1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015 MediaTek Inc. 4 * Author: Leilk Liu <leilk.liu@mediatek.com> 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/device.h> 9 #include <linux/err.h> 10 #include <linux/interrupt.h> 11 #include <linux/io.h> 12 #include <linux/ioport.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/platform_device.h> 17 #include <linux/platform_data/spi-mt65xx.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/dma-mapping.h> 22 23 #define SPI_CFG0_REG 0x0000 24 #define SPI_CFG1_REG 0x0004 25 #define SPI_TX_SRC_REG 0x0008 26 #define SPI_RX_DST_REG 0x000c 27 #define SPI_TX_DATA_REG 0x0010 28 #define SPI_RX_DATA_REG 0x0014 29 #define SPI_CMD_REG 0x0018 30 #define SPI_STATUS0_REG 0x001c 31 #define SPI_PAD_SEL_REG 0x0024 32 #define SPI_CFG2_REG 0x0028 33 #define SPI_TX_SRC_REG_64 0x002c 34 #define SPI_RX_DST_REG_64 0x0030 35 #define SPI_CFG3_IPM_REG 0x0040 36 37 #define SPI_CFG0_SCK_HIGH_OFFSET 0 38 #define SPI_CFG0_SCK_LOW_OFFSET 8 39 #define SPI_CFG0_CS_HOLD_OFFSET 16 40 #define SPI_CFG0_CS_SETUP_OFFSET 24 41 #define SPI_ADJUST_CFG0_CS_HOLD_OFFSET 0 42 #define SPI_ADJUST_CFG0_CS_SETUP_OFFSET 16 43 44 #define SPI_CFG1_CS_IDLE_OFFSET 0 45 #define SPI_CFG1_PACKET_LOOP_OFFSET 8 46 #define SPI_CFG1_PACKET_LENGTH_OFFSET 16 47 #define SPI_CFG1_GET_TICK_DLY_OFFSET 29 48 #define SPI_CFG1_GET_TICK_DLY_OFFSET_V1 30 49 50 #define SPI_CFG1_GET_TICK_DLY_MASK 0xe0000000 51 #define SPI_CFG1_GET_TICK_DLY_MASK_V1 0xc0000000 52 53 #define SPI_CFG1_CS_IDLE_MASK 0xff 54 #define SPI_CFG1_PACKET_LOOP_MASK 0xff00 55 #define SPI_CFG1_PACKET_LENGTH_MASK 0x3ff0000 56 #define SPI_CFG1_IPM_PACKET_LENGTH_MASK GENMASK(31, 16) 57 #define SPI_CFG2_SCK_HIGH_OFFSET 0 58 #define SPI_CFG2_SCK_LOW_OFFSET 16 59 60 #define SPI_CMD_ACT BIT(0) 61 #define SPI_CMD_RESUME BIT(1) 62 #define SPI_CMD_RST BIT(2) 63 #define SPI_CMD_PAUSE_EN BIT(4) 64 #define SPI_CMD_DEASSERT BIT(5) 65 #define SPI_CMD_SAMPLE_SEL BIT(6) 66 #define SPI_CMD_CS_POL BIT(7) 67 #define SPI_CMD_CPHA BIT(8) 68 #define SPI_CMD_CPOL BIT(9) 69 #define SPI_CMD_RX_DMA BIT(10) 70 #define SPI_CMD_TX_DMA BIT(11) 71 #define SPI_CMD_TXMSBF BIT(12) 72 #define SPI_CMD_RXMSBF BIT(13) 73 #define SPI_CMD_RX_ENDIAN BIT(14) 74 #define SPI_CMD_TX_ENDIAN BIT(15) 75 #define SPI_CMD_FINISH_IE BIT(16) 76 #define SPI_CMD_PAUSE_IE BIT(17) 77 #define SPI_CMD_IPM_NONIDLE_MODE BIT(19) 78 #define SPI_CMD_IPM_SPIM_LOOP BIT(21) 79 #define SPI_CMD_IPM_GET_TICKDLY_OFFSET 22 80 81 #define SPI_CMD_IPM_GET_TICKDLY_MASK GENMASK(24, 22) 82 83 #define PIN_MODE_CFG(x) ((x) / 2) 84 85 #define SPI_CFG3_IPM_HALF_DUPLEX_DIR BIT(2) 86 #define SPI_CFG3_IPM_HALF_DUPLEX_EN BIT(3) 87 #define SPI_CFG3_IPM_XMODE_EN BIT(4) 88 #define SPI_CFG3_IPM_NODATA_FLAG BIT(5) 89 #define SPI_CFG3_IPM_CMD_BYTELEN_OFFSET 8 90 #define SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET 12 91 92 #define SPI_CFG3_IPM_CMD_PIN_MODE_MASK GENMASK(1, 0) 93 #define SPI_CFG3_IPM_CMD_BYTELEN_MASK GENMASK(11, 8) 94 #define SPI_CFG3_IPM_ADDR_BYTELEN_MASK GENMASK(15, 12) 95 96 #define MT8173_SPI_MAX_PAD_SEL 3 97 98 #define MTK_SPI_PAUSE_INT_STATUS 0x2 99 100 #define MTK_SPI_MAX_FIFO_SIZE 32U 101 #define MTK_SPI_PACKET_SIZE 1024 102 #define MTK_SPI_IPM_PACKET_SIZE SZ_64K 103 #define MTK_SPI_IPM_PACKET_LOOP SZ_256 104 105 #define MTK_SPI_IDLE 0 106 #define MTK_SPI_PAUSED 1 107 108 #define MTK_SPI_32BITS_MASK (0xffffffff) 109 110 #define DMA_ADDR_EXT_BITS (36) 111 #define DMA_ADDR_DEF_BITS (32) 112 113 /** 114 * struct mtk_spi_compatible - device data structure 115 * @need_pad_sel: Enable pad (pins) selection in SPI controller 116 * @must_tx: Must explicitly send dummy TX bytes to do RX only transfer 117 * @enhance_timing: Enable adjusting cfg register to enhance time accuracy 118 * @dma_ext: DMA address extension supported 119 * @no_need_unprepare: Don't unprepare the SPI clk during runtime 120 * @ipm_design: Adjust/extend registers to support IPM design IP features 121 */ 122 struct mtk_spi_compatible { 123 bool need_pad_sel; 124 bool must_tx; 125 bool enhance_timing; 126 bool dma_ext; 127 bool no_need_unprepare; 128 bool ipm_design; 129 }; 130 131 /** 132 * struct mtk_spi - SPI driver instance 133 * @base: Start address of the SPI controller registers 134 * @state: SPI controller state 135 * @pad_num: Number of pad_sel entries 136 * @pad_sel: Groups of pins to select 137 * @parent_clk: Parent of sel_clk 138 * @sel_clk: SPI master mux clock 139 * @spi_clk: Peripheral clock 140 * @spi_hclk: AHB bus clock 141 * @cur_transfer: Currently processed SPI transfer 142 * @xfer_len: Number of bytes to transfer 143 * @num_xfered: Number of transferred bytes 144 * @tx_sgl: TX transfer scatterlist 145 * @rx_sgl: RX transfer scatterlist 146 * @tx_sgl_len: Size of TX DMA transfer 147 * @rx_sgl_len: Size of RX DMA transfer 148 * @dev_comp: Device data structure 149 * @spi_clk_hz: Current SPI clock in Hz 150 * @spimem_done: SPI-MEM operation completion 151 * @use_spimem: Enables SPI-MEM 152 * @dev: Device pointer 153 * @tx_dma: DMA start for SPI-MEM TX 154 * @rx_dma: DMA start for SPI-MEM RX 155 */ 156 struct mtk_spi { 157 void __iomem *base; 158 u32 state; 159 int pad_num; 160 u32 *pad_sel; 161 struct clk *parent_clk, *sel_clk, *spi_clk, *spi_hclk; 162 struct spi_transfer *cur_transfer; 163 u32 xfer_len; 164 u32 num_xfered; 165 struct scatterlist *tx_sgl, *rx_sgl; 166 u32 tx_sgl_len, rx_sgl_len; 167 const struct mtk_spi_compatible *dev_comp; 168 u32 spi_clk_hz; 169 struct completion spimem_done; 170 bool use_spimem; 171 struct device *dev; 172 dma_addr_t tx_dma; 173 dma_addr_t rx_dma; 174 }; 175 176 static const struct mtk_spi_compatible mtk_common_compat; 177 178 static const struct mtk_spi_compatible mt2712_compat = { 179 .must_tx = true, 180 }; 181 182 static const struct mtk_spi_compatible mtk_ipm_compat = { 183 .enhance_timing = true, 184 .dma_ext = true, 185 .ipm_design = true, 186 }; 187 188 static const struct mtk_spi_compatible mt6765_compat = { 189 .need_pad_sel = true, 190 .must_tx = true, 191 .enhance_timing = true, 192 .dma_ext = true, 193 }; 194 195 static const struct mtk_spi_compatible mt7622_compat = { 196 .must_tx = true, 197 .enhance_timing = true, 198 }; 199 200 static const struct mtk_spi_compatible mt8173_compat = { 201 .need_pad_sel = true, 202 .must_tx = true, 203 }; 204 205 static const struct mtk_spi_compatible mt8183_compat = { 206 .need_pad_sel = true, 207 .must_tx = true, 208 .enhance_timing = true, 209 }; 210 211 static const struct mtk_spi_compatible mt6893_compat = { 212 .need_pad_sel = true, 213 .must_tx = true, 214 .enhance_timing = true, 215 .dma_ext = true, 216 .no_need_unprepare = true, 217 }; 218 219 /* 220 * A piece of default chip info unless the platform 221 * supplies it. 222 */ 223 static const struct mtk_chip_config mtk_default_chip_info = { 224 .sample_sel = 0, 225 .tick_delay = 0, 226 }; 227 228 static const struct of_device_id mtk_spi_of_match[] = { 229 { .compatible = "mediatek,spi-ipm", 230 .data = (void *)&mtk_ipm_compat, 231 }, 232 { .compatible = "mediatek,mt2701-spi", 233 .data = (void *)&mtk_common_compat, 234 }, 235 { .compatible = "mediatek,mt2712-spi", 236 .data = (void *)&mt2712_compat, 237 }, 238 { .compatible = "mediatek,mt6589-spi", 239 .data = (void *)&mtk_common_compat, 240 }, 241 { .compatible = "mediatek,mt6765-spi", 242 .data = (void *)&mt6765_compat, 243 }, 244 { .compatible = "mediatek,mt7622-spi", 245 .data = (void *)&mt7622_compat, 246 }, 247 { .compatible = "mediatek,mt7629-spi", 248 .data = (void *)&mt7622_compat, 249 }, 250 { .compatible = "mediatek,mt8135-spi", 251 .data = (void *)&mtk_common_compat, 252 }, 253 { .compatible = "mediatek,mt8173-spi", 254 .data = (void *)&mt8173_compat, 255 }, 256 { .compatible = "mediatek,mt8183-spi", 257 .data = (void *)&mt8183_compat, 258 }, 259 { .compatible = "mediatek,mt8192-spi", 260 .data = (void *)&mt6765_compat, 261 }, 262 { .compatible = "mediatek,mt6893-spi", 263 .data = (void *)&mt6893_compat, 264 }, 265 {} 266 }; 267 MODULE_DEVICE_TABLE(of, mtk_spi_of_match); 268 269 static void mtk_spi_reset(struct mtk_spi *mdata) 270 { 271 u32 reg_val; 272 273 /* set the software reset bit in SPI_CMD_REG. */ 274 reg_val = readl(mdata->base + SPI_CMD_REG); 275 reg_val |= SPI_CMD_RST; 276 writel(reg_val, mdata->base + SPI_CMD_REG); 277 278 reg_val = readl(mdata->base + SPI_CMD_REG); 279 reg_val &= ~SPI_CMD_RST; 280 writel(reg_val, mdata->base + SPI_CMD_REG); 281 } 282 283 static int mtk_spi_set_hw_cs_timing(struct spi_device *spi) 284 { 285 struct mtk_spi *mdata = spi_master_get_devdata(spi->master); 286 struct spi_delay *cs_setup = &spi->cs_setup; 287 struct spi_delay *cs_hold = &spi->cs_hold; 288 struct spi_delay *cs_inactive = &spi->cs_inactive; 289 u32 setup, hold, inactive; 290 u32 reg_val; 291 int delay; 292 293 delay = spi_delay_to_ns(cs_setup, NULL); 294 if (delay < 0) 295 return delay; 296 setup = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000; 297 298 delay = spi_delay_to_ns(cs_hold, NULL); 299 if (delay < 0) 300 return delay; 301 hold = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000; 302 303 delay = spi_delay_to_ns(cs_inactive, NULL); 304 if (delay < 0) 305 return delay; 306 inactive = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000; 307 308 if (hold || setup) { 309 reg_val = readl(mdata->base + SPI_CFG0_REG); 310 if (mdata->dev_comp->enhance_timing) { 311 if (hold) { 312 hold = min_t(u32, hold, 0x10000); 313 reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_HOLD_OFFSET); 314 reg_val |= (((hold - 1) & 0xffff) 315 << SPI_ADJUST_CFG0_CS_HOLD_OFFSET); 316 } 317 if (setup) { 318 setup = min_t(u32, setup, 0x10000); 319 reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_SETUP_OFFSET); 320 reg_val |= (((setup - 1) & 0xffff) 321 << SPI_ADJUST_CFG0_CS_SETUP_OFFSET); 322 } 323 } else { 324 if (hold) { 325 hold = min_t(u32, hold, 0x100); 326 reg_val &= ~(0xff << SPI_CFG0_CS_HOLD_OFFSET); 327 reg_val |= (((hold - 1) & 0xff) << SPI_CFG0_CS_HOLD_OFFSET); 328 } 329 if (setup) { 330 setup = min_t(u32, setup, 0x100); 331 reg_val &= ~(0xff << SPI_CFG0_CS_SETUP_OFFSET); 332 reg_val |= (((setup - 1) & 0xff) 333 << SPI_CFG0_CS_SETUP_OFFSET); 334 } 335 } 336 writel(reg_val, mdata->base + SPI_CFG0_REG); 337 } 338 339 if (inactive) { 340 inactive = min_t(u32, inactive, 0x100); 341 reg_val = readl(mdata->base + SPI_CFG1_REG); 342 reg_val &= ~SPI_CFG1_CS_IDLE_MASK; 343 reg_val |= (((inactive - 1) & 0xff) << SPI_CFG1_CS_IDLE_OFFSET); 344 writel(reg_val, mdata->base + SPI_CFG1_REG); 345 } 346 347 return 0; 348 } 349 350 static int mtk_spi_hw_init(struct spi_master *master, 351 struct spi_device *spi) 352 { 353 u16 cpha, cpol; 354 u32 reg_val; 355 struct mtk_chip_config *chip_config = spi->controller_data; 356 struct mtk_spi *mdata = spi_master_get_devdata(master); 357 358 cpha = spi->mode & SPI_CPHA ? 1 : 0; 359 cpol = spi->mode & SPI_CPOL ? 1 : 0; 360 361 reg_val = readl(mdata->base + SPI_CMD_REG); 362 if (mdata->dev_comp->ipm_design) { 363 /* SPI transfer without idle time until packet length done */ 364 reg_val |= SPI_CMD_IPM_NONIDLE_MODE; 365 if (spi->mode & SPI_LOOP) 366 reg_val |= SPI_CMD_IPM_SPIM_LOOP; 367 else 368 reg_val &= ~SPI_CMD_IPM_SPIM_LOOP; 369 } 370 371 if (cpha) 372 reg_val |= SPI_CMD_CPHA; 373 else 374 reg_val &= ~SPI_CMD_CPHA; 375 if (cpol) 376 reg_val |= SPI_CMD_CPOL; 377 else 378 reg_val &= ~SPI_CMD_CPOL; 379 380 /* set the mlsbx and mlsbtx */ 381 if (spi->mode & SPI_LSB_FIRST) { 382 reg_val &= ~SPI_CMD_TXMSBF; 383 reg_val &= ~SPI_CMD_RXMSBF; 384 } else { 385 reg_val |= SPI_CMD_TXMSBF; 386 reg_val |= SPI_CMD_RXMSBF; 387 } 388 389 /* set the tx/rx endian */ 390 #ifdef __LITTLE_ENDIAN 391 reg_val &= ~SPI_CMD_TX_ENDIAN; 392 reg_val &= ~SPI_CMD_RX_ENDIAN; 393 #else 394 reg_val |= SPI_CMD_TX_ENDIAN; 395 reg_val |= SPI_CMD_RX_ENDIAN; 396 #endif 397 398 if (mdata->dev_comp->enhance_timing) { 399 /* set CS polarity */ 400 if (spi->mode & SPI_CS_HIGH) 401 reg_val |= SPI_CMD_CS_POL; 402 else 403 reg_val &= ~SPI_CMD_CS_POL; 404 405 if (chip_config->sample_sel) 406 reg_val |= SPI_CMD_SAMPLE_SEL; 407 else 408 reg_val &= ~SPI_CMD_SAMPLE_SEL; 409 } 410 411 /* set finish and pause interrupt always enable */ 412 reg_val |= SPI_CMD_FINISH_IE | SPI_CMD_PAUSE_IE; 413 414 /* disable dma mode */ 415 reg_val &= ~(SPI_CMD_TX_DMA | SPI_CMD_RX_DMA); 416 417 /* disable deassert mode */ 418 reg_val &= ~SPI_CMD_DEASSERT; 419 420 writel(reg_val, mdata->base + SPI_CMD_REG); 421 422 /* pad select */ 423 if (mdata->dev_comp->need_pad_sel) 424 writel(mdata->pad_sel[spi_get_chipselect(spi, 0)], 425 mdata->base + SPI_PAD_SEL_REG); 426 427 /* tick delay */ 428 if (mdata->dev_comp->enhance_timing) { 429 if (mdata->dev_comp->ipm_design) { 430 reg_val = readl(mdata->base + SPI_CMD_REG); 431 reg_val &= ~SPI_CMD_IPM_GET_TICKDLY_MASK; 432 reg_val |= ((chip_config->tick_delay & 0x7) 433 << SPI_CMD_IPM_GET_TICKDLY_OFFSET); 434 writel(reg_val, mdata->base + SPI_CMD_REG); 435 } else { 436 reg_val = readl(mdata->base + SPI_CFG1_REG); 437 reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK; 438 reg_val |= ((chip_config->tick_delay & 0x7) 439 << SPI_CFG1_GET_TICK_DLY_OFFSET); 440 writel(reg_val, mdata->base + SPI_CFG1_REG); 441 } 442 } else { 443 reg_val = readl(mdata->base + SPI_CFG1_REG); 444 reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK_V1; 445 reg_val |= ((chip_config->tick_delay & 0x3) 446 << SPI_CFG1_GET_TICK_DLY_OFFSET_V1); 447 writel(reg_val, mdata->base + SPI_CFG1_REG); 448 } 449 450 /* set hw cs timing */ 451 mtk_spi_set_hw_cs_timing(spi); 452 return 0; 453 } 454 455 static int mtk_spi_prepare_message(struct spi_master *master, 456 struct spi_message *msg) 457 { 458 return mtk_spi_hw_init(master, msg->spi); 459 } 460 461 static void mtk_spi_set_cs(struct spi_device *spi, bool enable) 462 { 463 u32 reg_val; 464 struct mtk_spi *mdata = spi_master_get_devdata(spi->master); 465 466 if (spi->mode & SPI_CS_HIGH) 467 enable = !enable; 468 469 reg_val = readl(mdata->base + SPI_CMD_REG); 470 if (!enable) { 471 reg_val |= SPI_CMD_PAUSE_EN; 472 writel(reg_val, mdata->base + SPI_CMD_REG); 473 } else { 474 reg_val &= ~SPI_CMD_PAUSE_EN; 475 writel(reg_val, mdata->base + SPI_CMD_REG); 476 mdata->state = MTK_SPI_IDLE; 477 mtk_spi_reset(mdata); 478 } 479 } 480 481 static void mtk_spi_prepare_transfer(struct spi_master *master, 482 u32 speed_hz) 483 { 484 u32 div, sck_time, reg_val; 485 struct mtk_spi *mdata = spi_master_get_devdata(master); 486 487 if (speed_hz < mdata->spi_clk_hz / 2) 488 div = DIV_ROUND_UP(mdata->spi_clk_hz, speed_hz); 489 else 490 div = 1; 491 492 sck_time = (div + 1) / 2; 493 494 if (mdata->dev_comp->enhance_timing) { 495 reg_val = readl(mdata->base + SPI_CFG2_REG); 496 reg_val &= ~(0xffff << SPI_CFG2_SCK_HIGH_OFFSET); 497 reg_val |= (((sck_time - 1) & 0xffff) 498 << SPI_CFG2_SCK_HIGH_OFFSET); 499 reg_val &= ~(0xffff << SPI_CFG2_SCK_LOW_OFFSET); 500 reg_val |= (((sck_time - 1) & 0xffff) 501 << SPI_CFG2_SCK_LOW_OFFSET); 502 writel(reg_val, mdata->base + SPI_CFG2_REG); 503 } else { 504 reg_val = readl(mdata->base + SPI_CFG0_REG); 505 reg_val &= ~(0xff << SPI_CFG0_SCK_HIGH_OFFSET); 506 reg_val |= (((sck_time - 1) & 0xff) 507 << SPI_CFG0_SCK_HIGH_OFFSET); 508 reg_val &= ~(0xff << SPI_CFG0_SCK_LOW_OFFSET); 509 reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_LOW_OFFSET); 510 writel(reg_val, mdata->base + SPI_CFG0_REG); 511 } 512 } 513 514 static void mtk_spi_setup_packet(struct spi_master *master) 515 { 516 u32 packet_size, packet_loop, reg_val; 517 struct mtk_spi *mdata = spi_master_get_devdata(master); 518 519 if (mdata->dev_comp->ipm_design) 520 packet_size = min_t(u32, 521 mdata->xfer_len, 522 MTK_SPI_IPM_PACKET_SIZE); 523 else 524 packet_size = min_t(u32, 525 mdata->xfer_len, 526 MTK_SPI_PACKET_SIZE); 527 528 packet_loop = mdata->xfer_len / packet_size; 529 530 reg_val = readl(mdata->base + SPI_CFG1_REG); 531 if (mdata->dev_comp->ipm_design) 532 reg_val &= ~SPI_CFG1_IPM_PACKET_LENGTH_MASK; 533 else 534 reg_val &= ~SPI_CFG1_PACKET_LENGTH_MASK; 535 reg_val |= (packet_size - 1) << SPI_CFG1_PACKET_LENGTH_OFFSET; 536 reg_val &= ~SPI_CFG1_PACKET_LOOP_MASK; 537 reg_val |= (packet_loop - 1) << SPI_CFG1_PACKET_LOOP_OFFSET; 538 writel(reg_val, mdata->base + SPI_CFG1_REG); 539 } 540 541 static void mtk_spi_enable_transfer(struct spi_master *master) 542 { 543 u32 cmd; 544 struct mtk_spi *mdata = spi_master_get_devdata(master); 545 546 cmd = readl(mdata->base + SPI_CMD_REG); 547 if (mdata->state == MTK_SPI_IDLE) 548 cmd |= SPI_CMD_ACT; 549 else 550 cmd |= SPI_CMD_RESUME; 551 writel(cmd, mdata->base + SPI_CMD_REG); 552 } 553 554 static int mtk_spi_get_mult_delta(struct mtk_spi *mdata, u32 xfer_len) 555 { 556 u32 mult_delta = 0; 557 558 if (mdata->dev_comp->ipm_design) { 559 if (xfer_len > MTK_SPI_IPM_PACKET_SIZE) 560 mult_delta = xfer_len % MTK_SPI_IPM_PACKET_SIZE; 561 } else { 562 if (xfer_len > MTK_SPI_PACKET_SIZE) 563 mult_delta = xfer_len % MTK_SPI_PACKET_SIZE; 564 } 565 566 return mult_delta; 567 } 568 569 static void mtk_spi_update_mdata_len(struct spi_master *master) 570 { 571 int mult_delta; 572 struct mtk_spi *mdata = spi_master_get_devdata(master); 573 574 if (mdata->tx_sgl_len && mdata->rx_sgl_len) { 575 if (mdata->tx_sgl_len > mdata->rx_sgl_len) { 576 mult_delta = mtk_spi_get_mult_delta(mdata, mdata->rx_sgl_len); 577 mdata->xfer_len = mdata->rx_sgl_len - mult_delta; 578 mdata->rx_sgl_len = mult_delta; 579 mdata->tx_sgl_len -= mdata->xfer_len; 580 } else { 581 mult_delta = mtk_spi_get_mult_delta(mdata, mdata->tx_sgl_len); 582 mdata->xfer_len = mdata->tx_sgl_len - mult_delta; 583 mdata->tx_sgl_len = mult_delta; 584 mdata->rx_sgl_len -= mdata->xfer_len; 585 } 586 } else if (mdata->tx_sgl_len) { 587 mult_delta = mtk_spi_get_mult_delta(mdata, mdata->tx_sgl_len); 588 mdata->xfer_len = mdata->tx_sgl_len - mult_delta; 589 mdata->tx_sgl_len = mult_delta; 590 } else if (mdata->rx_sgl_len) { 591 mult_delta = mtk_spi_get_mult_delta(mdata, mdata->rx_sgl_len); 592 mdata->xfer_len = mdata->rx_sgl_len - mult_delta; 593 mdata->rx_sgl_len = mult_delta; 594 } 595 } 596 597 static void mtk_spi_setup_dma_addr(struct spi_master *master, 598 struct spi_transfer *xfer) 599 { 600 struct mtk_spi *mdata = spi_master_get_devdata(master); 601 602 if (mdata->tx_sgl) { 603 writel((u32)(xfer->tx_dma & MTK_SPI_32BITS_MASK), 604 mdata->base + SPI_TX_SRC_REG); 605 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 606 if (mdata->dev_comp->dma_ext) 607 writel((u32)(xfer->tx_dma >> 32), 608 mdata->base + SPI_TX_SRC_REG_64); 609 #endif 610 } 611 612 if (mdata->rx_sgl) { 613 writel((u32)(xfer->rx_dma & MTK_SPI_32BITS_MASK), 614 mdata->base + SPI_RX_DST_REG); 615 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 616 if (mdata->dev_comp->dma_ext) 617 writel((u32)(xfer->rx_dma >> 32), 618 mdata->base + SPI_RX_DST_REG_64); 619 #endif 620 } 621 } 622 623 static int mtk_spi_fifo_transfer(struct spi_master *master, 624 struct spi_device *spi, 625 struct spi_transfer *xfer) 626 { 627 int cnt, remainder; 628 u32 reg_val; 629 struct mtk_spi *mdata = spi_master_get_devdata(master); 630 631 mdata->cur_transfer = xfer; 632 mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, xfer->len); 633 mdata->num_xfered = 0; 634 mtk_spi_prepare_transfer(master, xfer->speed_hz); 635 mtk_spi_setup_packet(master); 636 637 if (xfer->tx_buf) { 638 cnt = xfer->len / 4; 639 iowrite32_rep(mdata->base + SPI_TX_DATA_REG, xfer->tx_buf, cnt); 640 remainder = xfer->len % 4; 641 if (remainder > 0) { 642 reg_val = 0; 643 memcpy(®_val, xfer->tx_buf + (cnt * 4), remainder); 644 writel(reg_val, mdata->base + SPI_TX_DATA_REG); 645 } 646 } 647 648 mtk_spi_enable_transfer(master); 649 650 return 1; 651 } 652 653 static int mtk_spi_dma_transfer(struct spi_master *master, 654 struct spi_device *spi, 655 struct spi_transfer *xfer) 656 { 657 int cmd; 658 struct mtk_spi *mdata = spi_master_get_devdata(master); 659 660 mdata->tx_sgl = NULL; 661 mdata->rx_sgl = NULL; 662 mdata->tx_sgl_len = 0; 663 mdata->rx_sgl_len = 0; 664 mdata->cur_transfer = xfer; 665 mdata->num_xfered = 0; 666 667 mtk_spi_prepare_transfer(master, xfer->speed_hz); 668 669 cmd = readl(mdata->base + SPI_CMD_REG); 670 if (xfer->tx_buf) 671 cmd |= SPI_CMD_TX_DMA; 672 if (xfer->rx_buf) 673 cmd |= SPI_CMD_RX_DMA; 674 writel(cmd, mdata->base + SPI_CMD_REG); 675 676 if (xfer->tx_buf) 677 mdata->tx_sgl = xfer->tx_sg.sgl; 678 if (xfer->rx_buf) 679 mdata->rx_sgl = xfer->rx_sg.sgl; 680 681 if (mdata->tx_sgl) { 682 xfer->tx_dma = sg_dma_address(mdata->tx_sgl); 683 mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl); 684 } 685 if (mdata->rx_sgl) { 686 xfer->rx_dma = sg_dma_address(mdata->rx_sgl); 687 mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl); 688 } 689 690 mtk_spi_update_mdata_len(master); 691 mtk_spi_setup_packet(master); 692 mtk_spi_setup_dma_addr(master, xfer); 693 mtk_spi_enable_transfer(master); 694 695 return 1; 696 } 697 698 static int mtk_spi_transfer_one(struct spi_master *master, 699 struct spi_device *spi, 700 struct spi_transfer *xfer) 701 { 702 struct mtk_spi *mdata = spi_master_get_devdata(spi->master); 703 u32 reg_val = 0; 704 705 /* prepare xfer direction and duplex mode */ 706 if (mdata->dev_comp->ipm_design) { 707 if (!xfer->tx_buf || !xfer->rx_buf) { 708 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN; 709 if (xfer->rx_buf) 710 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR; 711 } 712 writel(reg_val, mdata->base + SPI_CFG3_IPM_REG); 713 } 714 715 if (master->can_dma(master, spi, xfer)) 716 return mtk_spi_dma_transfer(master, spi, xfer); 717 else 718 return mtk_spi_fifo_transfer(master, spi, xfer); 719 } 720 721 static bool mtk_spi_can_dma(struct spi_master *master, 722 struct spi_device *spi, 723 struct spi_transfer *xfer) 724 { 725 /* Buffers for DMA transactions must be 4-byte aligned */ 726 return (xfer->len > MTK_SPI_MAX_FIFO_SIZE && 727 (unsigned long)xfer->tx_buf % 4 == 0 && 728 (unsigned long)xfer->rx_buf % 4 == 0); 729 } 730 731 static int mtk_spi_setup(struct spi_device *spi) 732 { 733 struct mtk_spi *mdata = spi_master_get_devdata(spi->master); 734 735 if (!spi->controller_data) 736 spi->controller_data = (void *)&mtk_default_chip_info; 737 738 if (mdata->dev_comp->need_pad_sel && spi_get_csgpiod(spi, 0)) 739 /* CS de-asserted, gpiolib will handle inversion */ 740 gpiod_direction_output(spi_get_csgpiod(spi, 0), 0); 741 742 return 0; 743 } 744 745 static irqreturn_t mtk_spi_interrupt(int irq, void *dev_id) 746 { 747 u32 cmd, reg_val, cnt, remainder, len; 748 struct spi_master *master = dev_id; 749 struct mtk_spi *mdata = spi_master_get_devdata(master); 750 struct spi_transfer *trans = mdata->cur_transfer; 751 752 reg_val = readl(mdata->base + SPI_STATUS0_REG); 753 if (reg_val & MTK_SPI_PAUSE_INT_STATUS) 754 mdata->state = MTK_SPI_PAUSED; 755 else 756 mdata->state = MTK_SPI_IDLE; 757 758 /* SPI-MEM ops */ 759 if (mdata->use_spimem) { 760 complete(&mdata->spimem_done); 761 return IRQ_HANDLED; 762 } 763 764 if (!master->can_dma(master, NULL, trans)) { 765 if (trans->rx_buf) { 766 cnt = mdata->xfer_len / 4; 767 ioread32_rep(mdata->base + SPI_RX_DATA_REG, 768 trans->rx_buf + mdata->num_xfered, cnt); 769 remainder = mdata->xfer_len % 4; 770 if (remainder > 0) { 771 reg_val = readl(mdata->base + SPI_RX_DATA_REG); 772 memcpy(trans->rx_buf + 773 mdata->num_xfered + 774 (cnt * 4), 775 ®_val, 776 remainder); 777 } 778 } 779 780 mdata->num_xfered += mdata->xfer_len; 781 if (mdata->num_xfered == trans->len) { 782 spi_finalize_current_transfer(master); 783 return IRQ_HANDLED; 784 } 785 786 len = trans->len - mdata->num_xfered; 787 mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, len); 788 mtk_spi_setup_packet(master); 789 790 cnt = mdata->xfer_len / 4; 791 iowrite32_rep(mdata->base + SPI_TX_DATA_REG, 792 trans->tx_buf + mdata->num_xfered, cnt); 793 794 remainder = mdata->xfer_len % 4; 795 if (remainder > 0) { 796 reg_val = 0; 797 memcpy(®_val, 798 trans->tx_buf + (cnt * 4) + mdata->num_xfered, 799 remainder); 800 writel(reg_val, mdata->base + SPI_TX_DATA_REG); 801 } 802 803 mtk_spi_enable_transfer(master); 804 805 return IRQ_HANDLED; 806 } 807 808 if (mdata->tx_sgl) 809 trans->tx_dma += mdata->xfer_len; 810 if (mdata->rx_sgl) 811 trans->rx_dma += mdata->xfer_len; 812 813 if (mdata->tx_sgl && (mdata->tx_sgl_len == 0)) { 814 mdata->tx_sgl = sg_next(mdata->tx_sgl); 815 if (mdata->tx_sgl) { 816 trans->tx_dma = sg_dma_address(mdata->tx_sgl); 817 mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl); 818 } 819 } 820 if (mdata->rx_sgl && (mdata->rx_sgl_len == 0)) { 821 mdata->rx_sgl = sg_next(mdata->rx_sgl); 822 if (mdata->rx_sgl) { 823 trans->rx_dma = sg_dma_address(mdata->rx_sgl); 824 mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl); 825 } 826 } 827 828 if (!mdata->tx_sgl && !mdata->rx_sgl) { 829 /* spi disable dma */ 830 cmd = readl(mdata->base + SPI_CMD_REG); 831 cmd &= ~SPI_CMD_TX_DMA; 832 cmd &= ~SPI_CMD_RX_DMA; 833 writel(cmd, mdata->base + SPI_CMD_REG); 834 835 spi_finalize_current_transfer(master); 836 return IRQ_HANDLED; 837 } 838 839 mtk_spi_update_mdata_len(master); 840 mtk_spi_setup_packet(master); 841 mtk_spi_setup_dma_addr(master, trans); 842 mtk_spi_enable_transfer(master); 843 844 return IRQ_HANDLED; 845 } 846 847 static int mtk_spi_mem_adjust_op_size(struct spi_mem *mem, 848 struct spi_mem_op *op) 849 { 850 int opcode_len; 851 852 if (op->data.dir != SPI_MEM_NO_DATA) { 853 opcode_len = 1 + op->addr.nbytes + op->dummy.nbytes; 854 if (opcode_len + op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) { 855 op->data.nbytes = MTK_SPI_IPM_PACKET_SIZE - opcode_len; 856 /* force data buffer dma-aligned. */ 857 op->data.nbytes -= op->data.nbytes % 4; 858 } 859 } 860 861 return 0; 862 } 863 864 static bool mtk_spi_mem_supports_op(struct spi_mem *mem, 865 const struct spi_mem_op *op) 866 { 867 if (!spi_mem_default_supports_op(mem, op)) 868 return false; 869 870 if (op->addr.nbytes && op->dummy.nbytes && 871 op->addr.buswidth != op->dummy.buswidth) 872 return false; 873 874 if (op->addr.nbytes + op->dummy.nbytes > 16) 875 return false; 876 877 if (op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) { 878 if (op->data.nbytes / MTK_SPI_IPM_PACKET_SIZE > 879 MTK_SPI_IPM_PACKET_LOOP || 880 op->data.nbytes % MTK_SPI_IPM_PACKET_SIZE != 0) 881 return false; 882 } 883 884 return true; 885 } 886 887 static void mtk_spi_mem_setup_dma_xfer(struct spi_master *master, 888 const struct spi_mem_op *op) 889 { 890 struct mtk_spi *mdata = spi_master_get_devdata(master); 891 892 writel((u32)(mdata->tx_dma & MTK_SPI_32BITS_MASK), 893 mdata->base + SPI_TX_SRC_REG); 894 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 895 if (mdata->dev_comp->dma_ext) 896 writel((u32)(mdata->tx_dma >> 32), 897 mdata->base + SPI_TX_SRC_REG_64); 898 #endif 899 900 if (op->data.dir == SPI_MEM_DATA_IN) { 901 writel((u32)(mdata->rx_dma & MTK_SPI_32BITS_MASK), 902 mdata->base + SPI_RX_DST_REG); 903 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 904 if (mdata->dev_comp->dma_ext) 905 writel((u32)(mdata->rx_dma >> 32), 906 mdata->base + SPI_RX_DST_REG_64); 907 #endif 908 } 909 } 910 911 static int mtk_spi_transfer_wait(struct spi_mem *mem, 912 const struct spi_mem_op *op) 913 { 914 struct mtk_spi *mdata = spi_master_get_devdata(mem->spi->master); 915 /* 916 * For each byte we wait for 8 cycles of the SPI clock. 917 * Since speed is defined in Hz and we want milliseconds, 918 * so it should be 8 * 1000. 919 */ 920 u64 ms = 8000LL; 921 922 if (op->data.dir == SPI_MEM_NO_DATA) 923 ms *= 32; /* prevent we may get 0 for short transfers. */ 924 else 925 ms *= op->data.nbytes; 926 ms = div_u64(ms, mem->spi->max_speed_hz); 927 ms += ms + 1000; /* 1s tolerance */ 928 929 if (ms > UINT_MAX) 930 ms = UINT_MAX; 931 932 if (!wait_for_completion_timeout(&mdata->spimem_done, 933 msecs_to_jiffies(ms))) { 934 dev_err(mdata->dev, "spi-mem transfer timeout\n"); 935 return -ETIMEDOUT; 936 } 937 938 return 0; 939 } 940 941 static int mtk_spi_mem_exec_op(struct spi_mem *mem, 942 const struct spi_mem_op *op) 943 { 944 struct mtk_spi *mdata = spi_master_get_devdata(mem->spi->master); 945 u32 reg_val, nio, tx_size; 946 char *tx_tmp_buf, *rx_tmp_buf; 947 int ret = 0; 948 949 mdata->use_spimem = true; 950 reinit_completion(&mdata->spimem_done); 951 952 mtk_spi_reset(mdata); 953 mtk_spi_hw_init(mem->spi->master, mem->spi); 954 mtk_spi_prepare_transfer(mem->spi->master, mem->spi->max_speed_hz); 955 956 reg_val = readl(mdata->base + SPI_CFG3_IPM_REG); 957 /* opcode byte len */ 958 reg_val &= ~SPI_CFG3_IPM_CMD_BYTELEN_MASK; 959 reg_val |= 1 << SPI_CFG3_IPM_CMD_BYTELEN_OFFSET; 960 961 /* addr & dummy byte len */ 962 reg_val &= ~SPI_CFG3_IPM_ADDR_BYTELEN_MASK; 963 if (op->addr.nbytes || op->dummy.nbytes) 964 reg_val |= (op->addr.nbytes + op->dummy.nbytes) << 965 SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET; 966 967 /* data byte len */ 968 if (op->data.dir == SPI_MEM_NO_DATA) { 969 reg_val |= SPI_CFG3_IPM_NODATA_FLAG; 970 writel(0, mdata->base + SPI_CFG1_REG); 971 } else { 972 reg_val &= ~SPI_CFG3_IPM_NODATA_FLAG; 973 mdata->xfer_len = op->data.nbytes; 974 mtk_spi_setup_packet(mem->spi->master); 975 } 976 977 if (op->addr.nbytes || op->dummy.nbytes) { 978 if (op->addr.buswidth == 1 || op->dummy.buswidth == 1) 979 reg_val |= SPI_CFG3_IPM_XMODE_EN; 980 else 981 reg_val &= ~SPI_CFG3_IPM_XMODE_EN; 982 } 983 984 if (op->addr.buswidth == 2 || 985 op->dummy.buswidth == 2 || 986 op->data.buswidth == 2) 987 nio = 2; 988 else if (op->addr.buswidth == 4 || 989 op->dummy.buswidth == 4 || 990 op->data.buswidth == 4) 991 nio = 4; 992 else 993 nio = 1; 994 995 reg_val &= ~SPI_CFG3_IPM_CMD_PIN_MODE_MASK; 996 reg_val |= PIN_MODE_CFG(nio); 997 998 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN; 999 if (op->data.dir == SPI_MEM_DATA_IN) 1000 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR; 1001 else 1002 reg_val &= ~SPI_CFG3_IPM_HALF_DUPLEX_DIR; 1003 writel(reg_val, mdata->base + SPI_CFG3_IPM_REG); 1004 1005 tx_size = 1 + op->addr.nbytes + op->dummy.nbytes; 1006 if (op->data.dir == SPI_MEM_DATA_OUT) 1007 tx_size += op->data.nbytes; 1008 1009 tx_size = max_t(u32, tx_size, 32); 1010 1011 tx_tmp_buf = kzalloc(tx_size, GFP_KERNEL | GFP_DMA); 1012 if (!tx_tmp_buf) { 1013 mdata->use_spimem = false; 1014 return -ENOMEM; 1015 } 1016 1017 tx_tmp_buf[0] = op->cmd.opcode; 1018 1019 if (op->addr.nbytes) { 1020 int i; 1021 1022 for (i = 0; i < op->addr.nbytes; i++) 1023 tx_tmp_buf[i + 1] = op->addr.val >> 1024 (8 * (op->addr.nbytes - i - 1)); 1025 } 1026 1027 if (op->dummy.nbytes) 1028 memset(tx_tmp_buf + op->addr.nbytes + 1, 1029 0xff, 1030 op->dummy.nbytes); 1031 1032 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) 1033 memcpy(tx_tmp_buf + op->dummy.nbytes + op->addr.nbytes + 1, 1034 op->data.buf.out, 1035 op->data.nbytes); 1036 1037 mdata->tx_dma = dma_map_single(mdata->dev, tx_tmp_buf, 1038 tx_size, DMA_TO_DEVICE); 1039 if (dma_mapping_error(mdata->dev, mdata->tx_dma)) { 1040 ret = -ENOMEM; 1041 goto err_exit; 1042 } 1043 1044 if (op->data.dir == SPI_MEM_DATA_IN) { 1045 if (!IS_ALIGNED((size_t)op->data.buf.in, 4)) { 1046 rx_tmp_buf = kzalloc(op->data.nbytes, 1047 GFP_KERNEL | GFP_DMA); 1048 if (!rx_tmp_buf) { 1049 ret = -ENOMEM; 1050 goto unmap_tx_dma; 1051 } 1052 } else { 1053 rx_tmp_buf = op->data.buf.in; 1054 } 1055 1056 mdata->rx_dma = dma_map_single(mdata->dev, 1057 rx_tmp_buf, 1058 op->data.nbytes, 1059 DMA_FROM_DEVICE); 1060 if (dma_mapping_error(mdata->dev, mdata->rx_dma)) { 1061 ret = -ENOMEM; 1062 goto kfree_rx_tmp_buf; 1063 } 1064 } 1065 1066 reg_val = readl(mdata->base + SPI_CMD_REG); 1067 reg_val |= SPI_CMD_TX_DMA; 1068 if (op->data.dir == SPI_MEM_DATA_IN) 1069 reg_val |= SPI_CMD_RX_DMA; 1070 writel(reg_val, mdata->base + SPI_CMD_REG); 1071 1072 mtk_spi_mem_setup_dma_xfer(mem->spi->master, op); 1073 1074 mtk_spi_enable_transfer(mem->spi->master); 1075 1076 /* Wait for the interrupt. */ 1077 ret = mtk_spi_transfer_wait(mem, op); 1078 if (ret) 1079 goto unmap_rx_dma; 1080 1081 /* spi disable dma */ 1082 reg_val = readl(mdata->base + SPI_CMD_REG); 1083 reg_val &= ~SPI_CMD_TX_DMA; 1084 if (op->data.dir == SPI_MEM_DATA_IN) 1085 reg_val &= ~SPI_CMD_RX_DMA; 1086 writel(reg_val, mdata->base + SPI_CMD_REG); 1087 1088 unmap_rx_dma: 1089 if (op->data.dir == SPI_MEM_DATA_IN) { 1090 dma_unmap_single(mdata->dev, mdata->rx_dma, 1091 op->data.nbytes, DMA_FROM_DEVICE); 1092 if (!IS_ALIGNED((size_t)op->data.buf.in, 4)) 1093 memcpy(op->data.buf.in, rx_tmp_buf, op->data.nbytes); 1094 } 1095 kfree_rx_tmp_buf: 1096 if (op->data.dir == SPI_MEM_DATA_IN && 1097 !IS_ALIGNED((size_t)op->data.buf.in, 4)) 1098 kfree(rx_tmp_buf); 1099 unmap_tx_dma: 1100 dma_unmap_single(mdata->dev, mdata->tx_dma, 1101 tx_size, DMA_TO_DEVICE); 1102 err_exit: 1103 kfree(tx_tmp_buf); 1104 mdata->use_spimem = false; 1105 1106 return ret; 1107 } 1108 1109 static const struct spi_controller_mem_ops mtk_spi_mem_ops = { 1110 .adjust_op_size = mtk_spi_mem_adjust_op_size, 1111 .supports_op = mtk_spi_mem_supports_op, 1112 .exec_op = mtk_spi_mem_exec_op, 1113 }; 1114 1115 static int mtk_spi_probe(struct platform_device *pdev) 1116 { 1117 struct device *dev = &pdev->dev; 1118 struct spi_master *master; 1119 struct mtk_spi *mdata; 1120 int i, irq, ret, addr_bits; 1121 1122 master = devm_spi_alloc_master(dev, sizeof(*mdata)); 1123 if (!master) 1124 return dev_err_probe(dev, -ENOMEM, "failed to alloc spi master\n"); 1125 1126 master->auto_runtime_pm = true; 1127 master->dev.of_node = dev->of_node; 1128 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; 1129 1130 master->set_cs = mtk_spi_set_cs; 1131 master->prepare_message = mtk_spi_prepare_message; 1132 master->transfer_one = mtk_spi_transfer_one; 1133 master->can_dma = mtk_spi_can_dma; 1134 master->setup = mtk_spi_setup; 1135 master->set_cs_timing = mtk_spi_set_hw_cs_timing; 1136 master->use_gpio_descriptors = true; 1137 1138 mdata = spi_master_get_devdata(master); 1139 mdata->dev_comp = device_get_match_data(dev); 1140 1141 if (mdata->dev_comp->enhance_timing) 1142 master->mode_bits |= SPI_CS_HIGH; 1143 1144 if (mdata->dev_comp->must_tx) 1145 master->flags = SPI_MASTER_MUST_TX; 1146 if (mdata->dev_comp->ipm_design) 1147 master->mode_bits |= SPI_LOOP | SPI_RX_DUAL | SPI_TX_DUAL | 1148 SPI_RX_QUAD | SPI_TX_QUAD; 1149 1150 if (mdata->dev_comp->ipm_design) { 1151 mdata->dev = dev; 1152 master->mem_ops = &mtk_spi_mem_ops; 1153 init_completion(&mdata->spimem_done); 1154 } 1155 1156 if (mdata->dev_comp->need_pad_sel) { 1157 mdata->pad_num = of_property_count_u32_elems(dev->of_node, 1158 "mediatek,pad-select"); 1159 if (mdata->pad_num < 0) 1160 return dev_err_probe(dev, -EINVAL, 1161 "No 'mediatek,pad-select' property\n"); 1162 1163 mdata->pad_sel = devm_kmalloc_array(dev, mdata->pad_num, 1164 sizeof(u32), GFP_KERNEL); 1165 if (!mdata->pad_sel) 1166 return -ENOMEM; 1167 1168 for (i = 0; i < mdata->pad_num; i++) { 1169 of_property_read_u32_index(dev->of_node, 1170 "mediatek,pad-select", 1171 i, &mdata->pad_sel[i]); 1172 if (mdata->pad_sel[i] > MT8173_SPI_MAX_PAD_SEL) 1173 return dev_err_probe(dev, -EINVAL, 1174 "wrong pad-sel[%d]: %u\n", 1175 i, mdata->pad_sel[i]); 1176 } 1177 } 1178 1179 platform_set_drvdata(pdev, master); 1180 mdata->base = devm_platform_ioremap_resource(pdev, 0); 1181 if (IS_ERR(mdata->base)) 1182 return PTR_ERR(mdata->base); 1183 1184 irq = platform_get_irq(pdev, 0); 1185 if (irq < 0) 1186 return irq; 1187 1188 if (!dev->dma_mask) 1189 dev->dma_mask = &dev->coherent_dma_mask; 1190 1191 if (mdata->dev_comp->ipm_design) 1192 dma_set_max_seg_size(dev, SZ_16M); 1193 else 1194 dma_set_max_seg_size(dev, SZ_256K); 1195 1196 mdata->parent_clk = devm_clk_get(dev, "parent-clk"); 1197 if (IS_ERR(mdata->parent_clk)) 1198 return dev_err_probe(dev, PTR_ERR(mdata->parent_clk), 1199 "failed to get parent-clk\n"); 1200 1201 mdata->sel_clk = devm_clk_get(dev, "sel-clk"); 1202 if (IS_ERR(mdata->sel_clk)) 1203 return dev_err_probe(dev, PTR_ERR(mdata->sel_clk), "failed to get sel-clk\n"); 1204 1205 mdata->spi_clk = devm_clk_get(dev, "spi-clk"); 1206 if (IS_ERR(mdata->spi_clk)) 1207 return dev_err_probe(dev, PTR_ERR(mdata->spi_clk), "failed to get spi-clk\n"); 1208 1209 mdata->spi_hclk = devm_clk_get_optional(dev, "hclk"); 1210 if (IS_ERR(mdata->spi_hclk)) 1211 return dev_err_probe(dev, PTR_ERR(mdata->spi_hclk), "failed to get hclk\n"); 1212 1213 ret = clk_set_parent(mdata->sel_clk, mdata->parent_clk); 1214 if (ret < 0) 1215 return dev_err_probe(dev, ret, "failed to clk_set_parent\n"); 1216 1217 ret = clk_prepare_enable(mdata->spi_hclk); 1218 if (ret < 0) 1219 return dev_err_probe(dev, ret, "failed to enable hclk\n"); 1220 1221 ret = clk_prepare_enable(mdata->spi_clk); 1222 if (ret < 0) { 1223 clk_disable_unprepare(mdata->spi_hclk); 1224 return dev_err_probe(dev, ret, "failed to enable spi_clk\n"); 1225 } 1226 1227 mdata->spi_clk_hz = clk_get_rate(mdata->spi_clk); 1228 1229 if (mdata->dev_comp->no_need_unprepare) { 1230 clk_disable(mdata->spi_clk); 1231 clk_disable(mdata->spi_hclk); 1232 } else { 1233 clk_disable_unprepare(mdata->spi_clk); 1234 clk_disable_unprepare(mdata->spi_hclk); 1235 } 1236 1237 if (mdata->dev_comp->need_pad_sel) { 1238 if (mdata->pad_num != master->num_chipselect) 1239 return dev_err_probe(dev, -EINVAL, 1240 "pad_num does not match num_chipselect(%d != %d)\n", 1241 mdata->pad_num, master->num_chipselect); 1242 1243 if (!master->cs_gpiods && master->num_chipselect > 1) 1244 return dev_err_probe(dev, -EINVAL, 1245 "cs_gpios not specified and num_chipselect > 1\n"); 1246 } 1247 1248 if (mdata->dev_comp->dma_ext) 1249 addr_bits = DMA_ADDR_EXT_BITS; 1250 else 1251 addr_bits = DMA_ADDR_DEF_BITS; 1252 ret = dma_set_mask(dev, DMA_BIT_MASK(addr_bits)); 1253 if (ret) 1254 dev_notice(dev, "SPI dma_set_mask(%d) failed, ret:%d\n", 1255 addr_bits, ret); 1256 1257 ret = devm_request_irq(dev, irq, mtk_spi_interrupt, 1258 IRQF_TRIGGER_NONE, dev_name(dev), master); 1259 if (ret) 1260 return dev_err_probe(dev, ret, "failed to register irq\n"); 1261 1262 pm_runtime_enable(dev); 1263 1264 ret = devm_spi_register_master(dev, master); 1265 if (ret) { 1266 pm_runtime_disable(dev); 1267 return dev_err_probe(dev, ret, "failed to register master\n"); 1268 } 1269 1270 return 0; 1271 } 1272 1273 static void mtk_spi_remove(struct platform_device *pdev) 1274 { 1275 struct spi_master *master = platform_get_drvdata(pdev); 1276 struct mtk_spi *mdata = spi_master_get_devdata(master); 1277 int ret; 1278 1279 if (mdata->use_spimem && !completion_done(&mdata->spimem_done)) 1280 complete(&mdata->spimem_done); 1281 1282 ret = pm_runtime_get_sync(&pdev->dev); 1283 if (ret < 0) { 1284 dev_warn(&pdev->dev, "Failed to resume hardware (%pe)\n", ERR_PTR(ret)); 1285 } else { 1286 /* 1287 * If pm runtime resume failed, clks are disabled and 1288 * unprepared. So don't access the hardware and skip clk 1289 * unpreparing. 1290 */ 1291 mtk_spi_reset(mdata); 1292 1293 if (mdata->dev_comp->no_need_unprepare) { 1294 clk_unprepare(mdata->spi_clk); 1295 clk_unprepare(mdata->spi_hclk); 1296 } 1297 } 1298 1299 pm_runtime_put_noidle(&pdev->dev); 1300 pm_runtime_disable(&pdev->dev); 1301 } 1302 1303 #ifdef CONFIG_PM_SLEEP 1304 static int mtk_spi_suspend(struct device *dev) 1305 { 1306 int ret; 1307 struct spi_master *master = dev_get_drvdata(dev); 1308 struct mtk_spi *mdata = spi_master_get_devdata(master); 1309 1310 ret = spi_master_suspend(master); 1311 if (ret) 1312 return ret; 1313 1314 if (!pm_runtime_suspended(dev)) { 1315 clk_disable_unprepare(mdata->spi_clk); 1316 clk_disable_unprepare(mdata->spi_hclk); 1317 } 1318 1319 return 0; 1320 } 1321 1322 static int mtk_spi_resume(struct device *dev) 1323 { 1324 int ret; 1325 struct spi_master *master = dev_get_drvdata(dev); 1326 struct mtk_spi *mdata = spi_master_get_devdata(master); 1327 1328 if (!pm_runtime_suspended(dev)) { 1329 ret = clk_prepare_enable(mdata->spi_clk); 1330 if (ret < 0) { 1331 dev_err(dev, "failed to enable spi_clk (%d)\n", ret); 1332 return ret; 1333 } 1334 1335 ret = clk_prepare_enable(mdata->spi_hclk); 1336 if (ret < 0) { 1337 dev_err(dev, "failed to enable spi_hclk (%d)\n", ret); 1338 clk_disable_unprepare(mdata->spi_clk); 1339 return ret; 1340 } 1341 } 1342 1343 ret = spi_master_resume(master); 1344 if (ret < 0) { 1345 clk_disable_unprepare(mdata->spi_clk); 1346 clk_disable_unprepare(mdata->spi_hclk); 1347 } 1348 1349 return ret; 1350 } 1351 #endif /* CONFIG_PM_SLEEP */ 1352 1353 #ifdef CONFIG_PM 1354 static int mtk_spi_runtime_suspend(struct device *dev) 1355 { 1356 struct spi_master *master = dev_get_drvdata(dev); 1357 struct mtk_spi *mdata = spi_master_get_devdata(master); 1358 1359 if (mdata->dev_comp->no_need_unprepare) { 1360 clk_disable(mdata->spi_clk); 1361 clk_disable(mdata->spi_hclk); 1362 } else { 1363 clk_disable_unprepare(mdata->spi_clk); 1364 clk_disable_unprepare(mdata->spi_hclk); 1365 } 1366 1367 return 0; 1368 } 1369 1370 static int mtk_spi_runtime_resume(struct device *dev) 1371 { 1372 struct spi_master *master = dev_get_drvdata(dev); 1373 struct mtk_spi *mdata = spi_master_get_devdata(master); 1374 int ret; 1375 1376 if (mdata->dev_comp->no_need_unprepare) { 1377 ret = clk_enable(mdata->spi_clk); 1378 if (ret < 0) { 1379 dev_err(dev, "failed to enable spi_clk (%d)\n", ret); 1380 return ret; 1381 } 1382 ret = clk_enable(mdata->spi_hclk); 1383 if (ret < 0) { 1384 dev_err(dev, "failed to enable spi_hclk (%d)\n", ret); 1385 clk_disable(mdata->spi_clk); 1386 return ret; 1387 } 1388 } else { 1389 ret = clk_prepare_enable(mdata->spi_clk); 1390 if (ret < 0) { 1391 dev_err(dev, "failed to prepare_enable spi_clk (%d)\n", ret); 1392 return ret; 1393 } 1394 1395 ret = clk_prepare_enable(mdata->spi_hclk); 1396 if (ret < 0) { 1397 dev_err(dev, "failed to prepare_enable spi_hclk (%d)\n", ret); 1398 clk_disable_unprepare(mdata->spi_clk); 1399 return ret; 1400 } 1401 } 1402 1403 return 0; 1404 } 1405 #endif /* CONFIG_PM */ 1406 1407 static const struct dev_pm_ops mtk_spi_pm = { 1408 SET_SYSTEM_SLEEP_PM_OPS(mtk_spi_suspend, mtk_spi_resume) 1409 SET_RUNTIME_PM_OPS(mtk_spi_runtime_suspend, 1410 mtk_spi_runtime_resume, NULL) 1411 }; 1412 1413 static struct platform_driver mtk_spi_driver = { 1414 .driver = { 1415 .name = "mtk-spi", 1416 .pm = &mtk_spi_pm, 1417 .of_match_table = mtk_spi_of_match, 1418 }, 1419 .probe = mtk_spi_probe, 1420 .remove_new = mtk_spi_remove, 1421 }; 1422 1423 module_platform_driver(mtk_spi_driver); 1424 1425 MODULE_DESCRIPTION("MTK SPI Controller driver"); 1426 MODULE_AUTHOR("Leilk Liu <leilk.liu@mediatek.com>"); 1427 MODULE_LICENSE("GPL v2"); 1428 MODULE_ALIAS("platform:mtk-spi"); 1429