xref: /linux/drivers/spi/spi-mem.c (revision f69e98a91a01fd7c5755dd710e94a17d6e9f583f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 #include <linux/dmaengine.h>
9 #include <linux/iopoll.h>
10 #include <linux/pm_runtime.h>
11 #include <linux/spi/spi.h>
12 #include <linux/spi/spi-mem.h>
13 
14 #include "internals.h"
15 
16 #define SPI_MEM_MAX_BUSWIDTH		8
17 
18 /**
19  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
20  *					  memory operation
21  * @ctlr: the SPI controller requesting this dma_map()
22  * @op: the memory operation containing the buffer to map
23  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
24  *	 function
25  *
26  * Some controllers might want to do DMA on the data buffer embedded in @op.
27  * This helper prepares everything for you and provides a ready-to-use
28  * sg_table. This function is not intended to be called from spi drivers.
29  * Only SPI controller drivers should use it.
30  * Note that the caller must ensure the memory region pointed by
31  * op->data.buf.{in,out} is DMA-able before calling this function.
32  *
33  * Return: 0 in case of success, a negative error code otherwise.
34  */
35 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
36 				       const struct spi_mem_op *op,
37 				       struct sg_table *sgt)
38 {
39 	struct device *dmadev;
40 
41 	if (!op->data.nbytes)
42 		return -EINVAL;
43 
44 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
45 		dmadev = ctlr->dma_tx->device->dev;
46 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
47 		dmadev = ctlr->dma_rx->device->dev;
48 	else
49 		dmadev = ctlr->dev.parent;
50 
51 	if (!dmadev)
52 		return -EINVAL;
53 
54 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
55 			   op->data.dir == SPI_MEM_DATA_IN ?
56 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
57 }
58 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
59 
60 /**
61  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
62  *					    memory operation
63  * @ctlr: the SPI controller requesting this dma_unmap()
64  * @op: the memory operation containing the buffer to unmap
65  * @sgt: a pointer to an sg_table previously initialized by
66  *	 spi_controller_dma_map_mem_op_data()
67  *
68  * Some controllers might want to do DMA on the data buffer embedded in @op.
69  * This helper prepares things so that the CPU can access the
70  * op->data.buf.{in,out} buffer again.
71  *
72  * This function is not intended to be called from SPI drivers. Only SPI
73  * controller drivers should use it.
74  *
75  * This function should be called after the DMA operation has finished and is
76  * only valid if the previous spi_controller_dma_map_mem_op_data() call
77  * returned 0.
78  *
79  * Return: 0 in case of success, a negative error code otherwise.
80  */
81 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
82 					  const struct spi_mem_op *op,
83 					  struct sg_table *sgt)
84 {
85 	struct device *dmadev;
86 
87 	if (!op->data.nbytes)
88 		return;
89 
90 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
91 		dmadev = ctlr->dma_tx->device->dev;
92 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
93 		dmadev = ctlr->dma_rx->device->dev;
94 	else
95 		dmadev = ctlr->dev.parent;
96 
97 	spi_unmap_buf(ctlr, dmadev, sgt,
98 		      op->data.dir == SPI_MEM_DATA_IN ?
99 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
100 }
101 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
102 
103 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
104 {
105 	u32 mode = mem->spi->mode;
106 
107 	switch (buswidth) {
108 	case 1:
109 		return 0;
110 
111 	case 2:
112 		if ((tx &&
113 		     (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
114 		    (!tx &&
115 		     (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
116 			return 0;
117 
118 		break;
119 
120 	case 4:
121 		if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
122 		    (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
123 			return 0;
124 
125 		break;
126 
127 	case 8:
128 		if ((tx && (mode & SPI_TX_OCTAL)) ||
129 		    (!tx && (mode & SPI_RX_OCTAL)))
130 			return 0;
131 
132 		break;
133 
134 	default:
135 		break;
136 	}
137 
138 	return -ENOTSUPP;
139 }
140 
141 static bool spi_mem_check_buswidth(struct spi_mem *mem,
142 				   const struct spi_mem_op *op)
143 {
144 	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
145 		return false;
146 
147 	if (op->addr.nbytes &&
148 	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
149 		return false;
150 
151 	if (op->dummy.nbytes &&
152 	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
153 		return false;
154 
155 	if (op->data.dir != SPI_MEM_NO_DATA &&
156 	    spi_check_buswidth_req(mem, op->data.buswidth,
157 				   op->data.dir == SPI_MEM_DATA_OUT))
158 		return false;
159 
160 	return true;
161 }
162 
163 bool spi_mem_default_supports_op(struct spi_mem *mem,
164 				 const struct spi_mem_op *op)
165 {
166 	struct spi_controller *ctlr = mem->spi->controller;
167 	bool op_is_dtr =
168 		op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr;
169 
170 	if (op_is_dtr) {
171 		if (!spi_mem_controller_is_capable(ctlr, dtr))
172 			return false;
173 
174 		if (op->cmd.nbytes != 2)
175 			return false;
176 	} else {
177 		if (op->cmd.nbytes != 1)
178 			return false;
179 	}
180 
181 	if (op->data.ecc) {
182 		if (!spi_mem_controller_is_capable(ctlr, ecc))
183 			return false;
184 	}
185 
186 	return spi_mem_check_buswidth(mem, op);
187 }
188 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
189 
190 static bool spi_mem_buswidth_is_valid(u8 buswidth)
191 {
192 	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
193 		return false;
194 
195 	return true;
196 }
197 
198 static int spi_mem_check_op(const struct spi_mem_op *op)
199 {
200 	if (!op->cmd.buswidth || !op->cmd.nbytes)
201 		return -EINVAL;
202 
203 	if ((op->addr.nbytes && !op->addr.buswidth) ||
204 	    (op->dummy.nbytes && !op->dummy.buswidth) ||
205 	    (op->data.nbytes && !op->data.buswidth))
206 		return -EINVAL;
207 
208 	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
209 	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
210 	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
211 	    !spi_mem_buswidth_is_valid(op->data.buswidth))
212 		return -EINVAL;
213 
214 	return 0;
215 }
216 
217 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
218 					 const struct spi_mem_op *op)
219 {
220 	struct spi_controller *ctlr = mem->spi->controller;
221 
222 	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
223 		return ctlr->mem_ops->supports_op(mem, op);
224 
225 	return spi_mem_default_supports_op(mem, op);
226 }
227 
228 /**
229  * spi_mem_supports_op() - Check if a memory device and the controller it is
230  *			   connected to support a specific memory operation
231  * @mem: the SPI memory
232  * @op: the memory operation to check
233  *
234  * Some controllers are only supporting Single or Dual IOs, others might only
235  * support specific opcodes, or it can even be that the controller and device
236  * both support Quad IOs but the hardware prevents you from using it because
237  * only 2 IO lines are connected.
238  *
239  * This function checks whether a specific operation is supported.
240  *
241  * Return: true if @op is supported, false otherwise.
242  */
243 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
244 {
245 	if (spi_mem_check_op(op))
246 		return false;
247 
248 	return spi_mem_internal_supports_op(mem, op);
249 }
250 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
251 
252 static int spi_mem_access_start(struct spi_mem *mem)
253 {
254 	struct spi_controller *ctlr = mem->spi->controller;
255 
256 	/*
257 	 * Flush the message queue before executing our SPI memory
258 	 * operation to prevent preemption of regular SPI transfers.
259 	 */
260 	spi_flush_queue(ctlr);
261 
262 	if (ctlr->auto_runtime_pm) {
263 		int ret;
264 
265 		ret = pm_runtime_get_sync(ctlr->dev.parent);
266 		if (ret < 0) {
267 			pm_runtime_put_noidle(ctlr->dev.parent);
268 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
269 				ret);
270 			return ret;
271 		}
272 	}
273 
274 	mutex_lock(&ctlr->bus_lock_mutex);
275 	mutex_lock(&ctlr->io_mutex);
276 
277 	return 0;
278 }
279 
280 static void spi_mem_access_end(struct spi_mem *mem)
281 {
282 	struct spi_controller *ctlr = mem->spi->controller;
283 
284 	mutex_unlock(&ctlr->io_mutex);
285 	mutex_unlock(&ctlr->bus_lock_mutex);
286 
287 	if (ctlr->auto_runtime_pm)
288 		pm_runtime_put(ctlr->dev.parent);
289 }
290 
291 /**
292  * spi_mem_exec_op() - Execute a memory operation
293  * @mem: the SPI memory
294  * @op: the memory operation to execute
295  *
296  * Executes a memory operation.
297  *
298  * This function first checks that @op is supported and then tries to execute
299  * it.
300  *
301  * Return: 0 in case of success, a negative error code otherwise.
302  */
303 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
304 {
305 	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
306 	struct spi_controller *ctlr = mem->spi->controller;
307 	struct spi_transfer xfers[4] = { };
308 	struct spi_message msg;
309 	u8 *tmpbuf;
310 	int ret;
311 
312 	ret = spi_mem_check_op(op);
313 	if (ret)
314 		return ret;
315 
316 	if (!spi_mem_internal_supports_op(mem, op))
317 		return -ENOTSUPP;
318 
319 	if (ctlr->mem_ops && !mem->spi->cs_gpiod) {
320 		ret = spi_mem_access_start(mem);
321 		if (ret)
322 			return ret;
323 
324 		ret = ctlr->mem_ops->exec_op(mem, op);
325 
326 		spi_mem_access_end(mem);
327 
328 		/*
329 		 * Some controllers only optimize specific paths (typically the
330 		 * read path) and expect the core to use the regular SPI
331 		 * interface in other cases.
332 		 */
333 		if (!ret || ret != -ENOTSUPP)
334 			return ret;
335 	}
336 
337 	tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
338 
339 	/*
340 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
341 	 * we're guaranteed that this buffer is DMA-able, as required by the
342 	 * SPI layer.
343 	 */
344 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
345 	if (!tmpbuf)
346 		return -ENOMEM;
347 
348 	spi_message_init(&msg);
349 
350 	tmpbuf[0] = op->cmd.opcode;
351 	xfers[xferpos].tx_buf = tmpbuf;
352 	xfers[xferpos].len = op->cmd.nbytes;
353 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
354 	spi_message_add_tail(&xfers[xferpos], &msg);
355 	xferpos++;
356 	totalxferlen++;
357 
358 	if (op->addr.nbytes) {
359 		int i;
360 
361 		for (i = 0; i < op->addr.nbytes; i++)
362 			tmpbuf[i + 1] = op->addr.val >>
363 					(8 * (op->addr.nbytes - i - 1));
364 
365 		xfers[xferpos].tx_buf = tmpbuf + 1;
366 		xfers[xferpos].len = op->addr.nbytes;
367 		xfers[xferpos].tx_nbits = op->addr.buswidth;
368 		spi_message_add_tail(&xfers[xferpos], &msg);
369 		xferpos++;
370 		totalxferlen += op->addr.nbytes;
371 	}
372 
373 	if (op->dummy.nbytes) {
374 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
375 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
376 		xfers[xferpos].len = op->dummy.nbytes;
377 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
378 		xfers[xferpos].dummy_data = 1;
379 		spi_message_add_tail(&xfers[xferpos], &msg);
380 		xferpos++;
381 		totalxferlen += op->dummy.nbytes;
382 	}
383 
384 	if (op->data.nbytes) {
385 		if (op->data.dir == SPI_MEM_DATA_IN) {
386 			xfers[xferpos].rx_buf = op->data.buf.in;
387 			xfers[xferpos].rx_nbits = op->data.buswidth;
388 		} else {
389 			xfers[xferpos].tx_buf = op->data.buf.out;
390 			xfers[xferpos].tx_nbits = op->data.buswidth;
391 		}
392 
393 		xfers[xferpos].len = op->data.nbytes;
394 		spi_message_add_tail(&xfers[xferpos], &msg);
395 		xferpos++;
396 		totalxferlen += op->data.nbytes;
397 	}
398 
399 	ret = spi_sync(mem->spi, &msg);
400 
401 	kfree(tmpbuf);
402 
403 	if (ret)
404 		return ret;
405 
406 	if (msg.actual_length != totalxferlen)
407 		return -EIO;
408 
409 	return 0;
410 }
411 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
412 
413 /**
414  * spi_mem_get_name() - Return the SPI mem device name to be used by the
415  *			upper layer if necessary
416  * @mem: the SPI memory
417  *
418  * This function allows SPI mem users to retrieve the SPI mem device name.
419  * It is useful if the upper layer needs to expose a custom name for
420  * compatibility reasons.
421  *
422  * Return: a string containing the name of the memory device to be used
423  *	   by the SPI mem user
424  */
425 const char *spi_mem_get_name(struct spi_mem *mem)
426 {
427 	return mem->name;
428 }
429 EXPORT_SYMBOL_GPL(spi_mem_get_name);
430 
431 /**
432  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
433  *			      match controller limitations
434  * @mem: the SPI memory
435  * @op: the operation to adjust
436  *
437  * Some controllers have FIFO limitations and must split a data transfer
438  * operation into multiple ones, others require a specific alignment for
439  * optimized accesses. This function allows SPI mem drivers to split a single
440  * operation into multiple sub-operations when required.
441  *
442  * Return: a negative error code if the controller can't properly adjust @op,
443  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
444  *	   can't be handled in a single step.
445  */
446 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
447 {
448 	struct spi_controller *ctlr = mem->spi->controller;
449 	size_t len;
450 
451 	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
452 		return ctlr->mem_ops->adjust_op_size(mem, op);
453 
454 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
455 		len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
456 
457 		if (len > spi_max_transfer_size(mem->spi))
458 			return -EINVAL;
459 
460 		op->data.nbytes = min3((size_t)op->data.nbytes,
461 				       spi_max_transfer_size(mem->spi),
462 				       spi_max_message_size(mem->spi) -
463 				       len);
464 		if (!op->data.nbytes)
465 			return -EINVAL;
466 	}
467 
468 	return 0;
469 }
470 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
471 
472 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
473 				      u64 offs, size_t len, void *buf)
474 {
475 	struct spi_mem_op op = desc->info.op_tmpl;
476 	int ret;
477 
478 	op.addr.val = desc->info.offset + offs;
479 	op.data.buf.in = buf;
480 	op.data.nbytes = len;
481 	ret = spi_mem_adjust_op_size(desc->mem, &op);
482 	if (ret)
483 		return ret;
484 
485 	ret = spi_mem_exec_op(desc->mem, &op);
486 	if (ret)
487 		return ret;
488 
489 	return op.data.nbytes;
490 }
491 
492 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
493 				       u64 offs, size_t len, const void *buf)
494 {
495 	struct spi_mem_op op = desc->info.op_tmpl;
496 	int ret;
497 
498 	op.addr.val = desc->info.offset + offs;
499 	op.data.buf.out = buf;
500 	op.data.nbytes = len;
501 	ret = spi_mem_adjust_op_size(desc->mem, &op);
502 	if (ret)
503 		return ret;
504 
505 	ret = spi_mem_exec_op(desc->mem, &op);
506 	if (ret)
507 		return ret;
508 
509 	return op.data.nbytes;
510 }
511 
512 /**
513  * spi_mem_dirmap_create() - Create a direct mapping descriptor
514  * @mem: SPI mem device this direct mapping should be created for
515  * @info: direct mapping information
516  *
517  * This function is creating a direct mapping descriptor which can then be used
518  * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
519  * If the SPI controller driver does not support direct mapping, this function
520  * falls back to an implementation using spi_mem_exec_op(), so that the caller
521  * doesn't have to bother implementing a fallback on his own.
522  *
523  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
524  */
525 struct spi_mem_dirmap_desc *
526 spi_mem_dirmap_create(struct spi_mem *mem,
527 		      const struct spi_mem_dirmap_info *info)
528 {
529 	struct spi_controller *ctlr = mem->spi->controller;
530 	struct spi_mem_dirmap_desc *desc;
531 	int ret = -ENOTSUPP;
532 
533 	/* Make sure the number of address cycles is between 1 and 8 bytes. */
534 	if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
535 		return ERR_PTR(-EINVAL);
536 
537 	/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
538 	if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
539 		return ERR_PTR(-EINVAL);
540 
541 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
542 	if (!desc)
543 		return ERR_PTR(-ENOMEM);
544 
545 	desc->mem = mem;
546 	desc->info = *info;
547 	if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
548 		ret = ctlr->mem_ops->dirmap_create(desc);
549 
550 	if (ret) {
551 		desc->nodirmap = true;
552 		if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
553 			ret = -ENOTSUPP;
554 		else
555 			ret = 0;
556 	}
557 
558 	if (ret) {
559 		kfree(desc);
560 		return ERR_PTR(ret);
561 	}
562 
563 	return desc;
564 }
565 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
566 
567 /**
568  * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
569  * @desc: the direct mapping descriptor to destroy
570  *
571  * This function destroys a direct mapping descriptor previously created by
572  * spi_mem_dirmap_create().
573  */
574 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
575 {
576 	struct spi_controller *ctlr = desc->mem->spi->controller;
577 
578 	if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
579 		ctlr->mem_ops->dirmap_destroy(desc);
580 
581 	kfree(desc);
582 }
583 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
584 
585 static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
586 {
587 	struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
588 
589 	spi_mem_dirmap_destroy(desc);
590 }
591 
592 /**
593  * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
594  *				  it to a device
595  * @dev: device the dirmap desc will be attached to
596  * @mem: SPI mem device this direct mapping should be created for
597  * @info: direct mapping information
598  *
599  * devm_ variant of the spi_mem_dirmap_create() function. See
600  * spi_mem_dirmap_create() for more details.
601  *
602  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
603  */
604 struct spi_mem_dirmap_desc *
605 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
606 			   const struct spi_mem_dirmap_info *info)
607 {
608 	struct spi_mem_dirmap_desc **ptr, *desc;
609 
610 	ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
611 			   GFP_KERNEL);
612 	if (!ptr)
613 		return ERR_PTR(-ENOMEM);
614 
615 	desc = spi_mem_dirmap_create(mem, info);
616 	if (IS_ERR(desc)) {
617 		devres_free(ptr);
618 	} else {
619 		*ptr = desc;
620 		devres_add(dev, ptr);
621 	}
622 
623 	return desc;
624 }
625 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
626 
627 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
628 {
629 	struct spi_mem_dirmap_desc **ptr = res;
630 
631 	if (WARN_ON(!ptr || !*ptr))
632 		return 0;
633 
634 	return *ptr == data;
635 }
636 
637 /**
638  * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
639  *				   to a device
640  * @dev: device the dirmap desc is attached to
641  * @desc: the direct mapping descriptor to destroy
642  *
643  * devm_ variant of the spi_mem_dirmap_destroy() function. See
644  * spi_mem_dirmap_destroy() for more details.
645  */
646 void devm_spi_mem_dirmap_destroy(struct device *dev,
647 				 struct spi_mem_dirmap_desc *desc)
648 {
649 	devres_release(dev, devm_spi_mem_dirmap_release,
650 		       devm_spi_mem_dirmap_match, desc);
651 }
652 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
653 
654 /**
655  * spi_mem_dirmap_read() - Read data through a direct mapping
656  * @desc: direct mapping descriptor
657  * @offs: offset to start reading from. Note that this is not an absolute
658  *	  offset, but the offset within the direct mapping which already has
659  *	  its own offset
660  * @len: length in bytes
661  * @buf: destination buffer. This buffer must be DMA-able
662  *
663  * This function reads data from a memory device using a direct mapping
664  * previously instantiated with spi_mem_dirmap_create().
665  *
666  * Return: the amount of data read from the memory device or a negative error
667  * code. Note that the returned size might be smaller than @len, and the caller
668  * is responsible for calling spi_mem_dirmap_read() again when that happens.
669  */
670 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
671 			    u64 offs, size_t len, void *buf)
672 {
673 	struct spi_controller *ctlr = desc->mem->spi->controller;
674 	ssize_t ret;
675 
676 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
677 		return -EINVAL;
678 
679 	if (!len)
680 		return 0;
681 
682 	if (desc->nodirmap) {
683 		ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
684 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
685 		ret = spi_mem_access_start(desc->mem);
686 		if (ret)
687 			return ret;
688 
689 		ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
690 
691 		spi_mem_access_end(desc->mem);
692 	} else {
693 		ret = -ENOTSUPP;
694 	}
695 
696 	return ret;
697 }
698 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
699 
700 /**
701  * spi_mem_dirmap_write() - Write data through a direct mapping
702  * @desc: direct mapping descriptor
703  * @offs: offset to start writing from. Note that this is not an absolute
704  *	  offset, but the offset within the direct mapping which already has
705  *	  its own offset
706  * @len: length in bytes
707  * @buf: source buffer. This buffer must be DMA-able
708  *
709  * This function writes data to a memory device using a direct mapping
710  * previously instantiated with spi_mem_dirmap_create().
711  *
712  * Return: the amount of data written to the memory device or a negative error
713  * code. Note that the returned size might be smaller than @len, and the caller
714  * is responsible for calling spi_mem_dirmap_write() again when that happens.
715  */
716 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
717 			     u64 offs, size_t len, const void *buf)
718 {
719 	struct spi_controller *ctlr = desc->mem->spi->controller;
720 	ssize_t ret;
721 
722 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
723 		return -EINVAL;
724 
725 	if (!len)
726 		return 0;
727 
728 	if (desc->nodirmap) {
729 		ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
730 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
731 		ret = spi_mem_access_start(desc->mem);
732 		if (ret)
733 			return ret;
734 
735 		ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
736 
737 		spi_mem_access_end(desc->mem);
738 	} else {
739 		ret = -ENOTSUPP;
740 	}
741 
742 	return ret;
743 }
744 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
745 
746 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
747 {
748 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
749 }
750 
751 static int spi_mem_read_status(struct spi_mem *mem,
752 			       const struct spi_mem_op *op,
753 			       u16 *status)
754 {
755 	const u8 *bytes = (u8 *)op->data.buf.in;
756 	int ret;
757 
758 	ret = spi_mem_exec_op(mem, op);
759 	if (ret)
760 		return ret;
761 
762 	if (op->data.nbytes > 1)
763 		*status = ((u16)bytes[0] << 8) | bytes[1];
764 	else
765 		*status = bytes[0];
766 
767 	return 0;
768 }
769 
770 /**
771  * spi_mem_poll_status() - Poll memory device status
772  * @mem: SPI memory device
773  * @op: the memory operation to execute
774  * @mask: status bitmask to ckeck
775  * @match: (status & mask) expected value
776  * @initial_delay_us: delay in us before starting to poll
777  * @polling_delay_us: time to sleep between reads in us
778  * @timeout_ms: timeout in milliseconds
779  *
780  * This function polls a status register and returns when
781  * (status & mask) == match or when the timeout has expired.
782  *
783  * Return: 0 in case of success, -ETIMEDOUT in case of error,
784  *         -EOPNOTSUPP if not supported.
785  */
786 int spi_mem_poll_status(struct spi_mem *mem,
787 			const struct spi_mem_op *op,
788 			u16 mask, u16 match,
789 			unsigned long initial_delay_us,
790 			unsigned long polling_delay_us,
791 			u16 timeout_ms)
792 {
793 	struct spi_controller *ctlr = mem->spi->controller;
794 	int ret = -EOPNOTSUPP;
795 	int read_status_ret;
796 	u16 status;
797 
798 	if (op->data.nbytes < 1 || op->data.nbytes > 2 ||
799 	    op->data.dir != SPI_MEM_DATA_IN)
800 		return -EINVAL;
801 
802 	if (ctlr->mem_ops && ctlr->mem_ops->poll_status) {
803 		ret = spi_mem_access_start(mem);
804 		if (ret)
805 			return ret;
806 
807 		ret = ctlr->mem_ops->poll_status(mem, op, mask, match,
808 						 initial_delay_us, polling_delay_us,
809 						 timeout_ms);
810 
811 		spi_mem_access_end(mem);
812 	}
813 
814 	if (ret == -EOPNOTSUPP) {
815 		if (!spi_mem_supports_op(mem, op))
816 			return ret;
817 
818 		if (initial_delay_us < 10)
819 			udelay(initial_delay_us);
820 		else
821 			usleep_range((initial_delay_us >> 2) + 1,
822 				     initial_delay_us);
823 
824 		ret = read_poll_timeout(spi_mem_read_status, read_status_ret,
825 					(read_status_ret || ((status) & mask) == match),
826 					polling_delay_us, timeout_ms * 1000, false, mem,
827 					op, &status);
828 		if (read_status_ret)
829 			return read_status_ret;
830 	}
831 
832 	return ret;
833 }
834 EXPORT_SYMBOL_GPL(spi_mem_poll_status);
835 
836 static int spi_mem_probe(struct spi_device *spi)
837 {
838 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
839 	struct spi_controller *ctlr = spi->controller;
840 	struct spi_mem *mem;
841 
842 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
843 	if (!mem)
844 		return -ENOMEM;
845 
846 	mem->spi = spi;
847 
848 	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
849 		mem->name = ctlr->mem_ops->get_name(mem);
850 	else
851 		mem->name = dev_name(&spi->dev);
852 
853 	if (IS_ERR_OR_NULL(mem->name))
854 		return PTR_ERR_OR_ZERO(mem->name);
855 
856 	spi_set_drvdata(spi, mem);
857 
858 	return memdrv->probe(mem);
859 }
860 
861 static void spi_mem_remove(struct spi_device *spi)
862 {
863 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
864 	struct spi_mem *mem = spi_get_drvdata(spi);
865 
866 	if (memdrv->remove)
867 		memdrv->remove(mem);
868 }
869 
870 static void spi_mem_shutdown(struct spi_device *spi)
871 {
872 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
873 	struct spi_mem *mem = spi_get_drvdata(spi);
874 
875 	if (memdrv->shutdown)
876 		memdrv->shutdown(mem);
877 }
878 
879 /**
880  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
881  * @memdrv: the SPI memory driver to register
882  * @owner: the owner of this driver
883  *
884  * Registers a SPI memory driver.
885  *
886  * Return: 0 in case of success, a negative error core otherwise.
887  */
888 
889 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
890 				       struct module *owner)
891 {
892 	memdrv->spidrv.probe = spi_mem_probe;
893 	memdrv->spidrv.remove = spi_mem_remove;
894 	memdrv->spidrv.shutdown = spi_mem_shutdown;
895 
896 	return __spi_register_driver(owner, &memdrv->spidrv);
897 }
898 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
899 
900 /**
901  * spi_mem_driver_unregister() - Unregister a SPI memory driver
902  * @memdrv: the SPI memory driver to unregister
903  *
904  * Unregisters a SPI memory driver.
905  */
906 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
907 {
908 	spi_unregister_driver(&memdrv->spidrv);
909 }
910 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
911