xref: /linux/drivers/spi/spi-microchip-core-qspi.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: (GPL-2.0)
2 /*
3  * Microchip coreQSPI QSPI controller driver
4  *
5  * Copyright (C) 2018-2022 Microchip Technology Inc. and its subsidiaries
6  *
7  * Author: Naga Sureshkumar Relli <nagasuresh.relli@microchip.com>
8  *
9  */
10 
11 #include <linux/clk.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_irq.h>
20 #include <linux/platform_device.h>
21 #include <linux/spi/spi.h>
22 #include <linux/spi/spi-mem.h>
23 
24 /*
25  * QSPI Control register mask defines
26  */
27 #define CONTROL_ENABLE		BIT(0)
28 #define CONTROL_MASTER		BIT(1)
29 #define CONTROL_XIP		BIT(2)
30 #define CONTROL_XIPADDR		BIT(3)
31 #define CONTROL_CLKIDLE		BIT(10)
32 #define CONTROL_SAMPLE_MASK	GENMASK(12, 11)
33 #define CONTROL_MODE0		BIT(13)
34 #define CONTROL_MODE12_MASK	GENMASK(15, 14)
35 #define CONTROL_MODE12_EX_RO	BIT(14)
36 #define CONTROL_MODE12_EX_RW	BIT(15)
37 #define CONTROL_MODE12_FULL	GENMASK(15, 14)
38 #define CONTROL_FLAGSX4		BIT(16)
39 #define CONTROL_CLKRATE_MASK	GENMASK(27, 24)
40 #define CONTROL_CLKRATE_SHIFT	24
41 
42 /*
43  * QSPI Frames register mask defines
44  */
45 #define FRAMES_TOTALBYTES_MASK	GENMASK(15, 0)
46 #define FRAMES_CMDBYTES_MASK	GENMASK(24, 16)
47 #define FRAMES_CMDBYTES_SHIFT	16
48 #define FRAMES_SHIFT		25
49 #define FRAMES_IDLE_MASK	GENMASK(29, 26)
50 #define FRAMES_IDLE_SHIFT	26
51 #define FRAMES_FLAGBYTE		BIT(30)
52 #define FRAMES_FLAGWORD		BIT(31)
53 
54 /*
55  * QSPI Interrupt Enable register mask defines
56  */
57 #define IEN_TXDONE		BIT(0)
58 #define IEN_RXDONE		BIT(1)
59 #define IEN_RXAVAILABLE		BIT(2)
60 #define IEN_TXAVAILABLE		BIT(3)
61 #define IEN_RXFIFOEMPTY		BIT(4)
62 #define IEN_TXFIFOFULL		BIT(5)
63 
64 /*
65  * QSPI Status register mask defines
66  */
67 #define STATUS_TXDONE		BIT(0)
68 #define STATUS_RXDONE		BIT(1)
69 #define STATUS_RXAVAILABLE	BIT(2)
70 #define STATUS_TXAVAILABLE	BIT(3)
71 #define STATUS_RXFIFOEMPTY	BIT(4)
72 #define STATUS_TXFIFOFULL	BIT(5)
73 #define STATUS_READY		BIT(7)
74 #define STATUS_FLAGSX4		BIT(8)
75 #define STATUS_MASK		GENMASK(8, 0)
76 
77 #define BYTESUPPER_MASK		GENMASK(31, 16)
78 #define BYTESLOWER_MASK		GENMASK(15, 0)
79 
80 #define MAX_DIVIDER		16
81 #define MIN_DIVIDER		0
82 #define MAX_DATA_CMD_LEN	256
83 
84 /* QSPI ready time out value */
85 #define TIMEOUT_MS		500
86 
87 /*
88  * QSPI Register offsets.
89  */
90 #define REG_CONTROL		(0x00)
91 #define REG_FRAMES		(0x04)
92 #define REG_IEN			(0x0c)
93 #define REG_STATUS		(0x10)
94 #define REG_DIRECT_ACCESS	(0x14)
95 #define REG_UPPER_ACCESS	(0x18)
96 #define REG_RX_DATA		(0x40)
97 #define REG_TX_DATA		(0x44)
98 #define REG_X4_RX_DATA		(0x48)
99 #define REG_X4_TX_DATA		(0x4c)
100 #define REG_FRAMESUP		(0x50)
101 
102 /**
103  * struct mchp_coreqspi - Defines qspi driver instance
104  * @regs:              Virtual address of the QSPI controller registers
105  * @clk:               QSPI Operating clock
106  * @data_completion:   completion structure
107  * @op_lock:           lock access to the device
108  * @txbuf:             TX buffer
109  * @rxbuf:             RX buffer
110  * @irq:               IRQ number
111  * @tx_len:            Number of bytes left to transfer
112  * @rx_len:            Number of bytes left to receive
113  */
114 struct mchp_coreqspi {
115 	void __iomem *regs;
116 	struct clk *clk;
117 	struct completion data_completion;
118 	struct mutex op_lock; /* lock access to the device */
119 	u8 *txbuf;
120 	u8 *rxbuf;
121 	int irq;
122 	int tx_len;
123 	int rx_len;
124 };
125 
126 static int mchp_coreqspi_set_mode(struct mchp_coreqspi *qspi, const struct spi_mem_op *op)
127 {
128 	u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
129 
130 	/*
131 	 * The operating mode can be configured based on the command that needs to be send.
132 	 * bits[15:14]: Sets whether multiple bit SPI operates in normal, extended or full modes.
133 	 *		00: Normal (single DQ0 TX and single DQ1 RX lines)
134 	 *		01: Extended RO (command and address bytes on DQ0 only)
135 	 *		10: Extended RW (command byte on DQ0 only)
136 	 *		11: Full. (command and address are on all DQ lines)
137 	 * bit[13]:	Sets whether multiple bit SPI uses 2 or 4 bits of data
138 	 *		0: 2-bits (BSPI)
139 	 *		1: 4-bits (QSPI)
140 	 */
141 	if (op->data.buswidth == 4 || op->data.buswidth == 2) {
142 		control &= ~CONTROL_MODE12_MASK;
143 		if (op->cmd.buswidth == 1 && (op->addr.buswidth == 1 || op->addr.buswidth == 0))
144 			control |= CONTROL_MODE12_EX_RO;
145 		else if (op->cmd.buswidth == 1)
146 			control |= CONTROL_MODE12_EX_RW;
147 		else
148 			control |= CONTROL_MODE12_FULL;
149 
150 		control |= CONTROL_MODE0;
151 	} else {
152 		control &= ~(CONTROL_MODE12_MASK |
153 			     CONTROL_MODE0);
154 	}
155 
156 	writel_relaxed(control, qspi->regs + REG_CONTROL);
157 
158 	return 0;
159 }
160 
161 static inline void mchp_coreqspi_read_op(struct mchp_coreqspi *qspi)
162 {
163 	u32 control, data;
164 
165 	if (!qspi->rx_len)
166 		return;
167 
168 	control = readl_relaxed(qspi->regs + REG_CONTROL);
169 
170 	/*
171 	 * Read 4-bytes from the SPI FIFO in single transaction and then read
172 	 * the reamaining data byte wise.
173 	 */
174 	control |= CONTROL_FLAGSX4;
175 	writel_relaxed(control, qspi->regs + REG_CONTROL);
176 
177 	while (qspi->rx_len >= 4) {
178 		while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
179 			;
180 		data = readl_relaxed(qspi->regs + REG_X4_RX_DATA);
181 		*(u32 *)qspi->rxbuf = data;
182 		qspi->rxbuf += 4;
183 		qspi->rx_len -= 4;
184 	}
185 
186 	control &= ~CONTROL_FLAGSX4;
187 	writel_relaxed(control, qspi->regs + REG_CONTROL);
188 
189 	while (qspi->rx_len--) {
190 		while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
191 			;
192 		data = readl_relaxed(qspi->regs + REG_RX_DATA);
193 		*qspi->rxbuf++ = (data & 0xFF);
194 	}
195 }
196 
197 static inline void mchp_coreqspi_write_op(struct mchp_coreqspi *qspi, bool word)
198 {
199 	u32 control, data;
200 
201 	control = readl_relaxed(qspi->regs + REG_CONTROL);
202 	control |= CONTROL_FLAGSX4;
203 	writel_relaxed(control, qspi->regs + REG_CONTROL);
204 
205 	while (qspi->tx_len >= 4) {
206 		while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
207 			;
208 		data = *(u32 *)qspi->txbuf;
209 		qspi->txbuf += 4;
210 		qspi->tx_len -= 4;
211 		writel_relaxed(data, qspi->regs + REG_X4_TX_DATA);
212 	}
213 
214 	control &= ~CONTROL_FLAGSX4;
215 	writel_relaxed(control, qspi->regs + REG_CONTROL);
216 
217 	while (qspi->tx_len--) {
218 		while (readl_relaxed(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
219 			;
220 		data =  *qspi->txbuf++;
221 		writel_relaxed(data, qspi->regs + REG_TX_DATA);
222 	}
223 }
224 
225 static void mchp_coreqspi_enable_ints(struct mchp_coreqspi *qspi)
226 {
227 	u32 mask = IEN_TXDONE |
228 		   IEN_RXDONE |
229 		   IEN_RXAVAILABLE;
230 
231 	writel_relaxed(mask, qspi->regs + REG_IEN);
232 }
233 
234 static void mchp_coreqspi_disable_ints(struct mchp_coreqspi *qspi)
235 {
236 	writel_relaxed(0, qspi->regs + REG_IEN);
237 }
238 
239 static irqreturn_t mchp_coreqspi_isr(int irq, void *dev_id)
240 {
241 	struct mchp_coreqspi *qspi = (struct mchp_coreqspi *)dev_id;
242 	irqreturn_t ret = IRQ_NONE;
243 	int intfield = readl_relaxed(qspi->regs + REG_STATUS) & STATUS_MASK;
244 
245 	if (intfield == 0)
246 		return ret;
247 
248 	if (intfield & IEN_TXDONE) {
249 		writel_relaxed(IEN_TXDONE, qspi->regs + REG_STATUS);
250 		ret = IRQ_HANDLED;
251 	}
252 
253 	if (intfield & IEN_RXAVAILABLE) {
254 		writel_relaxed(IEN_RXAVAILABLE, qspi->regs + REG_STATUS);
255 		mchp_coreqspi_read_op(qspi);
256 		ret = IRQ_HANDLED;
257 	}
258 
259 	if (intfield & IEN_RXDONE) {
260 		writel_relaxed(IEN_RXDONE, qspi->regs + REG_STATUS);
261 		complete(&qspi->data_completion);
262 		ret = IRQ_HANDLED;
263 	}
264 
265 	return ret;
266 }
267 
268 static int mchp_coreqspi_setup_clock(struct mchp_coreqspi *qspi, struct spi_device *spi,
269 				     const struct spi_mem_op *op)
270 {
271 	unsigned long clk_hz;
272 	u32 control, baud_rate_val = 0;
273 
274 	clk_hz = clk_get_rate(qspi->clk);
275 	if (!clk_hz)
276 		return -EINVAL;
277 
278 	baud_rate_val = DIV_ROUND_UP(clk_hz, 2 * op->max_freq);
279 	if (baud_rate_val > MAX_DIVIDER || baud_rate_val < MIN_DIVIDER) {
280 		dev_err(&spi->dev,
281 			"could not configure the clock for spi clock %d Hz & system clock %ld Hz\n",
282 			op->max_freq, clk_hz);
283 		return -EINVAL;
284 	}
285 
286 	control = readl_relaxed(qspi->regs + REG_CONTROL);
287 	control &= ~CONTROL_CLKRATE_MASK;
288 	control |= baud_rate_val << CONTROL_CLKRATE_SHIFT;
289 	writel_relaxed(control, qspi->regs + REG_CONTROL);
290 	control = readl_relaxed(qspi->regs + REG_CONTROL);
291 
292 	if ((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA))
293 		control |= CONTROL_CLKIDLE;
294 	else
295 		control &= ~CONTROL_CLKIDLE;
296 
297 	writel_relaxed(control, qspi->regs + REG_CONTROL);
298 
299 	return 0;
300 }
301 
302 static int mchp_coreqspi_setup_op(struct spi_device *spi_dev)
303 {
304 	struct spi_controller *ctlr = spi_dev->controller;
305 	struct mchp_coreqspi *qspi = spi_controller_get_devdata(ctlr);
306 	u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
307 
308 	control |= (CONTROL_MASTER | CONTROL_ENABLE);
309 	control &= ~CONTROL_CLKIDLE;
310 	writel_relaxed(control, qspi->regs + REG_CONTROL);
311 
312 	return 0;
313 }
314 
315 static inline void mchp_coreqspi_config_op(struct mchp_coreqspi *qspi, const struct spi_mem_op *op)
316 {
317 	u32 idle_cycles = 0;
318 	int total_bytes, cmd_bytes, frames, ctrl;
319 
320 	cmd_bytes = op->cmd.nbytes + op->addr.nbytes;
321 	total_bytes = cmd_bytes + op->data.nbytes;
322 
323 	/*
324 	 * As per the coreQSPI IP spec,the number of command and data bytes are
325 	 * controlled by the frames register for each SPI sequence. This supports
326 	 * the SPI flash memory read and writes sequences as below. so configure
327 	 * the cmd and total bytes accordingly.
328 	 * ---------------------------------------------------------------------
329 	 * TOTAL BYTES  |  CMD BYTES | What happens                             |
330 	 * ______________________________________________________________________
331 	 *              |            |                                          |
332 	 *     1        |   1        | The SPI core will transmit a single byte |
333 	 *              |            | and receive data is discarded            |
334 	 *              |            |                                          |
335 	 *     1        |   0        | The SPI core will transmit a single byte |
336 	 *              |            | and return a single byte                 |
337 	 *              |            |                                          |
338 	 *     10       |   4        | The SPI core will transmit 4 command     |
339 	 *              |            | bytes discarding the receive data and    |
340 	 *              |            | transmits 6 dummy bytes returning the 6  |
341 	 *              |            | received bytes and return a single byte  |
342 	 *              |            |                                          |
343 	 *     10       |   10       | The SPI core will transmit 10 command    |
344 	 *              |            |                                          |
345 	 *     10       |    0       | The SPI core will transmit 10 command    |
346 	 *              |            | bytes and returning 10 received bytes    |
347 	 * ______________________________________________________________________
348 	 */
349 	if (!(op->data.dir == SPI_MEM_DATA_IN))
350 		cmd_bytes = total_bytes;
351 
352 	frames = total_bytes & BYTESUPPER_MASK;
353 	writel_relaxed(frames, qspi->regs + REG_FRAMESUP);
354 	frames = total_bytes & BYTESLOWER_MASK;
355 	frames |= cmd_bytes << FRAMES_CMDBYTES_SHIFT;
356 
357 	if (op->dummy.buswidth)
358 		idle_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
359 
360 	frames |= idle_cycles << FRAMES_IDLE_SHIFT;
361 	ctrl = readl_relaxed(qspi->regs + REG_CONTROL);
362 
363 	if (ctrl & CONTROL_MODE12_MASK)
364 		frames |= (1 << FRAMES_SHIFT);
365 
366 	frames |= FRAMES_FLAGWORD;
367 	writel_relaxed(frames, qspi->regs + REG_FRAMES);
368 }
369 
370 static int mchp_qspi_wait_for_ready(struct spi_mem *mem)
371 {
372 	struct mchp_coreqspi *qspi = spi_controller_get_devdata
373 				    (mem->spi->controller);
374 	u32 status;
375 	int ret;
376 
377 	ret = readl_poll_timeout(qspi->regs + REG_STATUS, status,
378 				 (status & STATUS_READY), 0,
379 				 TIMEOUT_MS);
380 	if (ret) {
381 		dev_err(&mem->spi->dev,
382 			"Timeout waiting on QSPI ready.\n");
383 		return -ETIMEDOUT;
384 	}
385 
386 	return ret;
387 }
388 
389 static int mchp_coreqspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
390 {
391 	struct mchp_coreqspi *qspi = spi_controller_get_devdata
392 				    (mem->spi->controller);
393 	u32 address = op->addr.val;
394 	u8 opcode = op->cmd.opcode;
395 	u8 opaddr[5];
396 	int err, i;
397 
398 	mutex_lock(&qspi->op_lock);
399 	err = mchp_qspi_wait_for_ready(mem);
400 	if (err)
401 		goto error;
402 
403 	err = mchp_coreqspi_setup_clock(qspi, mem->spi, op);
404 	if (err)
405 		goto error;
406 
407 	err = mchp_coreqspi_set_mode(qspi, op);
408 	if (err)
409 		goto error;
410 
411 	reinit_completion(&qspi->data_completion);
412 	mchp_coreqspi_config_op(qspi, op);
413 	if (op->cmd.opcode) {
414 		qspi->txbuf = &opcode;
415 		qspi->rxbuf = NULL;
416 		qspi->tx_len = op->cmd.nbytes;
417 		qspi->rx_len = 0;
418 		mchp_coreqspi_write_op(qspi, false);
419 	}
420 
421 	qspi->txbuf = &opaddr[0];
422 	if (op->addr.nbytes) {
423 		for (i = 0; i < op->addr.nbytes; i++)
424 			qspi->txbuf[i] = address >> (8 * (op->addr.nbytes - i - 1));
425 
426 		qspi->rxbuf = NULL;
427 		qspi->tx_len = op->addr.nbytes;
428 		qspi->rx_len = 0;
429 		mchp_coreqspi_write_op(qspi, false);
430 	}
431 
432 	if (op->data.nbytes) {
433 		if (op->data.dir == SPI_MEM_DATA_OUT) {
434 			qspi->txbuf = (u8 *)op->data.buf.out;
435 			qspi->rxbuf = NULL;
436 			qspi->rx_len = 0;
437 			qspi->tx_len = op->data.nbytes;
438 			mchp_coreqspi_write_op(qspi, true);
439 		} else {
440 			qspi->txbuf = NULL;
441 			qspi->rxbuf = (u8 *)op->data.buf.in;
442 			qspi->rx_len = op->data.nbytes;
443 			qspi->tx_len = 0;
444 		}
445 	}
446 
447 	mchp_coreqspi_enable_ints(qspi);
448 
449 	if (!wait_for_completion_timeout(&qspi->data_completion, msecs_to_jiffies(1000)))
450 		err = -ETIMEDOUT;
451 
452 error:
453 	mutex_unlock(&qspi->op_lock);
454 	mchp_coreqspi_disable_ints(qspi);
455 
456 	return err;
457 }
458 
459 static bool mchp_coreqspi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
460 {
461 	struct mchp_coreqspi *qspi = spi_controller_get_devdata(mem->spi->controller);
462 	unsigned long clk_hz;
463 	u32 baud_rate_val;
464 
465 	if (!spi_mem_default_supports_op(mem, op))
466 		return false;
467 
468 	if ((op->data.buswidth == 4 || op->data.buswidth == 2) &&
469 	    (op->cmd.buswidth == 1 && (op->addr.buswidth == 1 || op->addr.buswidth == 0))) {
470 		/*
471 		 * If the command and address are on DQ0 only, then this
472 		 * controller doesn't support sending data on dual and
473 		 * quad lines. but it supports reading data on dual and
474 		 * quad lines with same configuration as command and
475 		 * address on DQ0.
476 		 * i.e. The control register[15:13] :EX_RO(read only) is
477 		 * meant only for the command and address are on DQ0 but
478 		 * not to write data, it is just to read.
479 		 * Ex: 0x34h is Quad Load Program Data which is not
480 		 * supported. Then the spi-mem layer will iterate over
481 		 * each command and it will chose the supported one.
482 		 */
483 		if (op->data.dir == SPI_MEM_DATA_OUT)
484 			return false;
485 	}
486 
487 	clk_hz = clk_get_rate(qspi->clk);
488 	if (!clk_hz)
489 		return false;
490 
491 	baud_rate_val = DIV_ROUND_UP(clk_hz, 2 * op->max_freq);
492 	if (baud_rate_val > MAX_DIVIDER || baud_rate_val < MIN_DIVIDER)
493 		return false;
494 
495 	return true;
496 }
497 
498 static int mchp_coreqspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
499 {
500 	if (op->data.dir == SPI_MEM_DATA_OUT || op->data.dir == SPI_MEM_DATA_IN) {
501 		if (op->data.nbytes > MAX_DATA_CMD_LEN)
502 			op->data.nbytes = MAX_DATA_CMD_LEN;
503 	}
504 
505 	return 0;
506 }
507 
508 static const struct spi_controller_mem_ops mchp_coreqspi_mem_ops = {
509 	.adjust_op_size = mchp_coreqspi_adjust_op_size,
510 	.supports_op = mchp_coreqspi_supports_op,
511 	.exec_op = mchp_coreqspi_exec_op,
512 };
513 
514 static const struct spi_controller_mem_caps mchp_coreqspi_mem_caps = {
515 	.per_op_freq = true,
516 };
517 
518 static int mchp_coreqspi_probe(struct platform_device *pdev)
519 {
520 	struct spi_controller *ctlr;
521 	struct mchp_coreqspi *qspi;
522 	struct device *dev = &pdev->dev;
523 	struct device_node *np = dev->of_node;
524 	int ret;
525 
526 	ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*qspi));
527 	if (!ctlr)
528 		return dev_err_probe(&pdev->dev, -ENOMEM,
529 				     "unable to allocate host for QSPI controller\n");
530 
531 	qspi = spi_controller_get_devdata(ctlr);
532 	platform_set_drvdata(pdev, qspi);
533 
534 	qspi->regs = devm_platform_ioremap_resource(pdev, 0);
535 	if (IS_ERR(qspi->regs))
536 		return dev_err_probe(&pdev->dev, PTR_ERR(qspi->regs),
537 				     "failed to map registers\n");
538 
539 	qspi->clk = devm_clk_get_enabled(&pdev->dev, NULL);
540 	if (IS_ERR(qspi->clk))
541 		return dev_err_probe(&pdev->dev, PTR_ERR(qspi->clk),
542 				     "could not get clock\n");
543 
544 	init_completion(&qspi->data_completion);
545 	mutex_init(&qspi->op_lock);
546 
547 	qspi->irq = platform_get_irq(pdev, 0);
548 	if (qspi->irq < 0)
549 		return qspi->irq;
550 
551 	ret = devm_request_irq(&pdev->dev, qspi->irq, mchp_coreqspi_isr,
552 			       IRQF_SHARED, pdev->name, qspi);
553 	if (ret) {
554 		dev_err(&pdev->dev, "request_irq failed %d\n", ret);
555 		return ret;
556 	}
557 
558 	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
559 	ctlr->mem_ops = &mchp_coreqspi_mem_ops;
560 	ctlr->mem_caps = &mchp_coreqspi_mem_caps;
561 	ctlr->setup = mchp_coreqspi_setup_op;
562 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
563 			  SPI_TX_DUAL | SPI_TX_QUAD;
564 	ctlr->dev.of_node = np;
565 
566 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
567 	if (ret)
568 		return dev_err_probe(&pdev->dev, ret,
569 				     "spi_register_controller failed\n");
570 
571 	return 0;
572 }
573 
574 static void mchp_coreqspi_remove(struct platform_device *pdev)
575 {
576 	struct mchp_coreqspi *qspi = platform_get_drvdata(pdev);
577 	u32 control = readl_relaxed(qspi->regs + REG_CONTROL);
578 
579 	mchp_coreqspi_disable_ints(qspi);
580 	control &= ~CONTROL_ENABLE;
581 	writel_relaxed(control, qspi->regs + REG_CONTROL);
582 }
583 
584 static const struct of_device_id mchp_coreqspi_of_match[] = {
585 	{ .compatible = "microchip,coreqspi-rtl-v2" },
586 	{ /* sentinel */ }
587 };
588 MODULE_DEVICE_TABLE(of, mchp_coreqspi_of_match);
589 
590 static struct platform_driver mchp_coreqspi_driver = {
591 	.probe = mchp_coreqspi_probe,
592 	.driver = {
593 		.name = "microchip,coreqspi",
594 		.of_match_table = mchp_coreqspi_of_match,
595 	},
596 	.remove = mchp_coreqspi_remove,
597 };
598 module_platform_driver(mchp_coreqspi_driver);
599 
600 MODULE_AUTHOR("Naga Sureshkumar Relli <nagasuresh.relli@microchip.com");
601 MODULE_DESCRIPTION("Microchip coreQSPI QSPI controller driver");
602 MODULE_LICENSE("GPL");
603