1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015 MediaTek Inc. 4 * Author: Leilk Liu <leilk.liu@mediatek.com> 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/device.h> 9 #include <linux/err.h> 10 #include <linux/interrupt.h> 11 #include <linux/io.h> 12 #include <linux/ioport.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/pinctrl/consumer.h> 17 #include <linux/platform_device.h> 18 #include <linux/platform_data/spi-mt65xx.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/spi/spi.h> 21 #include <linux/spi/spi-mem.h> 22 #include <linux/dma-mapping.h> 23 24 #define SPI_CFG0_REG 0x0000 25 #define SPI_CFG1_REG 0x0004 26 #define SPI_TX_SRC_REG 0x0008 27 #define SPI_RX_DST_REG 0x000c 28 #define SPI_TX_DATA_REG 0x0010 29 #define SPI_RX_DATA_REG 0x0014 30 #define SPI_CMD_REG 0x0018 31 #define SPI_STATUS0_REG 0x001c 32 #define SPI_PAD_SEL_REG 0x0024 33 #define SPI_CFG2_REG 0x0028 34 #define SPI_TX_SRC_REG_64 0x002c 35 #define SPI_RX_DST_REG_64 0x0030 36 #define SPI_CFG3_IPM_REG 0x0040 37 38 #define SPI_CFG0_SCK_HIGH_OFFSET 0 39 #define SPI_CFG0_SCK_LOW_OFFSET 8 40 #define SPI_CFG0_CS_HOLD_OFFSET 16 41 #define SPI_CFG0_CS_SETUP_OFFSET 24 42 #define SPI_ADJUST_CFG0_CS_HOLD_OFFSET 0 43 #define SPI_ADJUST_CFG0_CS_SETUP_OFFSET 16 44 45 #define SPI_CFG1_CS_IDLE_OFFSET 0 46 #define SPI_CFG1_PACKET_LOOP_OFFSET 8 47 #define SPI_CFG1_PACKET_LENGTH_OFFSET 16 48 #define SPI_CFG1_GET_TICK_DLY_OFFSET 29 49 #define SPI_CFG1_GET_TICK_DLY_OFFSET_V1 30 50 51 #define SPI_CFG1_GET_TICK_DLY_MASK 0xe0000000 52 #define SPI_CFG1_GET_TICK_DLY_MASK_V1 0xc0000000 53 54 #define SPI_CFG1_CS_IDLE_MASK 0xff 55 #define SPI_CFG1_PACKET_LOOP_MASK 0xff00 56 #define SPI_CFG1_PACKET_LENGTH_MASK 0x3ff0000 57 #define SPI_CFG1_IPM_PACKET_LENGTH_MASK GENMASK(31, 16) 58 #define SPI_CFG2_SCK_HIGH_OFFSET 0 59 #define SPI_CFG2_SCK_LOW_OFFSET 16 60 61 #define SPI_CMD_ACT BIT(0) 62 #define SPI_CMD_RESUME BIT(1) 63 #define SPI_CMD_RST BIT(2) 64 #define SPI_CMD_PAUSE_EN BIT(4) 65 #define SPI_CMD_DEASSERT BIT(5) 66 #define SPI_CMD_SAMPLE_SEL BIT(6) 67 #define SPI_CMD_CS_POL BIT(7) 68 #define SPI_CMD_CPHA BIT(8) 69 #define SPI_CMD_CPOL BIT(9) 70 #define SPI_CMD_RX_DMA BIT(10) 71 #define SPI_CMD_TX_DMA BIT(11) 72 #define SPI_CMD_TXMSBF BIT(12) 73 #define SPI_CMD_RXMSBF BIT(13) 74 #define SPI_CMD_RX_ENDIAN BIT(14) 75 #define SPI_CMD_TX_ENDIAN BIT(15) 76 #define SPI_CMD_FINISH_IE BIT(16) 77 #define SPI_CMD_PAUSE_IE BIT(17) 78 #define SPI_CMD_IPM_NONIDLE_MODE BIT(19) 79 #define SPI_CMD_IPM_SPIM_LOOP BIT(21) 80 #define SPI_CMD_IPM_GET_TICKDLY_OFFSET 22 81 82 #define SPI_CMD_IPM_GET_TICKDLY_MASK GENMASK(24, 22) 83 84 #define PIN_MODE_CFG(x) ((x) / 2) 85 86 #define SPI_CFG3_IPM_HALF_DUPLEX_DIR BIT(2) 87 #define SPI_CFG3_IPM_HALF_DUPLEX_EN BIT(3) 88 #define SPI_CFG3_IPM_XMODE_EN BIT(4) 89 #define SPI_CFG3_IPM_NODATA_FLAG BIT(5) 90 #define SPI_CFG3_IPM_CMD_BYTELEN_OFFSET 8 91 #define SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET 12 92 93 #define SPI_CFG3_IPM_CMD_PIN_MODE_MASK GENMASK(1, 0) 94 #define SPI_CFG3_IPM_CMD_BYTELEN_MASK GENMASK(11, 8) 95 #define SPI_CFG3_IPM_ADDR_BYTELEN_MASK GENMASK(15, 12) 96 97 #define MT8173_SPI_MAX_PAD_SEL 3 98 99 #define MTK_SPI_PAUSE_INT_STATUS 0x2 100 101 #define MTK_SPI_MAX_FIFO_SIZE 32U 102 #define MTK_SPI_PACKET_SIZE 1024 103 #define MTK_SPI_IPM_PACKET_SIZE SZ_64K 104 #define MTK_SPI_IPM_PACKET_LOOP SZ_256 105 106 #define MTK_SPI_IDLE 0 107 #define MTK_SPI_PAUSED 1 108 109 #define MTK_SPI_32BITS_MASK (0xffffffff) 110 111 #define DMA_ADDR_EXT_BITS (36) 112 #define DMA_ADDR_DEF_BITS (32) 113 114 /** 115 * struct mtk_spi_compatible - device data structure 116 * @need_pad_sel: Enable pad (pins) selection in SPI controller 117 * @must_tx: Must explicitly send dummy TX bytes to do RX only transfer 118 * @enhance_timing: Enable adjusting cfg register to enhance time accuracy 119 * @dma_ext: DMA address extension supported 120 * @no_need_unprepare: Don't unprepare the SPI clk during runtime 121 * @ipm_design: Adjust/extend registers to support IPM design IP features 122 */ 123 struct mtk_spi_compatible { 124 bool need_pad_sel; 125 bool must_tx; 126 bool enhance_timing; 127 bool dma_ext; 128 bool no_need_unprepare; 129 bool ipm_design; 130 }; 131 132 /** 133 * struct mtk_spi - SPI driver instance 134 * @base: Start address of the SPI controller registers 135 * @state: SPI controller state 136 * @pad_num: Number of pad_sel entries 137 * @pad_sel: Groups of pins to select 138 * @parent_clk: Parent of sel_clk 139 * @sel_clk: SPI host mux clock 140 * @spi_clk: Peripheral clock 141 * @spi_hclk: AHB bus clock 142 * @cur_transfer: Currently processed SPI transfer 143 * @xfer_len: Number of bytes to transfer 144 * @num_xfered: Number of transferred bytes 145 * @tx_sgl: TX transfer scatterlist 146 * @rx_sgl: RX transfer scatterlist 147 * @tx_sgl_len: Size of TX DMA transfer 148 * @rx_sgl_len: Size of RX DMA transfer 149 * @dev_comp: Device data structure 150 * @spi_clk_hz: Current SPI clock in Hz 151 * @spimem_done: SPI-MEM operation completion 152 * @use_spimem: Enables SPI-MEM 153 * @dev: Device pointer 154 * @tx_dma: DMA start for SPI-MEM TX 155 * @rx_dma: DMA start for SPI-MEM RX 156 */ 157 struct mtk_spi { 158 void __iomem *base; 159 u32 state; 160 int pad_num; 161 u32 *pad_sel; 162 struct clk *parent_clk, *sel_clk, *spi_clk, *spi_hclk; 163 struct spi_transfer *cur_transfer; 164 u32 xfer_len; 165 u32 num_xfered; 166 struct scatterlist *tx_sgl, *rx_sgl; 167 u32 tx_sgl_len, rx_sgl_len; 168 const struct mtk_spi_compatible *dev_comp; 169 u32 spi_clk_hz; 170 struct completion spimem_done; 171 bool use_spimem; 172 struct device *dev; 173 dma_addr_t tx_dma; 174 dma_addr_t rx_dma; 175 }; 176 177 static const struct mtk_spi_compatible mtk_common_compat; 178 179 static const struct mtk_spi_compatible mt2712_compat = { 180 .must_tx = true, 181 }; 182 183 static const struct mtk_spi_compatible mtk_ipm_compat = { 184 .enhance_timing = true, 185 .dma_ext = true, 186 .ipm_design = true, 187 }; 188 189 static const struct mtk_spi_compatible mt6765_compat = { 190 .need_pad_sel = true, 191 .must_tx = true, 192 .enhance_timing = true, 193 .dma_ext = true, 194 }; 195 196 static const struct mtk_spi_compatible mt7622_compat = { 197 .must_tx = true, 198 .enhance_timing = true, 199 }; 200 201 static const struct mtk_spi_compatible mt8173_compat = { 202 .need_pad_sel = true, 203 .must_tx = true, 204 }; 205 206 static const struct mtk_spi_compatible mt8183_compat = { 207 .need_pad_sel = true, 208 .must_tx = true, 209 .enhance_timing = true, 210 }; 211 212 static const struct mtk_spi_compatible mt6893_compat = { 213 .need_pad_sel = true, 214 .must_tx = true, 215 .enhance_timing = true, 216 .dma_ext = true, 217 .no_need_unprepare = true, 218 }; 219 220 /* 221 * A piece of default chip info unless the platform 222 * supplies it. 223 */ 224 static const struct mtk_chip_config mtk_default_chip_info = { 225 .sample_sel = 0, 226 .tick_delay = 0, 227 }; 228 229 static const struct of_device_id mtk_spi_of_match[] = { 230 { .compatible = "mediatek,spi-ipm", 231 .data = (void *)&mtk_ipm_compat, 232 }, 233 { .compatible = "mediatek,mt2701-spi", 234 .data = (void *)&mtk_common_compat, 235 }, 236 { .compatible = "mediatek,mt2712-spi", 237 .data = (void *)&mt2712_compat, 238 }, 239 { .compatible = "mediatek,mt6589-spi", 240 .data = (void *)&mtk_common_compat, 241 }, 242 { .compatible = "mediatek,mt6765-spi", 243 .data = (void *)&mt6765_compat, 244 }, 245 { .compatible = "mediatek,mt7622-spi", 246 .data = (void *)&mt7622_compat, 247 }, 248 { .compatible = "mediatek,mt7629-spi", 249 .data = (void *)&mt7622_compat, 250 }, 251 { .compatible = "mediatek,mt8135-spi", 252 .data = (void *)&mtk_common_compat, 253 }, 254 { .compatible = "mediatek,mt8173-spi", 255 .data = (void *)&mt8173_compat, 256 }, 257 { .compatible = "mediatek,mt8183-spi", 258 .data = (void *)&mt8183_compat, 259 }, 260 { .compatible = "mediatek,mt8192-spi", 261 .data = (void *)&mt6765_compat, 262 }, 263 { .compatible = "mediatek,mt6893-spi", 264 .data = (void *)&mt6893_compat, 265 }, 266 {} 267 }; 268 MODULE_DEVICE_TABLE(of, mtk_spi_of_match); 269 270 static void mtk_spi_reset(struct mtk_spi *mdata) 271 { 272 u32 reg_val; 273 274 /* set the software reset bit in SPI_CMD_REG. */ 275 reg_val = readl(mdata->base + SPI_CMD_REG); 276 reg_val |= SPI_CMD_RST; 277 writel(reg_val, mdata->base + SPI_CMD_REG); 278 279 reg_val = readl(mdata->base + SPI_CMD_REG); 280 reg_val &= ~SPI_CMD_RST; 281 writel(reg_val, mdata->base + SPI_CMD_REG); 282 } 283 284 static int mtk_spi_set_hw_cs_timing(struct spi_device *spi) 285 { 286 struct mtk_spi *mdata = spi_controller_get_devdata(spi->controller); 287 struct spi_delay *cs_setup = &spi->cs_setup; 288 struct spi_delay *cs_hold = &spi->cs_hold; 289 struct spi_delay *cs_inactive = &spi->cs_inactive; 290 u32 setup, hold, inactive; 291 u32 reg_val; 292 int delay; 293 294 delay = spi_delay_to_ns(cs_setup, NULL); 295 if (delay < 0) 296 return delay; 297 setup = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000; 298 299 delay = spi_delay_to_ns(cs_hold, NULL); 300 if (delay < 0) 301 return delay; 302 hold = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000; 303 304 delay = spi_delay_to_ns(cs_inactive, NULL); 305 if (delay < 0) 306 return delay; 307 inactive = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000; 308 309 if (hold || setup) { 310 reg_val = readl(mdata->base + SPI_CFG0_REG); 311 if (mdata->dev_comp->enhance_timing) { 312 if (hold) { 313 hold = min_t(u32, hold, 0x10000); 314 reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_HOLD_OFFSET); 315 reg_val |= (((hold - 1) & 0xffff) 316 << SPI_ADJUST_CFG0_CS_HOLD_OFFSET); 317 } 318 if (setup) { 319 setup = min_t(u32, setup, 0x10000); 320 reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_SETUP_OFFSET); 321 reg_val |= (((setup - 1) & 0xffff) 322 << SPI_ADJUST_CFG0_CS_SETUP_OFFSET); 323 } 324 } else { 325 if (hold) { 326 hold = min_t(u32, hold, 0x100); 327 reg_val &= ~(0xff << SPI_CFG0_CS_HOLD_OFFSET); 328 reg_val |= (((hold - 1) & 0xff) << SPI_CFG0_CS_HOLD_OFFSET); 329 } 330 if (setup) { 331 setup = min_t(u32, setup, 0x100); 332 reg_val &= ~(0xff << SPI_CFG0_CS_SETUP_OFFSET); 333 reg_val |= (((setup - 1) & 0xff) 334 << SPI_CFG0_CS_SETUP_OFFSET); 335 } 336 } 337 writel(reg_val, mdata->base + SPI_CFG0_REG); 338 } 339 340 if (inactive) { 341 inactive = min_t(u32, inactive, 0x100); 342 reg_val = readl(mdata->base + SPI_CFG1_REG); 343 reg_val &= ~SPI_CFG1_CS_IDLE_MASK; 344 reg_val |= (((inactive - 1) & 0xff) << SPI_CFG1_CS_IDLE_OFFSET); 345 writel(reg_val, mdata->base + SPI_CFG1_REG); 346 } 347 348 return 0; 349 } 350 351 static int mtk_spi_hw_init(struct spi_controller *host, 352 struct spi_device *spi) 353 { 354 u16 cpha, cpol; 355 u32 reg_val; 356 struct mtk_chip_config *chip_config = spi->controller_data; 357 struct mtk_spi *mdata = spi_controller_get_devdata(host); 358 359 cpha = spi->mode & SPI_CPHA ? 1 : 0; 360 cpol = spi->mode & SPI_CPOL ? 1 : 0; 361 362 reg_val = readl(mdata->base + SPI_CMD_REG); 363 if (mdata->dev_comp->ipm_design) { 364 /* SPI transfer without idle time until packet length done */ 365 reg_val |= SPI_CMD_IPM_NONIDLE_MODE; 366 if (spi->mode & SPI_LOOP) 367 reg_val |= SPI_CMD_IPM_SPIM_LOOP; 368 else 369 reg_val &= ~SPI_CMD_IPM_SPIM_LOOP; 370 } 371 372 if (cpha) 373 reg_val |= SPI_CMD_CPHA; 374 else 375 reg_val &= ~SPI_CMD_CPHA; 376 if (cpol) 377 reg_val |= SPI_CMD_CPOL; 378 else 379 reg_val &= ~SPI_CMD_CPOL; 380 381 /* set the mlsbx and mlsbtx */ 382 if (spi->mode & SPI_LSB_FIRST) { 383 reg_val &= ~SPI_CMD_TXMSBF; 384 reg_val &= ~SPI_CMD_RXMSBF; 385 } else { 386 reg_val |= SPI_CMD_TXMSBF; 387 reg_val |= SPI_CMD_RXMSBF; 388 } 389 390 /* set the tx/rx endian */ 391 #ifdef __LITTLE_ENDIAN 392 reg_val &= ~SPI_CMD_TX_ENDIAN; 393 reg_val &= ~SPI_CMD_RX_ENDIAN; 394 #else 395 reg_val |= SPI_CMD_TX_ENDIAN; 396 reg_val |= SPI_CMD_RX_ENDIAN; 397 #endif 398 399 if (mdata->dev_comp->enhance_timing) { 400 /* set CS polarity */ 401 if (spi->mode & SPI_CS_HIGH) 402 reg_val |= SPI_CMD_CS_POL; 403 else 404 reg_val &= ~SPI_CMD_CS_POL; 405 406 if (chip_config->sample_sel) 407 reg_val |= SPI_CMD_SAMPLE_SEL; 408 else 409 reg_val &= ~SPI_CMD_SAMPLE_SEL; 410 } 411 412 /* set finish and pause interrupt always enable */ 413 reg_val |= SPI_CMD_FINISH_IE | SPI_CMD_PAUSE_IE; 414 415 /* disable dma mode */ 416 reg_val &= ~(SPI_CMD_TX_DMA | SPI_CMD_RX_DMA); 417 418 /* disable deassert mode */ 419 reg_val &= ~SPI_CMD_DEASSERT; 420 421 writel(reg_val, mdata->base + SPI_CMD_REG); 422 423 /* pad select */ 424 if (mdata->dev_comp->need_pad_sel) 425 writel(mdata->pad_sel[spi_get_chipselect(spi, 0)], 426 mdata->base + SPI_PAD_SEL_REG); 427 428 /* tick delay */ 429 if (mdata->dev_comp->enhance_timing) { 430 if (mdata->dev_comp->ipm_design) { 431 reg_val = readl(mdata->base + SPI_CMD_REG); 432 reg_val &= ~SPI_CMD_IPM_GET_TICKDLY_MASK; 433 reg_val |= ((chip_config->tick_delay & 0x7) 434 << SPI_CMD_IPM_GET_TICKDLY_OFFSET); 435 writel(reg_val, mdata->base + SPI_CMD_REG); 436 } else { 437 reg_val = readl(mdata->base + SPI_CFG1_REG); 438 reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK; 439 reg_val |= ((chip_config->tick_delay & 0x7) 440 << SPI_CFG1_GET_TICK_DLY_OFFSET); 441 writel(reg_val, mdata->base + SPI_CFG1_REG); 442 } 443 } else { 444 reg_val = readl(mdata->base + SPI_CFG1_REG); 445 reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK_V1; 446 reg_val |= ((chip_config->tick_delay & 0x3) 447 << SPI_CFG1_GET_TICK_DLY_OFFSET_V1); 448 writel(reg_val, mdata->base + SPI_CFG1_REG); 449 } 450 451 /* set hw cs timing */ 452 mtk_spi_set_hw_cs_timing(spi); 453 return 0; 454 } 455 456 static int mtk_spi_prepare_message(struct spi_controller *host, 457 struct spi_message *msg) 458 { 459 return mtk_spi_hw_init(host, msg->spi); 460 } 461 462 static void mtk_spi_set_cs(struct spi_device *spi, bool enable) 463 { 464 u32 reg_val; 465 struct mtk_spi *mdata = spi_controller_get_devdata(spi->controller); 466 467 if (spi->mode & SPI_CS_HIGH) 468 enable = !enable; 469 470 reg_val = readl(mdata->base + SPI_CMD_REG); 471 if (!enable) { 472 reg_val |= SPI_CMD_PAUSE_EN; 473 writel(reg_val, mdata->base + SPI_CMD_REG); 474 } else { 475 reg_val &= ~SPI_CMD_PAUSE_EN; 476 writel(reg_val, mdata->base + SPI_CMD_REG); 477 mdata->state = MTK_SPI_IDLE; 478 mtk_spi_reset(mdata); 479 } 480 } 481 482 static void mtk_spi_prepare_transfer(struct spi_controller *host, 483 u32 speed_hz) 484 { 485 u32 div, sck_time, reg_val; 486 struct mtk_spi *mdata = spi_controller_get_devdata(host); 487 488 if (speed_hz < mdata->spi_clk_hz / 2) 489 div = DIV_ROUND_UP(mdata->spi_clk_hz, speed_hz); 490 else 491 div = 1; 492 493 sck_time = (div + 1) / 2; 494 495 if (mdata->dev_comp->enhance_timing) { 496 reg_val = readl(mdata->base + SPI_CFG2_REG); 497 reg_val &= ~(0xffff << SPI_CFG2_SCK_HIGH_OFFSET); 498 reg_val |= (((sck_time - 1) & 0xffff) 499 << SPI_CFG2_SCK_HIGH_OFFSET); 500 reg_val &= ~(0xffff << SPI_CFG2_SCK_LOW_OFFSET); 501 reg_val |= (((sck_time - 1) & 0xffff) 502 << SPI_CFG2_SCK_LOW_OFFSET); 503 writel(reg_val, mdata->base + SPI_CFG2_REG); 504 } else { 505 reg_val = readl(mdata->base + SPI_CFG0_REG); 506 reg_val &= ~(0xff << SPI_CFG0_SCK_HIGH_OFFSET); 507 reg_val |= (((sck_time - 1) & 0xff) 508 << SPI_CFG0_SCK_HIGH_OFFSET); 509 reg_val &= ~(0xff << SPI_CFG0_SCK_LOW_OFFSET); 510 reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_LOW_OFFSET); 511 writel(reg_val, mdata->base + SPI_CFG0_REG); 512 } 513 } 514 515 static void mtk_spi_setup_packet(struct spi_controller *host) 516 { 517 u32 packet_size, packet_loop, reg_val; 518 struct mtk_spi *mdata = spi_controller_get_devdata(host); 519 520 if (mdata->dev_comp->ipm_design) 521 packet_size = min_t(u32, 522 mdata->xfer_len, 523 MTK_SPI_IPM_PACKET_SIZE); 524 else 525 packet_size = min_t(u32, 526 mdata->xfer_len, 527 MTK_SPI_PACKET_SIZE); 528 529 packet_loop = mdata->xfer_len / packet_size; 530 531 reg_val = readl(mdata->base + SPI_CFG1_REG); 532 if (mdata->dev_comp->ipm_design) 533 reg_val &= ~SPI_CFG1_IPM_PACKET_LENGTH_MASK; 534 else 535 reg_val &= ~SPI_CFG1_PACKET_LENGTH_MASK; 536 reg_val |= (packet_size - 1) << SPI_CFG1_PACKET_LENGTH_OFFSET; 537 reg_val &= ~SPI_CFG1_PACKET_LOOP_MASK; 538 reg_val |= (packet_loop - 1) << SPI_CFG1_PACKET_LOOP_OFFSET; 539 writel(reg_val, mdata->base + SPI_CFG1_REG); 540 } 541 542 static void mtk_spi_enable_transfer(struct spi_controller *host) 543 { 544 u32 cmd; 545 struct mtk_spi *mdata = spi_controller_get_devdata(host); 546 547 cmd = readl(mdata->base + SPI_CMD_REG); 548 if (mdata->state == MTK_SPI_IDLE) 549 cmd |= SPI_CMD_ACT; 550 else 551 cmd |= SPI_CMD_RESUME; 552 writel(cmd, mdata->base + SPI_CMD_REG); 553 } 554 555 static int mtk_spi_get_mult_delta(struct mtk_spi *mdata, u32 xfer_len) 556 { 557 u32 mult_delta = 0; 558 559 if (mdata->dev_comp->ipm_design) { 560 if (xfer_len > MTK_SPI_IPM_PACKET_SIZE) 561 mult_delta = xfer_len % MTK_SPI_IPM_PACKET_SIZE; 562 } else { 563 if (xfer_len > MTK_SPI_PACKET_SIZE) 564 mult_delta = xfer_len % MTK_SPI_PACKET_SIZE; 565 } 566 567 return mult_delta; 568 } 569 570 static void mtk_spi_update_mdata_len(struct spi_controller *host) 571 { 572 int mult_delta; 573 struct mtk_spi *mdata = spi_controller_get_devdata(host); 574 575 if (mdata->tx_sgl_len && mdata->rx_sgl_len) { 576 if (mdata->tx_sgl_len > mdata->rx_sgl_len) { 577 mult_delta = mtk_spi_get_mult_delta(mdata, mdata->rx_sgl_len); 578 mdata->xfer_len = mdata->rx_sgl_len - mult_delta; 579 mdata->rx_sgl_len = mult_delta; 580 mdata->tx_sgl_len -= mdata->xfer_len; 581 } else { 582 mult_delta = mtk_spi_get_mult_delta(mdata, mdata->tx_sgl_len); 583 mdata->xfer_len = mdata->tx_sgl_len - mult_delta; 584 mdata->tx_sgl_len = mult_delta; 585 mdata->rx_sgl_len -= mdata->xfer_len; 586 } 587 } else if (mdata->tx_sgl_len) { 588 mult_delta = mtk_spi_get_mult_delta(mdata, mdata->tx_sgl_len); 589 mdata->xfer_len = mdata->tx_sgl_len - mult_delta; 590 mdata->tx_sgl_len = mult_delta; 591 } else if (mdata->rx_sgl_len) { 592 mult_delta = mtk_spi_get_mult_delta(mdata, mdata->rx_sgl_len); 593 mdata->xfer_len = mdata->rx_sgl_len - mult_delta; 594 mdata->rx_sgl_len = mult_delta; 595 } 596 } 597 598 static void mtk_spi_setup_dma_addr(struct spi_controller *host, 599 struct spi_transfer *xfer) 600 { 601 struct mtk_spi *mdata = spi_controller_get_devdata(host); 602 603 if (mdata->tx_sgl) { 604 writel((u32)(xfer->tx_dma & MTK_SPI_32BITS_MASK), 605 mdata->base + SPI_TX_SRC_REG); 606 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 607 if (mdata->dev_comp->dma_ext) 608 writel((u32)(xfer->tx_dma >> 32), 609 mdata->base + SPI_TX_SRC_REG_64); 610 #endif 611 } 612 613 if (mdata->rx_sgl) { 614 writel((u32)(xfer->rx_dma & MTK_SPI_32BITS_MASK), 615 mdata->base + SPI_RX_DST_REG); 616 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 617 if (mdata->dev_comp->dma_ext) 618 writel((u32)(xfer->rx_dma >> 32), 619 mdata->base + SPI_RX_DST_REG_64); 620 #endif 621 } 622 } 623 624 static int mtk_spi_fifo_transfer(struct spi_controller *host, 625 struct spi_device *spi, 626 struct spi_transfer *xfer) 627 { 628 int cnt, remainder; 629 u32 reg_val; 630 struct mtk_spi *mdata = spi_controller_get_devdata(host); 631 632 mdata->cur_transfer = xfer; 633 mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, xfer->len); 634 mdata->num_xfered = 0; 635 mtk_spi_prepare_transfer(host, xfer->speed_hz); 636 mtk_spi_setup_packet(host); 637 638 if (xfer->tx_buf) { 639 cnt = xfer->len / 4; 640 iowrite32_rep(mdata->base + SPI_TX_DATA_REG, xfer->tx_buf, cnt); 641 remainder = xfer->len % 4; 642 if (remainder > 0) { 643 reg_val = 0; 644 memcpy(®_val, xfer->tx_buf + (cnt * 4), remainder); 645 writel(reg_val, mdata->base + SPI_TX_DATA_REG); 646 } 647 } 648 649 mtk_spi_enable_transfer(host); 650 651 return 1; 652 } 653 654 static int mtk_spi_dma_transfer(struct spi_controller *host, 655 struct spi_device *spi, 656 struct spi_transfer *xfer) 657 { 658 int cmd; 659 struct mtk_spi *mdata = spi_controller_get_devdata(host); 660 661 mdata->tx_sgl = NULL; 662 mdata->rx_sgl = NULL; 663 mdata->tx_sgl_len = 0; 664 mdata->rx_sgl_len = 0; 665 mdata->cur_transfer = xfer; 666 mdata->num_xfered = 0; 667 668 mtk_spi_prepare_transfer(host, xfer->speed_hz); 669 670 cmd = readl(mdata->base + SPI_CMD_REG); 671 if (xfer->tx_buf) 672 cmd |= SPI_CMD_TX_DMA; 673 if (xfer->rx_buf) 674 cmd |= SPI_CMD_RX_DMA; 675 writel(cmd, mdata->base + SPI_CMD_REG); 676 677 if (xfer->tx_buf) 678 mdata->tx_sgl = xfer->tx_sg.sgl; 679 if (xfer->rx_buf) 680 mdata->rx_sgl = xfer->rx_sg.sgl; 681 682 if (mdata->tx_sgl) { 683 xfer->tx_dma = sg_dma_address(mdata->tx_sgl); 684 mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl); 685 } 686 if (mdata->rx_sgl) { 687 xfer->rx_dma = sg_dma_address(mdata->rx_sgl); 688 mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl); 689 } 690 691 mtk_spi_update_mdata_len(host); 692 mtk_spi_setup_packet(host); 693 mtk_spi_setup_dma_addr(host, xfer); 694 mtk_spi_enable_transfer(host); 695 696 return 1; 697 } 698 699 static int mtk_spi_transfer_one(struct spi_controller *host, 700 struct spi_device *spi, 701 struct spi_transfer *xfer) 702 { 703 struct mtk_spi *mdata = spi_controller_get_devdata(spi->controller); 704 u32 reg_val = 0; 705 706 /* prepare xfer direction and duplex mode */ 707 if (mdata->dev_comp->ipm_design) { 708 if (!xfer->tx_buf || !xfer->rx_buf) { 709 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN; 710 if (xfer->rx_buf) 711 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR; 712 } 713 writel(reg_val, mdata->base + SPI_CFG3_IPM_REG); 714 } 715 716 if (host->can_dma(host, spi, xfer)) 717 return mtk_spi_dma_transfer(host, spi, xfer); 718 else 719 return mtk_spi_fifo_transfer(host, spi, xfer); 720 } 721 722 static bool mtk_spi_can_dma(struct spi_controller *host, 723 struct spi_device *spi, 724 struct spi_transfer *xfer) 725 { 726 /* Buffers for DMA transactions must be 4-byte aligned */ 727 return (xfer->len > MTK_SPI_MAX_FIFO_SIZE && 728 (unsigned long)xfer->tx_buf % 4 == 0 && 729 (unsigned long)xfer->rx_buf % 4 == 0); 730 } 731 732 static int mtk_spi_setup(struct spi_device *spi) 733 { 734 struct mtk_spi *mdata = spi_controller_get_devdata(spi->controller); 735 736 if (!spi->controller_data) 737 spi->controller_data = (void *)&mtk_default_chip_info; 738 739 if (mdata->dev_comp->need_pad_sel && spi_get_csgpiod(spi, 0)) 740 /* CS de-asserted, gpiolib will handle inversion */ 741 gpiod_direction_output(spi_get_csgpiod(spi, 0), 0); 742 743 return 0; 744 } 745 746 static irqreturn_t mtk_spi_interrupt(int irq, void *dev_id) 747 { 748 u32 cmd, reg_val, cnt, remainder, len; 749 struct spi_controller *host = dev_id; 750 struct mtk_spi *mdata = spi_controller_get_devdata(host); 751 struct spi_transfer *trans = mdata->cur_transfer; 752 753 reg_val = readl(mdata->base + SPI_STATUS0_REG); 754 if (reg_val & MTK_SPI_PAUSE_INT_STATUS) 755 mdata->state = MTK_SPI_PAUSED; 756 else 757 mdata->state = MTK_SPI_IDLE; 758 759 /* SPI-MEM ops */ 760 if (mdata->use_spimem) { 761 complete(&mdata->spimem_done); 762 return IRQ_HANDLED; 763 } 764 765 if (!host->can_dma(host, NULL, trans)) { 766 if (trans->rx_buf) { 767 cnt = mdata->xfer_len / 4; 768 ioread32_rep(mdata->base + SPI_RX_DATA_REG, 769 trans->rx_buf + mdata->num_xfered, cnt); 770 remainder = mdata->xfer_len % 4; 771 if (remainder > 0) { 772 reg_val = readl(mdata->base + SPI_RX_DATA_REG); 773 memcpy(trans->rx_buf + 774 mdata->num_xfered + 775 (cnt * 4), 776 ®_val, 777 remainder); 778 } 779 } 780 781 mdata->num_xfered += mdata->xfer_len; 782 if (mdata->num_xfered == trans->len) { 783 spi_finalize_current_transfer(host); 784 return IRQ_HANDLED; 785 } 786 787 len = trans->len - mdata->num_xfered; 788 mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, len); 789 mtk_spi_setup_packet(host); 790 791 if (trans->tx_buf) { 792 cnt = mdata->xfer_len / 4; 793 iowrite32_rep(mdata->base + SPI_TX_DATA_REG, 794 trans->tx_buf + mdata->num_xfered, cnt); 795 796 remainder = mdata->xfer_len % 4; 797 if (remainder > 0) { 798 reg_val = 0; 799 memcpy(®_val, 800 trans->tx_buf + (cnt * 4) + mdata->num_xfered, 801 remainder); 802 writel(reg_val, mdata->base + SPI_TX_DATA_REG); 803 } 804 } 805 806 mtk_spi_enable_transfer(host); 807 808 return IRQ_HANDLED; 809 } 810 811 if (mdata->tx_sgl) 812 trans->tx_dma += mdata->xfer_len; 813 if (mdata->rx_sgl) 814 trans->rx_dma += mdata->xfer_len; 815 816 if (mdata->tx_sgl && (mdata->tx_sgl_len == 0)) { 817 mdata->tx_sgl = sg_next(mdata->tx_sgl); 818 if (mdata->tx_sgl) { 819 trans->tx_dma = sg_dma_address(mdata->tx_sgl); 820 mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl); 821 } 822 } 823 if (mdata->rx_sgl && (mdata->rx_sgl_len == 0)) { 824 mdata->rx_sgl = sg_next(mdata->rx_sgl); 825 if (mdata->rx_sgl) { 826 trans->rx_dma = sg_dma_address(mdata->rx_sgl); 827 mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl); 828 } 829 } 830 831 if (!mdata->tx_sgl && !mdata->rx_sgl) { 832 /* spi disable dma */ 833 cmd = readl(mdata->base + SPI_CMD_REG); 834 cmd &= ~SPI_CMD_TX_DMA; 835 cmd &= ~SPI_CMD_RX_DMA; 836 writel(cmd, mdata->base + SPI_CMD_REG); 837 838 spi_finalize_current_transfer(host); 839 return IRQ_HANDLED; 840 } 841 842 mtk_spi_update_mdata_len(host); 843 mtk_spi_setup_packet(host); 844 mtk_spi_setup_dma_addr(host, trans); 845 mtk_spi_enable_transfer(host); 846 847 return IRQ_HANDLED; 848 } 849 850 static int mtk_spi_mem_adjust_op_size(struct spi_mem *mem, 851 struct spi_mem_op *op) 852 { 853 int opcode_len; 854 855 if (op->data.dir != SPI_MEM_NO_DATA) { 856 opcode_len = 1 + op->addr.nbytes + op->dummy.nbytes; 857 if (opcode_len + op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) { 858 op->data.nbytes = MTK_SPI_IPM_PACKET_SIZE - opcode_len; 859 /* force data buffer dma-aligned. */ 860 op->data.nbytes -= op->data.nbytes % 4; 861 } 862 } 863 864 return 0; 865 } 866 867 static bool mtk_spi_mem_supports_op(struct spi_mem *mem, 868 const struct spi_mem_op *op) 869 { 870 if (!spi_mem_default_supports_op(mem, op)) 871 return false; 872 873 if (op->addr.nbytes && op->dummy.nbytes && 874 op->addr.buswidth != op->dummy.buswidth) 875 return false; 876 877 if (op->addr.nbytes + op->dummy.nbytes > 16) 878 return false; 879 880 if (op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) { 881 if (op->data.nbytes / MTK_SPI_IPM_PACKET_SIZE > 882 MTK_SPI_IPM_PACKET_LOOP || 883 op->data.nbytes % MTK_SPI_IPM_PACKET_SIZE != 0) 884 return false; 885 } 886 887 return true; 888 } 889 890 static void mtk_spi_mem_setup_dma_xfer(struct spi_controller *host, 891 const struct spi_mem_op *op) 892 { 893 struct mtk_spi *mdata = spi_controller_get_devdata(host); 894 895 writel((u32)(mdata->tx_dma & MTK_SPI_32BITS_MASK), 896 mdata->base + SPI_TX_SRC_REG); 897 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 898 if (mdata->dev_comp->dma_ext) 899 writel((u32)(mdata->tx_dma >> 32), 900 mdata->base + SPI_TX_SRC_REG_64); 901 #endif 902 903 if (op->data.dir == SPI_MEM_DATA_IN) { 904 writel((u32)(mdata->rx_dma & MTK_SPI_32BITS_MASK), 905 mdata->base + SPI_RX_DST_REG); 906 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 907 if (mdata->dev_comp->dma_ext) 908 writel((u32)(mdata->rx_dma >> 32), 909 mdata->base + SPI_RX_DST_REG_64); 910 #endif 911 } 912 } 913 914 static int mtk_spi_transfer_wait(struct spi_mem *mem, 915 const struct spi_mem_op *op) 916 { 917 struct mtk_spi *mdata = spi_controller_get_devdata(mem->spi->controller); 918 /* 919 * For each byte we wait for 8 cycles of the SPI clock. 920 * Since speed is defined in Hz and we want milliseconds, 921 * so it should be 8 * 1000. 922 */ 923 u64 ms = 8000LL; 924 925 if (op->data.dir == SPI_MEM_NO_DATA) 926 ms *= 32; /* prevent we may get 0 for short transfers. */ 927 else 928 ms *= op->data.nbytes; 929 ms = div_u64(ms, mem->spi->max_speed_hz); 930 ms += ms + 1000; /* 1s tolerance */ 931 932 if (ms > UINT_MAX) 933 ms = UINT_MAX; 934 935 if (!wait_for_completion_timeout(&mdata->spimem_done, 936 msecs_to_jiffies(ms))) { 937 dev_err(mdata->dev, "spi-mem transfer timeout\n"); 938 return -ETIMEDOUT; 939 } 940 941 return 0; 942 } 943 944 static int mtk_spi_mem_exec_op(struct spi_mem *mem, 945 const struct spi_mem_op *op) 946 { 947 struct mtk_spi *mdata = spi_controller_get_devdata(mem->spi->controller); 948 u32 reg_val, nio, tx_size; 949 char *tx_tmp_buf, *rx_tmp_buf; 950 int ret = 0; 951 952 mdata->use_spimem = true; 953 reinit_completion(&mdata->spimem_done); 954 955 mtk_spi_reset(mdata); 956 mtk_spi_hw_init(mem->spi->controller, mem->spi); 957 mtk_spi_prepare_transfer(mem->spi->controller, mem->spi->max_speed_hz); 958 959 reg_val = readl(mdata->base + SPI_CFG3_IPM_REG); 960 /* opcode byte len */ 961 reg_val &= ~SPI_CFG3_IPM_CMD_BYTELEN_MASK; 962 reg_val |= 1 << SPI_CFG3_IPM_CMD_BYTELEN_OFFSET; 963 964 /* addr & dummy byte len */ 965 reg_val &= ~SPI_CFG3_IPM_ADDR_BYTELEN_MASK; 966 if (op->addr.nbytes || op->dummy.nbytes) 967 reg_val |= (op->addr.nbytes + op->dummy.nbytes) << 968 SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET; 969 970 /* data byte len */ 971 if (op->data.dir == SPI_MEM_NO_DATA) { 972 reg_val |= SPI_CFG3_IPM_NODATA_FLAG; 973 writel(0, mdata->base + SPI_CFG1_REG); 974 } else { 975 reg_val &= ~SPI_CFG3_IPM_NODATA_FLAG; 976 mdata->xfer_len = op->data.nbytes; 977 mtk_spi_setup_packet(mem->spi->controller); 978 } 979 980 if (op->addr.nbytes || op->dummy.nbytes) { 981 if (op->addr.buswidth == 1 || op->dummy.buswidth == 1) 982 reg_val |= SPI_CFG3_IPM_XMODE_EN; 983 else 984 reg_val &= ~SPI_CFG3_IPM_XMODE_EN; 985 } 986 987 if (op->addr.buswidth == 2 || 988 op->dummy.buswidth == 2 || 989 op->data.buswidth == 2) 990 nio = 2; 991 else if (op->addr.buswidth == 4 || 992 op->dummy.buswidth == 4 || 993 op->data.buswidth == 4) 994 nio = 4; 995 else 996 nio = 1; 997 998 reg_val &= ~SPI_CFG3_IPM_CMD_PIN_MODE_MASK; 999 reg_val |= PIN_MODE_CFG(nio); 1000 1001 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN; 1002 if (op->data.dir == SPI_MEM_DATA_IN) 1003 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR; 1004 else 1005 reg_val &= ~SPI_CFG3_IPM_HALF_DUPLEX_DIR; 1006 writel(reg_val, mdata->base + SPI_CFG3_IPM_REG); 1007 1008 tx_size = 1 + op->addr.nbytes + op->dummy.nbytes; 1009 if (op->data.dir == SPI_MEM_DATA_OUT) 1010 tx_size += op->data.nbytes; 1011 1012 tx_size = max_t(u32, tx_size, 32); 1013 1014 tx_tmp_buf = kzalloc(tx_size, GFP_KERNEL | GFP_DMA); 1015 if (!tx_tmp_buf) { 1016 mdata->use_spimem = false; 1017 return -ENOMEM; 1018 } 1019 1020 tx_tmp_buf[0] = op->cmd.opcode; 1021 1022 if (op->addr.nbytes) { 1023 int i; 1024 1025 for (i = 0; i < op->addr.nbytes; i++) 1026 tx_tmp_buf[i + 1] = op->addr.val >> 1027 (8 * (op->addr.nbytes - i - 1)); 1028 } 1029 1030 if (op->dummy.nbytes) 1031 memset(tx_tmp_buf + op->addr.nbytes + 1, 1032 0xff, 1033 op->dummy.nbytes); 1034 1035 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) 1036 memcpy(tx_tmp_buf + op->dummy.nbytes + op->addr.nbytes + 1, 1037 op->data.buf.out, 1038 op->data.nbytes); 1039 1040 mdata->tx_dma = dma_map_single(mdata->dev, tx_tmp_buf, 1041 tx_size, DMA_TO_DEVICE); 1042 if (dma_mapping_error(mdata->dev, mdata->tx_dma)) { 1043 ret = -ENOMEM; 1044 goto err_exit; 1045 } 1046 1047 if (op->data.dir == SPI_MEM_DATA_IN) { 1048 if (!IS_ALIGNED((size_t)op->data.buf.in, 4)) { 1049 rx_tmp_buf = kzalloc(op->data.nbytes, 1050 GFP_KERNEL | GFP_DMA); 1051 if (!rx_tmp_buf) { 1052 ret = -ENOMEM; 1053 goto unmap_tx_dma; 1054 } 1055 } else { 1056 rx_tmp_buf = op->data.buf.in; 1057 } 1058 1059 mdata->rx_dma = dma_map_single(mdata->dev, 1060 rx_tmp_buf, 1061 op->data.nbytes, 1062 DMA_FROM_DEVICE); 1063 if (dma_mapping_error(mdata->dev, mdata->rx_dma)) { 1064 ret = -ENOMEM; 1065 goto kfree_rx_tmp_buf; 1066 } 1067 } 1068 1069 reg_val = readl(mdata->base + SPI_CMD_REG); 1070 reg_val |= SPI_CMD_TX_DMA; 1071 if (op->data.dir == SPI_MEM_DATA_IN) 1072 reg_val |= SPI_CMD_RX_DMA; 1073 writel(reg_val, mdata->base + SPI_CMD_REG); 1074 1075 mtk_spi_mem_setup_dma_xfer(mem->spi->controller, op); 1076 1077 mtk_spi_enable_transfer(mem->spi->controller); 1078 1079 /* Wait for the interrupt. */ 1080 ret = mtk_spi_transfer_wait(mem, op); 1081 if (ret) 1082 goto unmap_rx_dma; 1083 1084 /* spi disable dma */ 1085 reg_val = readl(mdata->base + SPI_CMD_REG); 1086 reg_val &= ~SPI_CMD_TX_DMA; 1087 if (op->data.dir == SPI_MEM_DATA_IN) 1088 reg_val &= ~SPI_CMD_RX_DMA; 1089 writel(reg_val, mdata->base + SPI_CMD_REG); 1090 1091 unmap_rx_dma: 1092 if (op->data.dir == SPI_MEM_DATA_IN) { 1093 dma_unmap_single(mdata->dev, mdata->rx_dma, 1094 op->data.nbytes, DMA_FROM_DEVICE); 1095 if (!IS_ALIGNED((size_t)op->data.buf.in, 4)) 1096 memcpy(op->data.buf.in, rx_tmp_buf, op->data.nbytes); 1097 } 1098 kfree_rx_tmp_buf: 1099 if (op->data.dir == SPI_MEM_DATA_IN && 1100 !IS_ALIGNED((size_t)op->data.buf.in, 4)) 1101 kfree(rx_tmp_buf); 1102 unmap_tx_dma: 1103 dma_unmap_single(mdata->dev, mdata->tx_dma, 1104 tx_size, DMA_TO_DEVICE); 1105 err_exit: 1106 kfree(tx_tmp_buf); 1107 mdata->use_spimem = false; 1108 1109 return ret; 1110 } 1111 1112 static const struct spi_controller_mem_ops mtk_spi_mem_ops = { 1113 .adjust_op_size = mtk_spi_mem_adjust_op_size, 1114 .supports_op = mtk_spi_mem_supports_op, 1115 .exec_op = mtk_spi_mem_exec_op, 1116 }; 1117 1118 static int mtk_spi_probe(struct platform_device *pdev) 1119 { 1120 struct device *dev = &pdev->dev; 1121 struct spi_controller *host; 1122 struct mtk_spi *mdata; 1123 int i, irq, ret, addr_bits; 1124 1125 host = devm_spi_alloc_host(dev, sizeof(*mdata)); 1126 if (!host) 1127 return dev_err_probe(dev, -ENOMEM, "failed to alloc spi host\n"); 1128 1129 host->auto_runtime_pm = true; 1130 host->dev.of_node = dev->of_node; 1131 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; 1132 1133 host->set_cs = mtk_spi_set_cs; 1134 host->prepare_message = mtk_spi_prepare_message; 1135 host->transfer_one = mtk_spi_transfer_one; 1136 host->can_dma = mtk_spi_can_dma; 1137 host->setup = mtk_spi_setup; 1138 host->set_cs_timing = mtk_spi_set_hw_cs_timing; 1139 host->use_gpio_descriptors = true; 1140 1141 mdata = spi_controller_get_devdata(host); 1142 mdata->dev_comp = device_get_match_data(dev); 1143 1144 if (mdata->dev_comp->enhance_timing) 1145 host->mode_bits |= SPI_CS_HIGH; 1146 1147 if (mdata->dev_comp->must_tx) 1148 host->flags = SPI_CONTROLLER_MUST_TX; 1149 if (mdata->dev_comp->ipm_design) 1150 host->mode_bits |= SPI_LOOP | SPI_RX_DUAL | SPI_TX_DUAL | 1151 SPI_RX_QUAD | SPI_TX_QUAD; 1152 1153 if (mdata->dev_comp->ipm_design) { 1154 mdata->dev = dev; 1155 host->mem_ops = &mtk_spi_mem_ops; 1156 init_completion(&mdata->spimem_done); 1157 } 1158 1159 if (mdata->dev_comp->need_pad_sel) { 1160 mdata->pad_num = of_property_count_u32_elems(dev->of_node, 1161 "mediatek,pad-select"); 1162 if (mdata->pad_num < 0) 1163 return dev_err_probe(dev, -EINVAL, 1164 "No 'mediatek,pad-select' property\n"); 1165 1166 mdata->pad_sel = devm_kmalloc_array(dev, mdata->pad_num, 1167 sizeof(u32), GFP_KERNEL); 1168 if (!mdata->pad_sel) 1169 return -ENOMEM; 1170 1171 for (i = 0; i < mdata->pad_num; i++) { 1172 of_property_read_u32_index(dev->of_node, 1173 "mediatek,pad-select", 1174 i, &mdata->pad_sel[i]); 1175 if (mdata->pad_sel[i] > MT8173_SPI_MAX_PAD_SEL) 1176 return dev_err_probe(dev, -EINVAL, 1177 "wrong pad-sel[%d]: %u\n", 1178 i, mdata->pad_sel[i]); 1179 } 1180 } 1181 1182 platform_set_drvdata(pdev, host); 1183 mdata->base = devm_platform_ioremap_resource(pdev, 0); 1184 if (IS_ERR(mdata->base)) 1185 return PTR_ERR(mdata->base); 1186 1187 irq = platform_get_irq(pdev, 0); 1188 if (irq < 0) 1189 return irq; 1190 1191 if (!dev->dma_mask) 1192 dev->dma_mask = &dev->coherent_dma_mask; 1193 1194 if (mdata->dev_comp->ipm_design) 1195 dma_set_max_seg_size(dev, SZ_16M); 1196 else 1197 dma_set_max_seg_size(dev, SZ_256K); 1198 1199 mdata->parent_clk = devm_clk_get(dev, "parent-clk"); 1200 if (IS_ERR(mdata->parent_clk)) 1201 return dev_err_probe(dev, PTR_ERR(mdata->parent_clk), 1202 "failed to get parent-clk\n"); 1203 1204 mdata->sel_clk = devm_clk_get(dev, "sel-clk"); 1205 if (IS_ERR(mdata->sel_clk)) 1206 return dev_err_probe(dev, PTR_ERR(mdata->sel_clk), "failed to get sel-clk\n"); 1207 1208 mdata->spi_clk = devm_clk_get(dev, "spi-clk"); 1209 if (IS_ERR(mdata->spi_clk)) 1210 return dev_err_probe(dev, PTR_ERR(mdata->spi_clk), "failed to get spi-clk\n"); 1211 1212 mdata->spi_hclk = devm_clk_get_optional(dev, "hclk"); 1213 if (IS_ERR(mdata->spi_hclk)) 1214 return dev_err_probe(dev, PTR_ERR(mdata->spi_hclk), "failed to get hclk\n"); 1215 1216 ret = clk_set_parent(mdata->sel_clk, mdata->parent_clk); 1217 if (ret < 0) 1218 return dev_err_probe(dev, ret, "failed to clk_set_parent\n"); 1219 1220 ret = clk_prepare_enable(mdata->spi_hclk); 1221 if (ret < 0) 1222 return dev_err_probe(dev, ret, "failed to enable hclk\n"); 1223 1224 ret = clk_prepare_enable(mdata->spi_clk); 1225 if (ret < 0) { 1226 clk_disable_unprepare(mdata->spi_hclk); 1227 return dev_err_probe(dev, ret, "failed to enable spi_clk\n"); 1228 } 1229 1230 mdata->spi_clk_hz = clk_get_rate(mdata->spi_clk); 1231 1232 if (mdata->dev_comp->no_need_unprepare) { 1233 clk_disable(mdata->spi_clk); 1234 clk_disable(mdata->spi_hclk); 1235 } else { 1236 clk_disable_unprepare(mdata->spi_clk); 1237 clk_disable_unprepare(mdata->spi_hclk); 1238 } 1239 1240 if (mdata->dev_comp->need_pad_sel) { 1241 if (mdata->pad_num != host->num_chipselect) 1242 return dev_err_probe(dev, -EINVAL, 1243 "pad_num does not match num_chipselect(%d != %d)\n", 1244 mdata->pad_num, host->num_chipselect); 1245 1246 if (!host->cs_gpiods && host->num_chipselect > 1) 1247 return dev_err_probe(dev, -EINVAL, 1248 "cs_gpios not specified and num_chipselect > 1\n"); 1249 } 1250 1251 if (mdata->dev_comp->dma_ext) 1252 addr_bits = DMA_ADDR_EXT_BITS; 1253 else 1254 addr_bits = DMA_ADDR_DEF_BITS; 1255 ret = dma_set_mask(dev, DMA_BIT_MASK(addr_bits)); 1256 if (ret) 1257 dev_notice(dev, "SPI dma_set_mask(%d) failed, ret:%d\n", 1258 addr_bits, ret); 1259 1260 ret = devm_request_irq(dev, irq, mtk_spi_interrupt, 1261 IRQF_TRIGGER_NONE, dev_name(dev), host); 1262 if (ret) 1263 return dev_err_probe(dev, ret, "failed to register irq\n"); 1264 1265 pm_runtime_enable(dev); 1266 1267 ret = devm_spi_register_controller(dev, host); 1268 if (ret) { 1269 pm_runtime_disable(dev); 1270 return dev_err_probe(dev, ret, "failed to register host\n"); 1271 } 1272 1273 return 0; 1274 } 1275 1276 static void mtk_spi_remove(struct platform_device *pdev) 1277 { 1278 struct spi_controller *host = platform_get_drvdata(pdev); 1279 struct mtk_spi *mdata = spi_controller_get_devdata(host); 1280 int ret; 1281 1282 if (mdata->use_spimem && !completion_done(&mdata->spimem_done)) 1283 complete(&mdata->spimem_done); 1284 1285 ret = pm_runtime_get_sync(&pdev->dev); 1286 if (ret < 0) { 1287 dev_warn(&pdev->dev, "Failed to resume hardware (%pe)\n", ERR_PTR(ret)); 1288 } else { 1289 /* 1290 * If pm runtime resume failed, clks are disabled and 1291 * unprepared. So don't access the hardware and skip clk 1292 * unpreparing. 1293 */ 1294 mtk_spi_reset(mdata); 1295 1296 if (mdata->dev_comp->no_need_unprepare) { 1297 clk_unprepare(mdata->spi_clk); 1298 clk_unprepare(mdata->spi_hclk); 1299 } 1300 } 1301 1302 pm_runtime_put_noidle(&pdev->dev); 1303 pm_runtime_disable(&pdev->dev); 1304 } 1305 1306 #ifdef CONFIG_PM_SLEEP 1307 static int mtk_spi_suspend(struct device *dev) 1308 { 1309 int ret; 1310 struct spi_controller *host = dev_get_drvdata(dev); 1311 struct mtk_spi *mdata = spi_controller_get_devdata(host); 1312 1313 ret = spi_controller_suspend(host); 1314 if (ret) 1315 return ret; 1316 1317 if (!pm_runtime_suspended(dev)) { 1318 clk_disable_unprepare(mdata->spi_clk); 1319 clk_disable_unprepare(mdata->spi_hclk); 1320 } 1321 1322 pinctrl_pm_select_sleep_state(dev); 1323 1324 return 0; 1325 } 1326 1327 static int mtk_spi_resume(struct device *dev) 1328 { 1329 int ret; 1330 struct spi_controller *host = dev_get_drvdata(dev); 1331 struct mtk_spi *mdata = spi_controller_get_devdata(host); 1332 1333 pinctrl_pm_select_default_state(dev); 1334 1335 if (!pm_runtime_suspended(dev)) { 1336 ret = clk_prepare_enable(mdata->spi_clk); 1337 if (ret < 0) { 1338 dev_err(dev, "failed to enable spi_clk (%d)\n", ret); 1339 return ret; 1340 } 1341 1342 ret = clk_prepare_enable(mdata->spi_hclk); 1343 if (ret < 0) { 1344 dev_err(dev, "failed to enable spi_hclk (%d)\n", ret); 1345 clk_disable_unprepare(mdata->spi_clk); 1346 return ret; 1347 } 1348 } 1349 1350 ret = spi_controller_resume(host); 1351 if (ret < 0) { 1352 clk_disable_unprepare(mdata->spi_clk); 1353 clk_disable_unprepare(mdata->spi_hclk); 1354 } 1355 1356 return ret; 1357 } 1358 #endif /* CONFIG_PM_SLEEP */ 1359 1360 #ifdef CONFIG_PM 1361 static int mtk_spi_runtime_suspend(struct device *dev) 1362 { 1363 struct spi_controller *host = dev_get_drvdata(dev); 1364 struct mtk_spi *mdata = spi_controller_get_devdata(host); 1365 1366 if (mdata->dev_comp->no_need_unprepare) { 1367 clk_disable(mdata->spi_clk); 1368 clk_disable(mdata->spi_hclk); 1369 } else { 1370 clk_disable_unprepare(mdata->spi_clk); 1371 clk_disable_unprepare(mdata->spi_hclk); 1372 } 1373 1374 return 0; 1375 } 1376 1377 static int mtk_spi_runtime_resume(struct device *dev) 1378 { 1379 struct spi_controller *host = dev_get_drvdata(dev); 1380 struct mtk_spi *mdata = spi_controller_get_devdata(host); 1381 int ret; 1382 1383 if (mdata->dev_comp->no_need_unprepare) { 1384 ret = clk_enable(mdata->spi_clk); 1385 if (ret < 0) { 1386 dev_err(dev, "failed to enable spi_clk (%d)\n", ret); 1387 return ret; 1388 } 1389 ret = clk_enable(mdata->spi_hclk); 1390 if (ret < 0) { 1391 dev_err(dev, "failed to enable spi_hclk (%d)\n", ret); 1392 clk_disable(mdata->spi_clk); 1393 return ret; 1394 } 1395 } else { 1396 ret = clk_prepare_enable(mdata->spi_clk); 1397 if (ret < 0) { 1398 dev_err(dev, "failed to prepare_enable spi_clk (%d)\n", ret); 1399 return ret; 1400 } 1401 1402 ret = clk_prepare_enable(mdata->spi_hclk); 1403 if (ret < 0) { 1404 dev_err(dev, "failed to prepare_enable spi_hclk (%d)\n", ret); 1405 clk_disable_unprepare(mdata->spi_clk); 1406 return ret; 1407 } 1408 } 1409 1410 return 0; 1411 } 1412 #endif /* CONFIG_PM */ 1413 1414 static const struct dev_pm_ops mtk_spi_pm = { 1415 SET_SYSTEM_SLEEP_PM_OPS(mtk_spi_suspend, mtk_spi_resume) 1416 SET_RUNTIME_PM_OPS(mtk_spi_runtime_suspend, 1417 mtk_spi_runtime_resume, NULL) 1418 }; 1419 1420 static struct platform_driver mtk_spi_driver = { 1421 .driver = { 1422 .name = "mtk-spi", 1423 .pm = &mtk_spi_pm, 1424 .of_match_table = mtk_spi_of_match, 1425 }, 1426 .probe = mtk_spi_probe, 1427 .remove_new = mtk_spi_remove, 1428 }; 1429 1430 module_platform_driver(mtk_spi_driver); 1431 1432 MODULE_DESCRIPTION("MTK SPI Controller driver"); 1433 MODULE_AUTHOR("Leilk Liu <leilk.liu@mediatek.com>"); 1434 MODULE_LICENSE("GPL v2"); 1435 MODULE_ALIAS("platform:mtk-spi"); 1436