TICK_DLY_MASK	0xe0000000
52 #define SPI_CFG1_GET_TICK_DLY_MASK_V1	0xc0000000
53 
54 #define SPI_CFG1_CS_IDLE_MASK		0xff
55 #define SPI_CFG1_PACKET_LOOP_MASK	0xff00
56 #define SPI_CFG1_PACKET_LENGTH_MASK	0x3ff0000
57 #define SPI_CFG1_IPM_PACKET_LENGTH_MASK	GENMASK(31, 16)
58 #define SPI_CFG2_SCK_HIGH_OFFSET	0
59 #define SPI_CFG2_SCK_LOW_OFFSET		16
60 
61 #define SPI_CMD_ACT			BIT(0)
62 #define SPI_CMD_RESUME			BIT(1)
63 #define SPI_CMD_RST			BIT(2)
64 #define SPI_CMD_PAUSE_EN		BIT(4)
65 #define SPI_CMD_DEASSERT		BIT(5)
66 #define SPI_CMD_SAMPLE_SEL		BIT(6)
67 #define SPI_CMD_CS_POL			BIT(7)
68 #define SPI_CMD_CPHA			BIT(8)
69 #define SPI_CMD_CPOL			BIT(9)
70 #define SPI_CMD_RX_DMA			BIT(10)
71 #define SPI_CMD_TX_DMA			BIT(11)
72 #define SPI_CMD_TXMSBF			BIT(12)
73 #define SPI_CMD_RXMSBF			BIT(13)
74 #define SPI_CMD_RX_ENDIAN		BIT(14)
75 #define SPI_CMD_TX_ENDIAN		BIT(15)
76 #define SPI_CMD_FINISH_IE		BIT(16)
77 #define SPI_CMD_PAUSE_IE		BIT(17)
78 #define SPI_CMD_IPM_NONIDLE_MODE	BIT(19)
79 #define SPI_CMD_IPM_SPIM_LOOP		BIT(21)
80 #define SPI_CMD_IPM_GET_TICKDLY_OFFSET	22
81 
82 #define SPI_CMD_IPM_GET_TICKDLY_MASK	GENMASK(24, 22)
83 
84 #define PIN_MODE_CFG(x)	((x) / 2)
85 
86 #define SPI_CFG3_IPM_HALF_DUPLEX_DIR	BIT(2)
87 #define SPI_CFG3_IPM_HALF_DUPLEX_EN	BIT(3)
88 #define SPI_CFG3_IPM_XMODE_EN		BIT(4)
89 #define SPI_CFG3_IPM_NODATA_FLAG	BIT(5)
90 #define SPI_CFG3_IPM_CMD_BYTELEN_OFFSET	8
91 #define SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET 12
92 
93 #define SPI_CFG3_IPM_CMD_PIN_MODE_MASK	GENMASK(1, 0)
94 #define SPI_CFG3_IPM_CMD_BYTELEN_MASK	GENMASK(11, 8)
95 #define SPI_CFG3_IPM_ADDR_BYTELEN_MASK	GENMASK(15, 12)
96 
97 #define MT8173_SPI_MAX_PAD_SEL		3
98 
99 #define MTK_SPI_PAUSE_INT_STATUS	0x2
100 
101 #define MTK_SPI_MAX_FIFO_SIZE		32U
102 #define MTK_SPI_PACKET_SIZE		1024
103 #define MTK_SPI_IPM_PACKET_SIZE		SZ_64K
104 #define MTK_SPI_IPM_PACKET_LOOP		SZ_256
105 
106 #define MTK_SPI_IDLE			0
107 #define MTK_SPI_PAUSED			1
108 
109 #define MTK_SPI_32BITS_MASK		(0xffffffff)
110 
111 #define DMA_ADDR_EXT_BITS		(36)
112 #define DMA_ADDR_DEF_BITS		(32)
113 
114 /**
115  * struct mtk_spi_compatible - device data structure
116  * @need_pad_sel:	Enable pad (pins) selection in SPI controller
117  * @must_tx:		Must explicitly send dummy TX bytes to do RX only transfer
118  * @enhance_timing:	Enable adjusting cfg register to enhance time accuracy
119  * @dma_ext:		DMA address extension supported
120  * @no_need_unprepare:	Don't unprepare the SPI clk during runtime
121  * @ipm_design:		Adjust/extend registers to support IPM design IP features
122  */
123 struct mtk_spi_compatible {
124 	bool need_pad_sel;
125 	bool must_tx;
126 	bool enhance_timing;
127 	bool dma_ext;
128 	bool no_need_unprepare;
129 	bool ipm_design;
130 };
131 
132 /**
133  * struct mtk_spi - SPI driver instance
134  * @base:		Start address of the SPI controller registers
135  * @state:		SPI controller state
136  * @pad_num:		Number of pad_sel entries
137  * @pad_sel:		Groups of pins to select
138  * @parent_clk:		Parent of sel_clk
139  * @sel_clk:		SPI host mux clock
140  * @spi_clk:		Peripheral clock
141  * @spi_hclk:		AHB bus clock
142  * @cur_transfer:	Currently processed SPI transfer
143  * @xfer_len:		Number of bytes to transfer
144  * @num_xfered:		Number of transferred bytes
145  * @tx_sgl:		TX transfer scatterlist
146  * @rx_sgl:		RX transfer scatterlist
147  * @tx_sgl_len:		Size of TX DMA transfer
148  * @rx_sgl_len:		Size of RX DMA transfer
149  * @dev_comp:		Device data structure
150  * @spi_clk_hz:		Current SPI clock in Hz
151  * @spimem_done:	SPI-MEM operation completion
152  * @use_spimem:		Enables SPI-MEM
153  * @dev:		Device pointer
154  * @tx_dma:		DMA start for SPI-MEM TX
155  * @rx_dma:		DMA start for SPI-MEM RX
156  */
157 struct mtk_spi {
158 	void __iomem *base;
159 	u32 state;
160 	int pad_num;
161 	u32 *pad_sel;
162 	struct clk *parent_clk, *sel_clk, *spi_clk, *spi_hclk;
163 	struct spi_transfer *cur_transfer;
164 	u32 xfer_len;
165 	u32 num_xfered;
166 	struct scatterlist *tx_sgl, *rx_sgl;
167 	u32 tx_sgl_len, rx_sgl_len;
168 	const struct mtk_spi_compatible *dev_comp;
169 	u32 spi_clk_hz;
170 	struct completion spimem_done;
171 	bool use_spimem;
172 	struct device *dev;
173 	dma_addr_t tx_dma;
174 	dma_addr_t rx_dma;
175 };
176 
177 static const struct mtk_spi_compatible mtk_common_compat;
178 
179 static const struct mtk_spi_compatible mt2712_compat = {
180 	.must_tx = true,
181 };
182 
183 static const struct mtk_spi_compatible mtk_ipm_compat = {
184 	.enhance_timing = true,
185 	.dma_ext = true,
186 	.ipm_design = true,
187 };
188 
189 static const struct mtk_spi_compatible mt6765_compat = {
190 	.need_pad_sel = true,
191 	.must_tx = true,
192 	.enhance_timing = true,
193 	.dma_ext = true,
194 };
195 
196 static const struct mtk_spi_compatible mt7622_compat = {
197 	.must_tx = true,
198 	.enhance_timing = true,
199 };
200 
201 static const struct mtk_spi_compatible mt8173_compat = {
202 	.need_pad_sel = true,
203 	.must_tx = true,
204 };
205 
206 static const struct mtk_spi_compatible mt8183_compat = {
207 	.need_pad_sel = true,
208 	.must_tx = true,
209 	.enhance_timing = true,
210 };
211 
212 static const struct mtk_spi_compatible mt6893_compat = {
213 	.need_pad_sel = true,
214 	.must_tx = true,
215 	.enhance_timing = true,
216 	.dma_ext = true,
217 	.no_need_unprepare = true,
218 };
219 
220 /*
221  * A piece of default chip info unless the platform
222  * supplies it.
223  */
224 static const struct mtk_chip_config mtk_default_chip_info = {
225 	.sample_sel = 0,
226 	.tick_delay = 0,
227 };
228 
229 static const struct of_device_id mtk_spi_of_match[] = {
230 	{ .compatible = "mediatek,spi-ipm",
231 		.data = (void *)&mtk_ipm_compat,
232 	},
233 	{ .compatible = "mediatek,mt2701-spi",
234 		.data = (void *)&mtk_common_compat,
235 	},
236 	{ .compatible = "mediatek,mt2712-spi",
237 		.data = (void *)&mt2712_compat,
238 	},
239 	{ .compatible = "mediatek,mt6589-spi",
240 		.data = (void *)&mtk_common_compat,
241 	},
242 	{ .compatible = "mediatek,mt6765-spi",
243 		.data = (void *)&mt6765_compat,
244 	},
245 	{ .compatible = "mediatek,mt7622-spi",
246 		.data = (void *)&mt7622_compat,
247 	},
248 	{ .compatible = "mediatek,mt7629-spi",
249 		.data = (void *)&mt7622_compat,
250 	},
251 	{ .compatible = "mediatek,mt8135-spi",
252 		.data = (void *)&mtk_common_compat,
253 	},
254 	{ .compatible = "mediatek,mt8173-spi",
255 		.data = (void *)&mt8173_compat,
256 	},
257 	{ .compatible = "mediatek,mt8183-spi",
258 		.data = (void *)&mt8183_compat,
259 	},
260 	{ .compatible = "mediatek,mt8192-spi",
261 		.data = (void *)&mt6765_compat,
262 	},
263 	{ .compatible = "mediatek,mt6893-spi",
264 		.data = (void *)&mt6893_compat,
265 	},
266 	{}
267 };
268 MODULE_DEVICE_TABLE(of, mtk_spi_of_match);
269 
270 static void mtk_spi_reset(struct mtk_spi *mdata)
271 {
272 	u32 reg_val;
273 
274 	/* set the software reset bit in SPI_CMD_REG. */
275 	reg_val = readl(mdata->base + SPI_CMD_REG);
276 	reg_val |= SPI_CMD_RST;
277 	writel(reg_val, mdata->base + SPI_CMD_REG);
278 
279 	reg_val = readl(mdata->base + SPI_CMD_REG);
280 	reg_val &= ~SPI_CMD_RST;
281 	writel(reg_val, mdata->base + SPI_CMD_REG);
282 }
283 
284 static int mtk_spi_set_hw_cs_timing(struct spi_device *spi)
285 {
286 	struct mtk_spi *mdata = spi_controller_get_devdata(spi->controller);
287 	struct spi_delay *cs_setup = &spi->cs_setup;
288 	struct spi_delay *cs_hold = &spi->cs_hold;
289 	struct spi_delay *cs_inactive = &spi->cs_inactive;
290 	u32 setup, hold, inactive;
291 	u32 reg_val;
292 	int delay;
293 
294 	delay = spi_delay_to_ns(cs_setup, NULL);
295 	if (delay < 0)
296 		return delay;
297 	setup = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
298 
299 	delay = spi_delay_to_ns(cs_hold, NULL);
300 	if (delay < 0)
301 		return delay;
302 	hold = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
303 
304 	delay = spi_delay_to_ns(cs_inactive, NULL);
305 	if (delay < 0)
306 		return delay;
307 	inactive = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
308 
309 	if (hold || setup) {
310 		reg_val = readl(mdata->base + SPI_CFG0_REG);
311 		if (mdata->dev_comp->enhance_timing) {
312 			if (hold) {
313 				hold = min_t(u32, hold, 0x10000);
314 				reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
315 				reg_val |= (((hold - 1) & 0xffff)
316 					<< SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
317 			}
318 			if (setup) {
319 				setup = min_t(u32, setup, 0x10000);
320 				reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
321 				reg_val |= (((setup - 1) & 0xffff)
322 					<< SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
323 			}
324 		} else {
325 			if (hold) {
326 				hold = min_t(u32, hold, 0x100);
327 				reg_val &= ~(0xff << SPI_CFG0_CS_HOLD_OFFSET);
328 				reg_val |= (((hold - 1) & 0xff) << SPI_CFG0_CS_HOLD_OFFSET);
329 			}
330 			if (setup) {
331 				setup = min_t(u32, setup, 0x100);
332 				reg_val &= ~(0xff << SPI_CFG0_CS_SETUP_OFFSET);
333 				reg_val |= (((setup - 1) & 0xff)
334 					<< SPI_CFG0_CS_SETUP_OFFSET);
335 			}
336 		}
337 		writel(reg_val, mdata->base + SPI_CFG0_REG);
338 	}
339 
340 	if (inactive) {
341 		inactive = min_t(u32, inactive, 0x100);
342 		reg_val = readl(mdata->base + SPI_CFG1_REG);
343 		reg_val &= ~SPI_CFG1_CS_IDLE_MASK;
344 		reg_val |= (((inactive - 1) & 0xff) << SPI_CFG1_CS_IDLE_OFFSET);
345 		writel(reg_val, mdata->base + SPI_CFG1_REG);
346 	}
347 
348 	return 0;
349 }
350 
351 static int mtk_spi_hw_init(struct spi_controller *host,
352 			   struct spi_device *spi)
353 {
354 	u16 cpha, cpol;
355 	u32 reg_val;
356 	struct mtk_chip_config *chip_config = spi->controller_data;
357 	struct mtk_spi *mdata = spi_controller_get_devdata(host);
358 
359 	cpha = spi->mode & SPI_CPHA ? 1 : 0;
360 	cpol = spi->mode & SPI_CPOL ? 1 : 0;
361 
362 	reg_val = readl(mdata->base + SPI_CMD_REG);
363 	if (mdata->dev_comp->ipm_design) {
364 		/* SPI transfer without idle time until packet length done */
365 		reg_val |= SPI_CMD_IPM_NONIDLE_MODE;
366 		if (spi->mode & SPI_LOOP)
367 			reg_val |= SPI_CMD_IPM_SPIM_LOOP;
368 		else
369 			reg_val &= ~SPI_CMD_IPM_SPIM_LOOP;
370 	}
371 
372 	if (cpha)
373 		reg_val |= SPI_CMD_CPHA;
374 	else
375 		reg_val &= ~SPI_CMD_CPHA;
376 	if (cpol)
377 		reg_val |= SPI_CMD_CPOL;
378 	else
379 		reg_val &= ~SPI_CMD_CPOL;
380 
381 	/* set the mlsbx and mlsbtx */
382 	if (spi->mode & SPI_LSB_FIRST) {
383 		reg_val &= ~SPI_CMD_TXMSBF;
384 		reg_val &= ~SPI_CMD_RXMSBF;
385 	} else {
386 		reg_val |= SPI_CMD_TXMSBF;
387 		reg_val |= SPI_CMD_RXMSBF;
388 	}
389 
390 	/* set the tx/rx endian */
391 #ifdef __LITTLE_ENDIAN
392 	reg_val &= ~SPI_CMD_TX_ENDIAN;
393 	reg_val &= ~SPI_CMD_RX_ENDIAN;
394 #else
395 	reg_val |= SPI_CMD_TX_ENDIAN;
396 	reg_val |= SPI_CMD_RX_ENDIAN;
397 #endif
398 
399 	if (mdata->dev_comp->enhance_timing) {
400 		/* set CS polarity */
401 		if (spi->mode & SPI_CS_HIGH)
402 			reg_val |= SPI_CMD_CS_POL;
403 		else
404 			reg_val &= ~SPI_CMD_CS_POL;
405 
406 		if (chip_config->sample_sel)
407 			reg_val |= SPI_CMD_SAMPLE_SEL;
408 		else
409 			reg_val &= ~SPI_CMD_SAMPLE_SEL;
410 	}
411 
412 	/* set finish and pause interrupt always enable */
413 	reg_val |= SPI_CMD_FINISH_IE | SPI_CMD_PAUSE_IE;
414 
415 	/* disable dma mode */
416 	reg_val &= ~(SPI_CMD_TX_DMA | SPI_CMD_RX_DMA);
417 
418 	/* disable deassert mode */
419 	reg_val &= ~SPI_CMD_DEASSERT;
420 
421 	writel(reg_val, mdata->base + SPI_CMD_REG);
422 
423 	/* pad select */
424 	if (mdata->dev_comp->need_pad_sel)
425 		writel(mdata->pad_sel[spi_get_chipselect(spi, 0)],
426 		       mdata->base + SPI_PAD_SEL_REG);
427 
428 	/* tick delay */
429 	if (mdata->dev_comp->enhance_timing) {
430 		if (mdata->dev_comp->ipm_design) {
431 			reg_val = readl(mdata->base + SPI_CMD_REG);
432 			reg_val &= ~SPI_CMD_IPM_GET_TICKDLY_MASK;
433 			reg_val |= ((chip_config->tick_delay & 0x7)
434 				    << SPI_CMD_IPM_GET_TICKDLY_OFFSET);
435 			writel(reg_val, mdata->base + SPI_CMD_REG);
436 		} else {
437 			reg_val = readl(mdata->base + SPI_CFG1_REG);
438 			reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK;
439 			reg_val |= ((chip_config->tick_delay & 0x7)
440 				    << SPI_CFG1_GET_TICK_DLY_OFFSET);
441 			writel(reg_val, mdata->base + SPI_CFG1_REG);
442 		}
443 	} else {
444 		reg_val = readl(mdata->base + SPI_CFG1_REG);
445 		reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK_V1;
446 		reg_val |= ((chip_config->tick_delay & 0x3)
447 			    << SPI_CFG1_GET_TICK_DLY_OFFSET_V1);
448 		writel(reg_val, mdata->base + SPI_CFG1_REG);
449 	}
450 
451 	/* set hw cs timing */
452 	mtk_spi_set_hw_cs_timing(spi);
453 	return 0;
454 }
455 
456 static int mtk_spi_prepare_message(struct spi_controller *host,
457 				   struct spi_message *msg)
458 {
459 	return mtk_spi_hw_init(host, msg->spi);
460 }
461 
462 static void mtk_spi_set_cs(struct spi_device *spi, bool enable)
463 {
464 	u32 reg_val;
465 	struct mtk_spi *mdata = spi_controller_get_devdata(spi->controller);
466 
467 	if (spi->mode & SPI_CS_HIGH)
468 		enable = !enable;
469 
470 	reg_val = readl(mdata->base + SPI_CMD_REG);
471 	if (!enable) {
472 		reg_val |= SPI_CMD_PAUSE_EN;
473 		writel(reg_val, mdata->base + SPI_CMD_REG);
474 	} else {
475 		reg_val &= ~SPI_CMD_PAUSE_EN;
476 		writel(reg_val, mdata->base + SPI_CMD_REG);
477 		mdata->state = MTK_SPI_IDLE;
478 		mtk_spi_reset(mdata);
479 	}
480 }
481 
482 static void mtk_spi_prepare_transfer(struct spi_controller *host,
483 				     u32 speed_hz)
484 {
485 	u32 div, sck_time, reg_val;
486 	struct mtk_spi *mdata = spi_controller_get_devdata(host);
487 
488 	if (speed_hz < mdata->spi_clk_hz / 2)
489 		div = DIV_ROUND_UP(mdata->spi_clk_hz, speed_hz);
490 	else
491 		div = 1;
492 
493 	sck_time = (div + 1) / 2;
494 
495 	if (mdata->dev_comp->enhance_timing) {
496 		reg_val = readl(mdata->base + SPI_CFG2_REG);
497 		reg_val &= ~(0xffff << SPI_CFG2_SCK_HIGH_OFFSET);
498 		reg_val |= (((sck_time - 1) & 0xffff)
499 			   << SPI_CFG2_SCK_HIGH_OFFSET);
500 		reg_val &= ~(0xffff << SPI_CFG2_SCK_LOW_OFFSET);
501 		reg_val |= (((sck_time - 1) & 0xffff)
502 			   << SPI_CFG2_SCK_LOW_OFFSET);
503 		writel(reg_val, mdata->base + SPI_CFG2_REG);
504 	} else {
505 		reg_val = readl(mdata->base + SPI_CFG0_REG);
506 		reg_val &= ~(0xff << SPI_CFG0_SCK_HIGH_OFFSET);
507 		reg_val |= (((sck_time - 1) & 0xff)
508 			   << SPI_CFG0_SCK_HIGH_OFFSET);
509 		reg_val &= ~(0xff << SPI_CFG0_SCK_LOW_OFFSET);
510 		reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_LOW_OFFSET);
511 		writel(reg_val, mdata->base + SPI_CFG0_REG);
512 	}
513 }
514 
515 static void mtk_spi_setup_packet(struct spi_controller *host)
516 {
517 	u32 packet_size, packet_loop, reg_val;
518 	struct mtk_spi *mdata = spi_controller_get_devdata(host);
519 
520 	if (mdata->dev_comp->ipm_design)
521 		packet_size = min_t(u32,
522 				    mdata->xfer_len,
523 				    MTK_SPI_IPM_PACKET_SIZE);
524 	else
525 		packet_size = min_t(u32,
526 				    mdata->xfer_len,
527 				    MTK_SPI_PACKET_SIZE);
528 
529 	packet_loop = mdata->xfer_len / packet_size;
530 
531 	reg_val = readl(mdata->base + SPI_CFG1_REG);
532 	if (mdata->dev_comp->ipm_design)
533 		reg_val &= ~SPI_CFG1_IPM_PACKET_LENGTH_MASK;
534 	else
535 		reg_val &= ~SPI_CFG1_PACKET_LENGTH_MASK;
536 	reg_val |= (packet_size - 1) << SPI_CFG1_PACKET_LENGTH_OFFSET;
537 	reg_val &= ~SPI_CFG1_PACKET_LOOP_MASK;
538 	reg_val |= (packet_loop - 1) << SPI_CFG1_PACKET_LOOP_OFFSET;
539 	writel(reg_val, mdata->base + SPI_CFG1_REG);
540 }
541 
542 static void mtk_spi_enable_transfer(struct spi_controller *host)
543 {
544 	u32 cmd;
545 	struct mtk_spi *mdata = spi_controller_get_devdata(host);
546 
547 	cmd = readl(mdata->base + SPI_CMD_REG);
548 	if (mdata->state == MTK_SPI_IDLE)
549 		cmd |= SPI_CMD_ACT;
550 	else
551 		cmd |= SPI_CMD_RESUME;
552 	writel(cmd, mdata->base + SPI_CMD_REG);
553 }
554 
555 static int mtk_spi_get_mult_delta(struct mtk_spi *mdata, u32 xfer_len)
556 {
557 	u32 mult_delta = 0;
558 
559 	if (mdata->dev_comp->ipm_design) {
560 		if (xfer_len > MTK_SPI_IPM_PACKET_SIZE)
561 			mult_delta = xfer_len % MTK_SPI_IPM_PACKET_SIZE;
562 	} else {
563 		if (xfer_len > MTK_SPI_PACKET_SIZE)
564 			mult_delta = xfer_len % MTK_SPI_PACKET_SIZE;
565 	}
566 
567 	return mult_delta;
568 }
569 
570 static void mtk_spi_update_mdata_len(struct spi_controller *host)
571 {
572 	int mult_delta;
573 	struct mtk_spi *mdata = spi_controller_get_devdata(host);
574 
575 	if (mdata->tx_sgl_len && mdata->rx_sgl_len) {
576 		if (mdata->tx_sgl_len > mdata->rx_sgl_len) {
577 			mult_delta = mtk_spi_get_mult_delta(mdata, mdata->rx_sgl_len);
578 			mdata->xfer_len = mdata->rx_sgl_len - mult_delta;
579 			mdata->rx_sgl_len = mult_delta;
580 			mdata->tx_sgl_len -= mdata->xfer_len;
581 		} else {
582 			mult_delta = mtk_spi_get_mult_delta(mdata, mdata->tx_sgl_len);
583 			mdata->xfer_len = mdata->tx_sgl_len - mult_delta;
584 			mdata->tx_sgl_len = mult_delta;
585 			mdata->rx_sgl_len -= mdata->xfer_len;
586 		}
587 	} else if (mdata->tx_sgl_len) {
588 		mult_delta = mtk_spi_get_mult_delta(mdata, mdata->tx_sgl_len);
589 		mdata->xfer_len = mdata->tx_sgl_len - mult_delta;
590 		mdata->tx_sgl_len = mult_delta;
591 	} else if (mdata->rx_sgl_len) {
592 		mult_delta = mtk_spi_get_mult_delta(mdata, mdata->rx_sgl_len);
593 		mdata->xfer_len = mdata->rx_sgl_len - mult_delta;
594 		mdata->rx_sgl_len = mult_delta;
595 	}
596 }
597 
598 static void mtk_spi_setup_dma_addr(struct spi_controller *host,
599 				   struct spi_transfer *xfer)
600 {
601 	struct mtk_spi *mdata = spi_controller_get_devdata(host);
602 
603 	if (mdata->tx_sgl) {
604 		writel((u32)(xfer->tx_dma & MTK_SPI_32BITS_MASK),
605 		       mdata->base + SPI_TX_SRC_REG);
606 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
607 		if (mdata->dev_comp->dma_ext)
608 			writel((u32)(xfer->tx_dma >> 32),
609 			       mdata->base + SPI_TX_SRC_REG_64);
610 #endif
611 	}
612 
613 	if (mdata->rx_sgl) {
614 		writel((u32)(xfer->rx_dma & MTK_SPI_32BITS_MASK),
615 		       mdata->base + SPI_RX_DST_REG);
616 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
617 		if (mdata->dev_comp->dma_ext)
618 			writel((u32)(xfer->rx_dma >> 32),
619 			       mdata->base + SPI_RX_DST_REG_64);
620 #endif
621 	}
622 }
623 
624 static int mtk_spi_fifo_transfer(struct spi_controller *host,
625 				 struct spi_device *spi,
626 				 struct spi_transfer *xfer)
627 {
628 	int cnt, remainder;
629 	u32 reg_val;
630 	struct mtk_spi *mdata = spi_controller_get_devdata(host);
631 
632 	mdata->cur_transfer = xfer;
633 	mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, xfer->len);
634 	mdata->num_xfered = 0;
635 	mtk_spi_prepare_transfer(host, xfer->speed_hz);
636 	mtk_spi_setup_packet(host);
637 
638 	if (xfer->tx_buf) {
639 		cnt = xfer->len / 4;
640 		iowrite32_rep(mdata->base + SPI_TX_DATA_REG, xfer->tx_buf, cnt);
641 		remainder = xfer->len % 4;
642 		if (remainder > 0) {
643 			reg_val = 0;
644 			memcpy(&reg_val, xfer->tx_buf + (cnt * 4), remainder);
645 			writel(reg_val, mdata->base + SPI_TX_DATA_REG);
646 		}
647 	}
648 
649 	mtk_spi_enable_transfer(host);
650 
651 	return 1;
652 }
653 
654 static int mtk_spi_dma_transfer(struct spi_controller *host,
655 				struct spi_device *spi,
656 				struct spi_transfer *xfer)
657 {
658 	int cmd;
659 	struct mtk_spi *mdata = spi_controller_get_devdata(host);
660 
661 	mdata->tx_sgl = NULL;
662 	mdata->rx_sgl = NULL;
663 	mdata->tx_sgl_len = 0;
664 	mdata->rx_sgl_len = 0;
665 	mdata->cur_transfer = xfer;
666 	mdata->num_xfered = 0;
667 
668 	mtk_spi_prepare_transfer(host, xfer->speed_hz);
669 
670 	cmd = readl(mdata->base + SPI_CMD_REG);
671 	if (xfer->tx_buf)
672 		cmd |= SPI_CMD_TX_DMA;
673 	if (xfer->rx_buf)
674 		cmd |= SPI_CMD_RX_DMA;
675 	writel(cmd, mdata->base + SPI_CMD_REG);
676 
677 	if (xfer->tx_buf)
678 		mdata->tx_sgl = xfer->tx_sg.sgl;
679 	if (xfer->rx_buf)
680 		mdata->rx_sgl = xfer->rx_sg.sgl;
681 
682 	if (mdata->tx_sgl) {
683 		xfer->tx_dma = sg_dma_address(mdata->tx_sgl);
684 		mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl);
685 	}
686 	if (mdata->rx_sgl) {
687 		xfer->rx_dma = sg_dma_address(mdata->rx_sgl);
688 		mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl);
689 	}
690 
691 	mtk_spi_update_mdata_len(host);
692 	mtk_spi_setup_packet(host);
693 	mtk_spi_setup_dma_addr(host, xfer);
694 	mtk_spi_enable_transfer(host);
695 
696 	return 1;
697 }
698 
699 static int mtk_spi_transfer_one(struct spi_controller *host,
700 				struct spi_device *spi,
701 				struct spi_transfer *xfer)
702 {
703 	struct mtk_spi *mdata = spi_controller_get_devdata(spi->controller);
704 	u32 reg_val = 0;
705 
706 	/* prepare xfer direction and duplex mode */
707 	if (mdata->dev_comp->ipm_design) {
708 		if (!xfer->tx_buf || !xfer->rx_buf) {
709 			reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN;
710 			if (xfer->rx_buf)
711 				reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR;
712 		}
713 		writel(reg_val, mdata->base + SPI_CFG3_IPM_REG);
714 	}
715 
716 	if (host->can_dma(host, spi, xfer))
717 		return mtk_spi_dma_transfer(host, spi, xfer);
718 	else
719 		return mtk_spi_fifo_transfer(host, spi, xfer);
720 }
721 
722 static bool mtk_spi_can_dma(struct spi_controller *host,
723 			    struct spi_device *spi,
724 			    struct spi_transfer *xfer)
725 {
726 	/* Buffers for DMA transactions must be 4-byte aligned */
727 	return (xfer->len > MTK_SPI_MAX_FIFO_SIZE &&
728 		(unsigned long)xfer->tx_buf % 4 == 0 &&
729 		(unsigned long)xfer->rx_buf % 4 == 0);
730 }
731 
732 static int mtk_spi_setup(struct spi_device *spi)
733 {
734 	struct mtk_spi *mdata = spi_controller_get_devdata(spi->controller);
735 
736 	if (!spi->controller_data)
737 		spi->controller_data = (void *)&mtk_default_chip_info;
738 
739 	if (mdata->dev_comp->need_pad_sel && spi_get_csgpiod(spi, 0))
740 		/* CS de-asserted, gpiolib will handle inversion */
741 		gpiod_direction_output(spi_get_csgpiod(spi, 0), 0);
742 
743 	return 0;
744 }
745 
746 static irqreturn_t mtk_spi_interrupt(int irq, void *dev_id)
747 {
748 	u32 cmd, reg_val, cnt, remainder, len;
749 	struct spi_controller *host = dev_id;
750 	struct mtk_spi *mdata = spi_controller_get_devdata(host);
751 	struct spi_transfer *trans = mdata->cur_transfer;
752 
753 	reg_val = readl(mdata->base + SPI_STATUS0_REG);
754 	if (reg_val & MTK_SPI_PAUSE_INT_STATUS)
755 		mdata->state = MTK_SPI_PAUSED;
756 	else
757 		mdata->state = MTK_SPI_IDLE;
758 
759 	/* SPI-MEM ops */
760 	if (mdata->use_spimem) {
761 		complete(&mdata->spimem_done);
762 		return IRQ_HANDLED;
763 	}
764 
765 	if (!host->can_dma(host, NULL, trans)) {
766 		if (trans->rx_buf) {
767 			cnt = mdata->xfer_len / 4;
768 			ioread32_rep(mdata->base + SPI_RX_DATA_REG,
769 				     trans->rx_buf + mdata->num_xfered, cnt);
770 			remainder = mdata->xfer_len % 4;
771 			if (remainder > 0) {
772 				reg_val = readl(mdata->base + SPI_RX_DATA_REG);
773 				memcpy(trans->rx_buf +
774 					mdata->num_xfered +
775 					(cnt * 4),
776 					&reg_val,
777 					remainder);
778 			}
779 		}
780 
781 		mdata->num_xfered += mdata->xfer_len;
782 		if (mdata->num_xfered == trans->len) {
783 			spi_finalize_current_transfer(host);
784 			return IRQ_HANDLED;
785 		}
786 
787 		len = trans->len - mdata->num_xfered;
788 		mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, len);
789 		mtk_spi_setup_packet(host);
790 
791 		if (trans->tx_buf) {
792 			cnt = mdata->xfer_len / 4;
793 			iowrite32_rep(mdata->base + SPI_TX_DATA_REG,
794 					trans->tx_buf + mdata->num_xfered, cnt);
795 
796 			remainder = mdata->xfer_len % 4;
797 			if (remainder > 0) {
798 				reg_val = 0;
799 				memcpy(&reg_val,
800 					trans->tx_buf + (cnt * 4) + mdata->num_xfered,
801 					remainder);
802 				writel(reg_val, mdata->base + SPI_TX_DATA_REG);
803 			}
804 		}
805 
806 		mtk_spi_enable_transfer(host);
807 
808 		return IRQ_HANDLED;
809 	}
810 
811 	if (mdata->tx_sgl)
812 		trans->tx_dma += mdata->xfer_len;
813 	if (mdata->rx_sgl)
814 		trans->rx_dma += mdata->xfer_len;
815 
816 	if (mdata->tx_sgl && (mdata->tx_sgl_len == 0)) {
817 		mdata->tx_sgl = sg_next(mdata->tx_sgl);
818 		if (mdata->tx_sgl) {
819 			trans->tx_dma = sg_dma_address(mdata->tx_sgl);
820 			mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl);
821 		}
822 	}
823 	if (mdata->rx_sgl && (mdata->rx_sgl_len == 0)) {
824 		mdata->rx_sgl = sg_next(mdata->rx_sgl);
825 		if (mdata->rx_sgl) {
826 			trans->rx_dma = sg_dma_address(mdata->rx_sgl);
827 			mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl);
828 		}
829 	}
830 
831 	if (!mdata->tx_sgl && !mdata->rx_sgl) {
832 		/* spi disable dma */
833 		cmd = readl(mdata->base + SPI_CMD_REG);
834 		cmd &= ~SPI_CMD_TX_DMA;
835 		cmd &= ~SPI_CMD_RX_DMA;
836 		writel(cmd, mdata->base + SPI_CMD_REG);
837 
838 		spi_finalize_current_transfer(host);
839 		return IRQ_HANDLED;
840 	}
841 
842 	mtk_spi_update_mdata_len(host);
843 	mtk_spi_setup_packet(host);
844 	mtk_spi_setup_dma_addr(host, trans);
845 	mtk_spi_enable_transfer(host);
846 
847 	return IRQ_HANDLED;
848 }
849 
850 static int mtk_spi_mem_adjust_op_size(struct spi_mem *mem,
851 				      struct spi_mem_op *op)
852 {
853 	int opcode_len;
854 
855 	if (op->data.dir != SPI_MEM_NO_DATA) {
856 		opcode_len = 1 + op->addr.nbytes + op->dummy.nbytes;
857 		if (opcode_len + op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) {
858 			op->data.nbytes = MTK_SPI_IPM_PACKET_SIZE - opcode_len;
859 			/* force data buffer dma-aligned. */
860 			op->data.nbytes -= op->data.nbytes % 4;
861 		}
862 	}
863 
864 	return 0;
865 }
866 
867 static bool mtk_spi_mem_supports_op(struct spi_mem *mem,
868 				    const struct spi_mem_op *op)
869 {
870 	if (!spi_mem_default_supports_op(mem, op))
871 		return false;
872 
873 	if (op->addr.nbytes && op->dummy.nbytes &&
874 	    op->addr.buswidth != op->dummy.buswidth)
875 		return false;
876 
877 	if (op->addr.nbytes + op->dummy.nbytes > 16)
878 		return false;
879 
880 	if (op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) {
881 		if (op->data.nbytes / MTK_SPI_IPM_PACKET_SIZE >
882 		    MTK_SPI_IPM_PACKET_LOOP ||
883 		    op->data.nbytes % MTK_SPI_IPM_PACKET_SIZE != 0)
884 			return false;
885 	}
886 
887 	return true;
888 }
889 
890 static void mtk_spi_mem_setup_dma_xfer(struct spi_controller *host,
891 				       const struct spi_mem_op *op)
892 {
893 	struct mtk_spi *mdata = spi_controller_get_devdata(host);
894 
895 	writel((u32)(mdata->tx_dma & MTK_SPI_32BITS_MASK),
896 	       mdata->base + SPI_TX_SRC_REG);
897 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
898 	if (mdata->dev_comp->dma_ext)
899 		writel((u32)(mdata->tx_dma >> 32),
900 		       mdata->base + SPI_TX_SRC_REG_64);
901 #endif
902 
903 	if (op->data.dir == SPI_MEM_DATA_IN) {
904 		writel((u32)(mdata->rx_dma & MTK_SPI_32BITS_MASK),
905 		       mdata->base + SPI_RX_DST_REG);
906 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
907 		if (mdata->dev_comp->dma_ext)
908 			writel((u32)(mdata->rx_dma >> 32),
909 			       mdata->base + SPI_RX_DST_REG_64);
910 #endif
911 	}
912 }
913 
914 static int mtk_spi_transfer_wait(struct spi_mem *mem,
915 				 const struct spi_mem_op *op)
916 {
917 	struct mtk_spi *mdata = spi_controller_get_devdata(mem->spi->controller);
918 	/*
919 	 * For each byte we wait for 8 cycles of the SPI clock.
920 	 * Since speed is defined in Hz and we want milliseconds,
921 	 * so it should be 8 * 1000.
922 	 */
923 	u64 ms = 8000LL;
924 
925 	if (op->data.dir == SPI_MEM_NO_DATA)
926 		ms *= 32; /* prevent we may get 0 for short transfers. */
927 	else
928 		ms *= op->data.nbytes;
929 	ms = div_u64(ms, mem->spi->max_speed_hz);
930 	ms += ms + 1000; /* 1s tolerance */
931 
932 	if (ms > UINT_MAX)
933 		ms = UINT_MAX;
934 
935 	if (!wait_for_completion_timeout(&mdata->spimem_done,
936 					 msecs_to_jiffies(ms))) {
937 		dev_err(mdata->dev, "spi-mem transfer timeout\n");
938 		return -ETIMEDOUT;
939 	}
940 
941 	return 0;
942 }
943 
944 static int mtk_spi_mem_exec_op(struct spi_mem *mem,
945 			       const struct spi_mem_op *op)
946 {
947 	struct mtk_spi *mdata = spi_controller_get_devdata(mem->spi->controller);
948 	u32 reg_val, nio, tx_size;
949 	char *tx_tmp_buf, *rx_tmp_buf;
950 	int ret = 0;
951 
952 	mdata->use_spimem = true;
953 	reinit_completion(&mdata->spimem_done);
954 
955 	mtk_spi_reset(mdata);
956 	mtk_spi_hw_init(mem->spi->controller, mem->spi);
957 	mtk_spi_prepare_transfer(mem->spi->controller, mem->spi->max_speed_hz);
958 
959 	reg_val = readl(mdata->base + SPI_CFG3_IPM_REG);
960 	/* opcode byte len */
961 	reg_val &= ~SPI_CFG3_IPM_CMD_BYTELEN_MASK;
962 	reg_val |= 1 << SPI_CFG3_IPM_CMD_BYTELEN_OFFSET;
963 
964 	/* addr & dummy byte len */
965 	reg_val &= ~SPI_CFG3_IPM_ADDR_BYTELEN_MASK;
966 	if (op->addr.nbytes || op->dummy.nbytes)
967 		reg_val |= (op->addr.nbytes + op->dummy.nbytes) <<
968 			    SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET;
969 
970 	/* data byte len */
971 	if (op->data.dir == SPI_MEM_NO_DATA) {
972 		reg_val |= SPI_CFG3_IPM_NODATA_FLAG;
973 		writel(0, mdata->base + SPI_CFG1_REG);
974 	} else {
975 		reg_val &= ~SPI_CFG3_IPM_NODATA_FLAG;
976 		mdata->xfer_len = op->data.nbytes;
977 		mtk_spi_setup_packet(mem->spi->controller);
978 	}
979 
980 	if (op->addr.nbytes || op->dummy.nbytes) {
981 		if (op->addr.buswidth == 1 || op->dummy.buswidth == 1)
982 			reg_val |= SPI_CFG3_IPM_XMODE_EN;
983 		else
984 			reg_val &= ~SPI_CFG3_IPM_XMODE_EN;
985 	}
986 
987 	if (op->addr.buswidth == 2 ||
988 	    op->dummy.buswidth == 2 ||
989 	    op->data.buswidth == 2)
990 		nio = 2;
991 	else if (op->addr.buswidth == 4 ||
992 		 op->dummy.buswidth == 4 ||
993 		 op->data.buswidth == 4)
994 		nio = 4;
995 	else
996 		nio = 1;
997 
998 	reg_val &= ~SPI_CFG3_IPM_CMD_PIN_MODE_MASK;
999 	reg_val |= PIN_MODE_CFG(nio);
1000 
1001 	reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN;
1002 	if (op->data.dir == SPI_MEM_DATA_IN)
1003 		reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR;
1004 	else
1005 		reg_val &= ~SPI_CFG3_IPM_HALF_DUPLEX_DIR;
1006 	writel(reg_val, mdata->base + SPI_CFG3_IPM_REG);
1007 
1008 	tx_size = 1 + op->addr.nbytes + op->dummy.nbytes;
1009 	if (op->data.dir == SPI_MEM_DATA_OUT)
1010 		tx_size += op->data.nbytes;
1011 
1012 	tx_size = max_t(u32, tx_size, 32);
1013 
1014 	tx_tmp_buf = kzalloc(tx_size, GFP_KERNEL | GFP_DMA);
1015 	if (!tx_tmp_buf) {
1016 		mdata->use_spimem = false;
1017 		return -ENOMEM;
1018 	}
1019 
1020 	tx_tmp_buf[0] = op->cmd.opcode;
1021 
1022 	if (op->addr.nbytes) {
1023 		int i;
1024 
1025 		for (i = 0; i < op->addr.nbytes; i++)
1026 			tx_tmp_buf[i + 1] = op->addr.val >>
1027 					(8 * (op->addr.nbytes - i - 1));
1028 	}
1029 
1030 	if (op->dummy.nbytes)
1031 		memset(tx_tmp_buf + op->addr.nbytes + 1,
1032 		       0xff,
1033 		       op->dummy.nbytes);
1034 
1035 	if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
1036 		memcpy(tx_tmp_buf + op->dummy.nbytes + op->addr.nbytes + 1,
1037 		       op->data.buf.out,
1038 		       op->data.nbytes);
1039 
1040 	mdata->tx_dma = dma_map_single(mdata->dev, tx_tmp_buf,
1041 				       tx_size, DMA_TO_DEVICE);
1042 	if (dma_mapping_error(mdata->dev, mdata->tx_dma)) {
1043 		ret = -ENOMEM;
1044 		goto err_exit;
1045 	}
1046 
1047 	if (op->data.dir == SPI_MEM_DATA_IN) {
1048 		if (!IS_ALIGNED((size_t)op->data.buf.in, 4)) {
1049 			rx_tmp_buf = kzalloc(op->data.nbytes,
1050 					     GFP_KERNEL | GFP_DMA);
1051 			if (!rx_tmp_buf) {
1052 				ret = -ENOMEM;
1053 				goto unmap_tx_dma;
1054 			}
1055 		} else {
1056 			rx_tmp_buf = op->data.buf.in;
1057 		}
1058 
1059 		mdata->rx_dma = dma_map_single(mdata->dev,
1060 					       rx_tmp_buf,
1061 					       op->data.nbytes,
1062 					       DMA_FROM_DEVICE);
1063 		if (dma_mapping_error(mdata->dev, mdata->rx_dma)) {
1064 			ret = -ENOMEM;
1065 			goto kfree_rx_tmp_buf;
1066 		}
1067 	}
1068 
1069 	reg_val = readl(mdata->base + SPI_CMD_REG);
1070 	reg_val |= SPI_CMD_TX_DMA;
1071 	if (op->data.dir == SPI_MEM_DATA_IN)
1072 		reg_val |= SPI_CMD_RX_DMA;
1073 	writel(reg_val, mdata->base + SPI_CMD_REG);
1074 
1075 	mtk_spi_mem_setup_dma_xfer(mem->spi->controller, op);
1076 
1077 	mtk_spi_enable_transfer(mem->spi->controller);
1078 
1079 	/* Wait for the interrupt. */
1080 	ret = mtk_spi_transfer_wait(mem, op);
1081 	if (ret)
1082 		goto unmap_rx_dma;
1083 
1084 	/* spi disable dma */
1085 	reg_val = readl(mdata->base + SPI_CMD_REG);
1086 	reg_val &= ~SPI_CMD_TX_DMA;
1087 	if (op->data.dir == SPI_MEM_DATA_IN)
1088 		reg_val &= ~SPI_CMD_RX_DMA;
1089 	writel(reg_val, mdata->base + SPI_CMD_REG);
1090 
1091 unmap_rx_dma:
1092 	if (op->data.dir == SPI_MEM_DATA_IN) {
1093 		dma_unmap_single(mdata->dev, mdata->rx_dma,
1094 				 op->data.nbytes, DMA_FROM_DEVICE);
1095 		if (!IS_ALIGNED((size_t)op->data.buf.in, 4))
1096 			memcpy(op->data.buf.in, rx_tmp_buf, op->data.nbytes);
1097 	}
1098 kfree_rx_tmp_buf:
1099 	if (op->data.dir == SPI_MEM_DATA_IN &&
1100 	    !IS_ALIGNED((size_t)op->data.buf.in, 4))
1101 		kfree(rx_tmp_buf);
1102 unmap_tx_dma:
1103 	dma_unmap_single(mdata->dev, mdata->tx_dma,
1104 			 tx_size, DMA_TO_DEVICE);
1105 err_exit:
1106 	kfree(tx_tmp_buf);
1107 	mdata->use_spimem = false;
1108 
1109 	return ret;
1110 }
1111 
1112 static const struct spi_controller_mem_ops mtk_spi_mem_ops = {
1113 	.adjust_op_size = mtk_spi_mem_adjust_op_size,
1114 	.supports_op = mtk_spi_mem_supports_op,
1115 	.exec_op = mtk_spi_mem_exec_op,
1116 };
1117 
1118 static int mtk_spi_probe(struct platform_device *pdev)
1119 {
1120 	struct device *dev = &pdev->dev;
1121 	struct spi_controller *host;
1122 	struct mtk_spi *mdata;
1123 	int i, irq, ret, addr_bits;
1124 
1125 	host = devm_spi_alloc_host(dev, sizeof(*mdata));
1126 	if (!host)
1127 		return dev_err_probe(dev, -ENOMEM, "failed to alloc spi host\n");
1128 
1129 	host->auto_runtime_pm = true;
1130 	host->dev.of_node = dev->of_node;
1131 	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1132 
1133 	host->set_cs = mtk_spi_set_cs;
1134 	host->prepare_message = mtk_spi_prepare_message;
1135 	host->transfer_one = mtk_spi_transfer_one;
1136 	host->can_dma = mtk_spi_can_dma;
1137 	host->setup = mtk_spi_setup;
1138 	host->set_cs_timing = mtk_spi_set_hw_cs_timing;
1139 	host->use_gpio_descriptors = true;
1140 
1141 	mdata = spi_controller_get_devdata(host);
1142 	mdata->dev_comp = device_get_match_data(dev);
1143 
1144 	if (mdata->dev_comp->enhance_timing)
1145 		host->mode_bits |= SPI_CS_HIGH;
1146 
1147 	if (mdata->dev_comp->must_tx)
1148 		host->flags = SPI_CONTROLLER_MUST_TX;
1149 	if (mdata->dev_comp->ipm_design)
1150 		host->mode_bits |= SPI_LOOP | SPI_RX_DUAL | SPI_TX_DUAL |
1151 				   SPI_RX_QUAD | SPI_TX_QUAD;
1152 
1153 	if (mdata->dev_comp->ipm_design) {
1154 		mdata->dev = dev;
1155 		host->mem_ops = &mtk_spi_mem_ops;
1156 		init_completion(&mdata->spimem_done);
1157 	}
1158 
1159 	if (mdata->dev_comp->need_pad_sel) {
1160 		mdata->pad_num = of_property_count_u32_elems(dev->of_node,
1161 			"mediatek,pad-select");
1162 		if (mdata->pad_num < 0)
1163 			return dev_err_probe(dev, -EINVAL,
1164 				"No 'mediatek,pad-select' property\n");
1165 
1166 		mdata->pad_sel = devm_kmalloc_array(dev, mdata->pad_num,
1167 						    sizeof(u32), GFP_KERNEL);
1168 		if (!mdata->pad_sel)
1169 			return -ENOMEM;
1170 
1171 		for (i = 0; i < mdata->pad_num; i++) {
1172 			of_property_read_u32_index(dev->of_node,
1173 						   "mediatek,pad-select",
1174 						   i, &mdata->pad_sel[i]);
1175 			if (mdata->pad_sel[i] > MT8173_SPI_MAX_PAD_SEL)
1176 				return dev_err_probe(dev, -EINVAL,
1177 						     "wrong pad-sel[%d]: %u\n",
1178 						     i, mdata->pad_sel[i]);
1179 		}
1180 	}
1181 
1182 	platform_set_drvdata(pdev, host);
1183 	mdata->base = devm_platform_ioremap_resource(pdev, 0);
1184 	if (IS_ERR(mdata->base))
1185 		return PTR_ERR(mdata->base);
1186 
1187 	irq = platform_get_irq(pdev, 0);
1188 	if (irq < 0)
1189 		return irq;
1190 
1191 	if (!dev->dma_mask)
1192 		dev->dma_mask = &dev->coherent_dma_mask;
1193 
1194 	if (mdata->dev_comp->ipm_design)
1195 		dma_set_max_seg_size(dev, SZ_16M);
1196 	else
1197 		dma_set_max_seg_size(dev, SZ_256K);
1198 
1199 	mdata->parent_clk = devm_clk_get(dev, "parent-clk");
1200 	if (IS_ERR(mdata->parent_clk))
1201 		return dev_err_probe(dev, PTR_ERR(mdata->parent_clk),
1202 				     "failed to get parent-clk\n");
1203 
1204 	mdata->sel_clk = devm_clk_get(dev, "sel-clk");
1205 	if (IS_ERR(mdata->sel_clk))
1206 		return dev_err_probe(dev, PTR_ERR(mdata->sel_clk), "failed to get sel-clk\n");
1207 
1208 	mdata->spi_clk = devm_clk_get(dev, "spi-clk");
1209 	if (IS_ERR(mdata->spi_clk))
1210 		return dev_err_probe(dev, PTR_ERR(mdata->spi_clk), "failed to get spi-clk\n");
1211 
1212 	mdata->spi_hclk = devm_clk_get_optional(dev, "hclk");
1213 	if (IS_ERR(mdata->spi_hclk))
1214 		return dev_err_probe(dev, PTR_ERR(mdata->spi_hclk), "failed to get hclk\n");
1215 
1216 	ret = clk_set_parent(mdata->sel_clk, mdata->parent_clk);
1217 	if (ret < 0)
1218 		return dev_err_probe(dev, ret, "failed to clk_set_parent\n");
1219 
1220 	ret = clk_prepare_enable(mdata->spi_hclk);
1221 	if (ret < 0)
1222 		return dev_err_probe(dev, ret, "failed to enable hclk\n");
1223 
1224 	ret = clk_prepare_enable(mdata->spi_clk);
1225 	if (ret < 0) {
1226 		clk_disable_unprepare(mdata->spi_hclk);
1227 		return dev_err_probe(dev, ret, "failed to enable spi_clk\n");
1228 	}
1229 
1230 	mdata->spi_clk_hz = clk_get_rate(mdata->spi_clk);
1231 
1232 	if (mdata->dev_comp->no_need_unprepare) {
1233 		clk_disable(mdata->spi_clk);
1234 		clk_disable(mdata->spi_hclk);
1235 	} else {
1236 		clk_disable_unprepare(mdata->spi_clk);
1237 		clk_disable_unprepare(mdata->spi_hclk);
1238 	}
1239 
1240 	if (mdata->dev_comp->need_pad_sel) {
1241 		if (mdata->pad_num != host->num_chipselect)
1242 			return dev_err_probe(dev, -EINVAL,
1243 				"pad_num does not match num_chipselect(%d != %d)\n",
1244 				mdata->pad_num, host->num_chipselect);
1245 
1246 		if (!host->cs_gpiods && host->num_chipselect > 1)
1247 			return dev_err_probe(dev, -EINVAL,
1248 				"cs_gpios not specified and num_chipselect > 1\n");
1249 	}
1250 
1251 	if (mdata->dev_comp->dma_ext)
1252 		addr_bits = DMA_ADDR_EXT_BITS;
1253 	else
1254 		addr_bits = DMA_ADDR_DEF_BITS;
1255 	ret = dma_set_mask(dev, DMA_BIT_MASK(addr_bits));
1256 	if (ret)
1257 		dev_notice(dev, "SPI dma_set_mask(%d) failed, ret:%d\n",
1258 			   addr_bits, ret);
1259 
1260 	ret = devm_request_irq(dev, irq, mtk_spi_interrupt,
1261 			       IRQF_TRIGGER_NONE, dev_name(dev), host);
1262 	if (ret)
1263 		return dev_err_probe(dev, ret, "failed to register irq\n");
1264 
1265 	pm_runtime_enable(dev);
1266 
1267 	ret = devm_spi_register_controller(dev, host);
1268 	if (ret) {
1269 		pm_runtime_disable(dev);
1270 		return dev_err_probe(dev, ret, "failed to register host\n");
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 static void mtk_spi_remove(struct platform_device *pdev)
1277 {
1278 	struct spi_controller *host = platform_get_drvdata(pdev);
1279 	struct mtk_spi *mdata = spi_controller_get_devdata(host);
1280 	int ret;
1281 
1282 	if (mdata->use_spimem && !completion_done(&mdata->spimem_done))
1283 		complete(&mdata->spimem_done);
1284 
1285 	ret = pm_runtime_get_sync(&pdev->dev);
1286 	if (ret < 0) {
1287 		dev_warn(&pdev->dev, "Failed to resume hardware (%pe)\n", ERR_PTR(ret));
1288 	} else {
1289 		/*
1290 		 * If pm runtime resume failed, clks are disabled and
1291 		 * unprepared. So don't access the hardware and skip clk
1292 		 * unpreparing.
1293 		 */
1294 		mtk_spi_reset(mdata);
1295 
1296 		if (mdata->dev_comp->no_need_unprepare) {
1297 			clk_unprepare(mdata->spi_clk);
1298 			clk_unprepare(mdata->spi_hclk);
1299 		}
1300 	}
1301 
1302 	pm_runtime_put_noidle(&pdev->dev);
1303 	pm_runtime_disable(&pdev->dev);
1304 }
1305 
1306 #ifdef CONFIG_PM_SLEEP
1307 static int mtk_spi_suspend(struct device *dev)
1308 {
1309 	int ret;
1310 	struct spi_controller *host = dev_get_drvdata(dev);
1311 	struct mtk_spi *mdata = spi_controller_get_devdata(host);
1312 
1313 	ret = spi_controller_suspend(host);
1314 	if (ret)
1315 		return ret;
1316 
1317 	if (!pm_runtime_suspended(dev)) {
1318 		clk_disable_unprepare(mdata->spi_clk);
1319 		clk_disable_unprepare(mdata->spi_hclk);
1320 	}
1321 
1322 	pinctrl_pm_select_sleep_state(dev);
1323 
1324 	return 0;
1325 }
1326 
1327 static int mtk_spi_resume(struct device *dev)
1328 {
1329 	int ret;
1330 	struct spi_controller *host = dev_get_drvdata(dev);
1331 	struct mtk_spi *mdata = spi_controller_get_devdata(host);
1332 
1333 	pinctrl_pm_select_default_state(dev);
1334 
1335 	if (!pm_runtime_suspended(dev)) {
1336 		ret = clk_prepare_enable(mdata->spi_clk);
1337 		if (ret < 0) {
1338 			dev_err(dev, "failed to enable spi_clk (%d)\n", ret);
1339 			return ret;
1340 		}
1341 
1342 		ret = clk_prepare_enable(mdata->spi_hclk);
1343 		if (ret < 0) {
1344 			dev_err(dev, "failed to enable spi_hclk (%d)\n", ret);
1345 			clk_disable_unprepare(mdata->spi_clk);
1346 			return ret;
1347 		}
1348 	}
1349 
1350 	ret = spi_controller_resume(host);
1351 	if (ret < 0) {
1352 		clk_disable_unprepare(mdata->spi_clk);
1353 		clk_disable_unprepare(mdata->spi_hclk);
1354 	}
1355 
1356 	return ret;
1357 }
1358 #endif /* CONFIG_PM_SLEEP */
1359 
1360 #ifdef CONFIG_PM
1361 static int mtk_spi_runtime_suspend(struct device *dev)
1362 {
1363 	struct spi_controller *host = dev_get_drvdata(dev);
1364 	struct mtk_spi *mdata = spi_controller_get_devdata(host);
1365 
1366 	if (mdata->dev_comp->no_need_unprepare) {
1367 		clk_disable(mdata->spi_clk);
1368 		clk_disable(mdata->spi_hclk);
1369 	} else {
1370 		clk_disable_unprepare(mdata->spi_clk);
1371 		clk_disable_unprepare(mdata->spi_hclk);
1372 	}
1373 
1374 	return 0;
1375 }
1376 
1377 static int mtk_spi_runtime_resume(struct device *dev)
1378 {
1379 	struct spi_controller *host = dev_get_drvdata(dev);
1380 	struct mtk_spi *mdata = spi_controller_get_devdata(host);
1381 	int ret;
1382 
1383 	if (mdata->dev_comp->no_need_unprepare) {
1384 		ret = clk_enable(mdata->spi_clk);
1385 		if (ret < 0) {
1386 			dev_err(dev, "failed to enable spi_clk (%d)\n", ret);
1387 			return ret;
1388 		}
1389 		ret = clk_enable(mdata->spi_hclk);
1390 		if (ret < 0) {
1391 			dev_err(dev, "failed to enable spi_hclk (%d)\n", ret);
1392 			clk_disable(mdata->spi_clk);
1393 			return ret;
1394 		}
1395 	} else {
1396 		ret = clk_prepare_enable(mdata->spi_clk);
1397 		if (ret < 0) {
1398 			dev_err(dev, "failed to prepare_enable spi_clk (%d)\n", ret);
1399 			return ret;
1400 		}
1401 
1402 		ret = clk_prepare_enable(mdata->spi_hclk);
1403 		if (ret < 0) {
1404 			dev_err(dev, "failed to prepare_enable spi_hclk (%d)\n", ret);
1405 			clk_disable_unprepare(mdata->spi_clk);
1406 			return ret;
1407 		}
1408 	}
1409 
1410 	return 0;
1411 }
1412 #endif /* CONFIG_PM */
1413 
1414 static const struct dev_pm_ops mtk_spi_pm = {
1415 	SET_SYSTEM_SLEEP_PM_OPS(mtk_spi_suspend, mtk_spi_resume)
1416 	SET_RUNTIME_PM_OPS(mtk_spi_runtime_suspend,
1417 			   mtk_spi_runtime_resume, NULL)
1418 };
1419 
1420 static struct platform_driver mtk_spi_driver = {
1421 	.driver = {
1422 		.name = "mtk-spi",
1423 		.pm	= &mtk_spi_pm,
1424 		.of_match_table = mtk_spi_of_match,
1425 	},
1426 	.probe = mtk_spi_probe,
1427 	.remove_new = mtk_spi_remove,
1428 };
1429 
1430 module_platform_driver(mtk_spi_driver);
1431 
1432 MODULE_DESCRIPTION("MTK SPI Controller driver");
1433 MODULE_AUTHOR("Leilk Liu <leilk.liu@mediatek.com>");
1434 MODULE_LICENSE("GPL v2");
1435 MODULE_ALIAS("platform:mtk-spi");
1436