xref: /linux/drivers/spi/spi-mem.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 #include <linux/dmaengine.h>
9 #include <linux/iopoll.h>
10 #include <linux/pm_runtime.h>
11 #include <linux/spi/spi.h>
12 #include <linux/spi/spi-mem.h>
13 #include <linux/sched/task_stack.h>
14 
15 #include "internals.h"
16 
17 #define SPI_MEM_MAX_BUSWIDTH		8
18 
19 /**
20  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
21  *					  memory operation
22  * @ctlr: the SPI controller requesting this dma_map()
23  * @op: the memory operation containing the buffer to map
24  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
25  *	 function
26  *
27  * Some controllers might want to do DMA on the data buffer embedded in @op.
28  * This helper prepares everything for you and provides a ready-to-use
29  * sg_table. This function is not intended to be called from spi drivers.
30  * Only SPI controller drivers should use it.
31  * Note that the caller must ensure the memory region pointed by
32  * op->data.buf.{in,out} is DMA-able before calling this function.
33  *
34  * Return: 0 in case of success, a negative error code otherwise.
35  */
36 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
37 				       const struct spi_mem_op *op,
38 				       struct sg_table *sgt)
39 {
40 	struct device *dmadev;
41 
42 	if (!op->data.nbytes)
43 		return -EINVAL;
44 
45 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
46 		dmadev = ctlr->dma_tx->device->dev;
47 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
48 		dmadev = ctlr->dma_rx->device->dev;
49 	else
50 		dmadev = ctlr->dev.parent;
51 
52 	if (!dmadev)
53 		return -EINVAL;
54 
55 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
56 			   op->data.dir == SPI_MEM_DATA_IN ?
57 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
58 }
59 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
60 
61 /**
62  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
63  *					    memory operation
64  * @ctlr: the SPI controller requesting this dma_unmap()
65  * @op: the memory operation containing the buffer to unmap
66  * @sgt: a pointer to an sg_table previously initialized by
67  *	 spi_controller_dma_map_mem_op_data()
68  *
69  * Some controllers might want to do DMA on the data buffer embedded in @op.
70  * This helper prepares things so that the CPU can access the
71  * op->data.buf.{in,out} buffer again.
72  *
73  * This function is not intended to be called from SPI drivers. Only SPI
74  * controller drivers should use it.
75  *
76  * This function should be called after the DMA operation has finished and is
77  * only valid if the previous spi_controller_dma_map_mem_op_data() call
78  * returned 0.
79  *
80  * Return: 0 in case of success, a negative error code otherwise.
81  */
82 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
83 					  const struct spi_mem_op *op,
84 					  struct sg_table *sgt)
85 {
86 	struct device *dmadev;
87 
88 	if (!op->data.nbytes)
89 		return;
90 
91 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
92 		dmadev = ctlr->dma_tx->device->dev;
93 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
94 		dmadev = ctlr->dma_rx->device->dev;
95 	else
96 		dmadev = ctlr->dev.parent;
97 
98 	spi_unmap_buf(ctlr, dmadev, sgt,
99 		      op->data.dir == SPI_MEM_DATA_IN ?
100 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
101 }
102 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
103 
104 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
105 {
106 	u32 mode = mem->spi->mode;
107 
108 	switch (buswidth) {
109 	case 1:
110 		return 0;
111 
112 	case 2:
113 		if ((tx &&
114 		     (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
115 		    (!tx &&
116 		     (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
117 			return 0;
118 
119 		break;
120 
121 	case 4:
122 		if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
123 		    (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
124 			return 0;
125 
126 		break;
127 
128 	case 8:
129 		if ((tx && (mode & SPI_TX_OCTAL)) ||
130 		    (!tx && (mode & SPI_RX_OCTAL)))
131 			return 0;
132 
133 		break;
134 
135 	default:
136 		break;
137 	}
138 
139 	return -ENOTSUPP;
140 }
141 
142 static bool spi_mem_check_buswidth(struct spi_mem *mem,
143 				   const struct spi_mem_op *op)
144 {
145 	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
146 		return false;
147 
148 	if (op->addr.nbytes &&
149 	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
150 		return false;
151 
152 	if (op->dummy.nbytes &&
153 	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
154 		return false;
155 
156 	if (op->data.dir != SPI_MEM_NO_DATA &&
157 	    spi_check_buswidth_req(mem, op->data.buswidth,
158 				   op->data.dir == SPI_MEM_DATA_OUT))
159 		return false;
160 
161 	return true;
162 }
163 
164 bool spi_mem_default_supports_op(struct spi_mem *mem,
165 				 const struct spi_mem_op *op)
166 {
167 	struct spi_controller *ctlr = mem->spi->controller;
168 	bool op_is_dtr =
169 		op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr;
170 
171 	if (op_is_dtr) {
172 		if (!spi_mem_controller_is_capable(ctlr, dtr))
173 			return false;
174 
175 		if (op->cmd.nbytes != 2)
176 			return false;
177 	} else {
178 		if (op->cmd.nbytes != 1)
179 			return false;
180 	}
181 
182 	if (op->data.ecc) {
183 		if (!spi_mem_controller_is_capable(ctlr, ecc))
184 			return false;
185 	}
186 
187 	return spi_mem_check_buswidth(mem, op);
188 }
189 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
190 
191 static bool spi_mem_buswidth_is_valid(u8 buswidth)
192 {
193 	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
194 		return false;
195 
196 	return true;
197 }
198 
199 static int spi_mem_check_op(const struct spi_mem_op *op)
200 {
201 	if (!op->cmd.buswidth || !op->cmd.nbytes)
202 		return -EINVAL;
203 
204 	if ((op->addr.nbytes && !op->addr.buswidth) ||
205 	    (op->dummy.nbytes && !op->dummy.buswidth) ||
206 	    (op->data.nbytes && !op->data.buswidth))
207 		return -EINVAL;
208 
209 	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
210 	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
211 	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
212 	    !spi_mem_buswidth_is_valid(op->data.buswidth))
213 		return -EINVAL;
214 
215 	/* Buffers must be DMA-able. */
216 	if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_IN &&
217 			 object_is_on_stack(op->data.buf.in)))
218 		return -EINVAL;
219 
220 	if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_OUT &&
221 			 object_is_on_stack(op->data.buf.out)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
228 					 const struct spi_mem_op *op)
229 {
230 	struct spi_controller *ctlr = mem->spi->controller;
231 
232 	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
233 		return ctlr->mem_ops->supports_op(mem, op);
234 
235 	return spi_mem_default_supports_op(mem, op);
236 }
237 
238 /**
239  * spi_mem_supports_op() - Check if a memory device and the controller it is
240  *			   connected to support a specific memory operation
241  * @mem: the SPI memory
242  * @op: the memory operation to check
243  *
244  * Some controllers are only supporting Single or Dual IOs, others might only
245  * support specific opcodes, or it can even be that the controller and device
246  * both support Quad IOs but the hardware prevents you from using it because
247  * only 2 IO lines are connected.
248  *
249  * This function checks whether a specific operation is supported.
250  *
251  * Return: true if @op is supported, false otherwise.
252  */
253 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
254 {
255 	if (spi_mem_check_op(op))
256 		return false;
257 
258 	return spi_mem_internal_supports_op(mem, op);
259 }
260 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
261 
262 static int spi_mem_access_start(struct spi_mem *mem)
263 {
264 	struct spi_controller *ctlr = mem->spi->controller;
265 
266 	/*
267 	 * Flush the message queue before executing our SPI memory
268 	 * operation to prevent preemption of regular SPI transfers.
269 	 */
270 	spi_flush_queue(ctlr);
271 
272 	if (ctlr->auto_runtime_pm) {
273 		int ret;
274 
275 		ret = pm_runtime_resume_and_get(ctlr->dev.parent);
276 		if (ret < 0) {
277 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
278 				ret);
279 			return ret;
280 		}
281 	}
282 
283 	mutex_lock(&ctlr->bus_lock_mutex);
284 	mutex_lock(&ctlr->io_mutex);
285 
286 	return 0;
287 }
288 
289 static void spi_mem_access_end(struct spi_mem *mem)
290 {
291 	struct spi_controller *ctlr = mem->spi->controller;
292 
293 	mutex_unlock(&ctlr->io_mutex);
294 	mutex_unlock(&ctlr->bus_lock_mutex);
295 
296 	if (ctlr->auto_runtime_pm)
297 		pm_runtime_put(ctlr->dev.parent);
298 }
299 
300 static void spi_mem_add_op_stats(struct spi_statistics __percpu *pcpu_stats,
301 				 const struct spi_mem_op *op, int exec_op_ret)
302 {
303 	struct spi_statistics *stats;
304 	u64 len, l2len;
305 
306 	get_cpu();
307 	stats = this_cpu_ptr(pcpu_stats);
308 	u64_stats_update_begin(&stats->syncp);
309 
310 	/*
311 	 * We do not have the concept of messages or transfers. Let's consider
312 	 * that one operation is equivalent to one message and one transfer.
313 	 */
314 	u64_stats_inc(&stats->messages);
315 	u64_stats_inc(&stats->transfers);
316 
317 	/* Use the sum of all lengths as bytes count and histogram value. */
318 	len = op->cmd.nbytes + op->addr.nbytes;
319 	len += op->dummy.nbytes + op->data.nbytes;
320 	u64_stats_add(&stats->bytes, len);
321 	l2len = min(fls(len), SPI_STATISTICS_HISTO_SIZE) - 1;
322 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
323 
324 	/* Only account for data bytes as transferred bytes. */
325 	if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
326 		u64_stats_add(&stats->bytes_tx, op->data.nbytes);
327 	if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
328 		u64_stats_add(&stats->bytes_rx, op->data.nbytes);
329 
330 	/*
331 	 * A timeout is not an error, following the same behavior as
332 	 * spi_transfer_one_message().
333 	 */
334 	if (exec_op_ret == -ETIMEDOUT)
335 		u64_stats_inc(&stats->timedout);
336 	else if (exec_op_ret)
337 		u64_stats_inc(&stats->errors);
338 
339 	u64_stats_update_end(&stats->syncp);
340 	put_cpu();
341 }
342 
343 /**
344  * spi_mem_exec_op() - Execute a memory operation
345  * @mem: the SPI memory
346  * @op: the memory operation to execute
347  *
348  * Executes a memory operation.
349  *
350  * This function first checks that @op is supported and then tries to execute
351  * it.
352  *
353  * Return: 0 in case of success, a negative error code otherwise.
354  */
355 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
356 {
357 	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
358 	struct spi_controller *ctlr = mem->spi->controller;
359 	struct spi_transfer xfers[4] = { };
360 	struct spi_message msg;
361 	u8 *tmpbuf;
362 	int ret;
363 
364 	ret = spi_mem_check_op(op);
365 	if (ret)
366 		return ret;
367 
368 	if (!spi_mem_internal_supports_op(mem, op))
369 		return -EOPNOTSUPP;
370 
371 	if (ctlr->mem_ops && ctlr->mem_ops->exec_op && !spi_get_csgpiod(mem->spi, 0)) {
372 		ret = spi_mem_access_start(mem);
373 		if (ret)
374 			return ret;
375 
376 		ret = ctlr->mem_ops->exec_op(mem, op);
377 
378 		spi_mem_access_end(mem);
379 
380 		/*
381 		 * Some controllers only optimize specific paths (typically the
382 		 * read path) and expect the core to use the regular SPI
383 		 * interface in other cases.
384 		 */
385 		if (!ret || ret != -ENOTSUPP || ret != -EOPNOTSUPP) {
386 			spi_mem_add_op_stats(ctlr->pcpu_statistics, op, ret);
387 			spi_mem_add_op_stats(mem->spi->pcpu_statistics, op, ret);
388 
389 			return ret;
390 		}
391 	}
392 
393 	tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
394 
395 	/*
396 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
397 	 * we're guaranteed that this buffer is DMA-able, as required by the
398 	 * SPI layer.
399 	 */
400 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
401 	if (!tmpbuf)
402 		return -ENOMEM;
403 
404 	spi_message_init(&msg);
405 
406 	tmpbuf[0] = op->cmd.opcode;
407 	xfers[xferpos].tx_buf = tmpbuf;
408 	xfers[xferpos].len = op->cmd.nbytes;
409 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
410 	spi_message_add_tail(&xfers[xferpos], &msg);
411 	xferpos++;
412 	totalxferlen++;
413 
414 	if (op->addr.nbytes) {
415 		int i;
416 
417 		for (i = 0; i < op->addr.nbytes; i++)
418 			tmpbuf[i + 1] = op->addr.val >>
419 					(8 * (op->addr.nbytes - i - 1));
420 
421 		xfers[xferpos].tx_buf = tmpbuf + 1;
422 		xfers[xferpos].len = op->addr.nbytes;
423 		xfers[xferpos].tx_nbits = op->addr.buswidth;
424 		spi_message_add_tail(&xfers[xferpos], &msg);
425 		xferpos++;
426 		totalxferlen += op->addr.nbytes;
427 	}
428 
429 	if (op->dummy.nbytes) {
430 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
431 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
432 		xfers[xferpos].len = op->dummy.nbytes;
433 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
434 		xfers[xferpos].dummy_data = 1;
435 		spi_message_add_tail(&xfers[xferpos], &msg);
436 		xferpos++;
437 		totalxferlen += op->dummy.nbytes;
438 	}
439 
440 	if (op->data.nbytes) {
441 		if (op->data.dir == SPI_MEM_DATA_IN) {
442 			xfers[xferpos].rx_buf = op->data.buf.in;
443 			xfers[xferpos].rx_nbits = op->data.buswidth;
444 		} else {
445 			xfers[xferpos].tx_buf = op->data.buf.out;
446 			xfers[xferpos].tx_nbits = op->data.buswidth;
447 		}
448 
449 		xfers[xferpos].len = op->data.nbytes;
450 		spi_message_add_tail(&xfers[xferpos], &msg);
451 		xferpos++;
452 		totalxferlen += op->data.nbytes;
453 	}
454 
455 	ret = spi_sync(mem->spi, &msg);
456 
457 	kfree(tmpbuf);
458 
459 	if (ret)
460 		return ret;
461 
462 	if (msg.actual_length != totalxferlen)
463 		return -EIO;
464 
465 	return 0;
466 }
467 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
468 
469 /**
470  * spi_mem_get_name() - Return the SPI mem device name to be used by the
471  *			upper layer if necessary
472  * @mem: the SPI memory
473  *
474  * This function allows SPI mem users to retrieve the SPI mem device name.
475  * It is useful if the upper layer needs to expose a custom name for
476  * compatibility reasons.
477  *
478  * Return: a string containing the name of the memory device to be used
479  *	   by the SPI mem user
480  */
481 const char *spi_mem_get_name(struct spi_mem *mem)
482 {
483 	return mem->name;
484 }
485 EXPORT_SYMBOL_GPL(spi_mem_get_name);
486 
487 /**
488  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
489  *			      match controller limitations
490  * @mem: the SPI memory
491  * @op: the operation to adjust
492  *
493  * Some controllers have FIFO limitations and must split a data transfer
494  * operation into multiple ones, others require a specific alignment for
495  * optimized accesses. This function allows SPI mem drivers to split a single
496  * operation into multiple sub-operations when required.
497  *
498  * Return: a negative error code if the controller can't properly adjust @op,
499  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
500  *	   can't be handled in a single step.
501  */
502 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
503 {
504 	struct spi_controller *ctlr = mem->spi->controller;
505 	size_t len;
506 
507 	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
508 		return ctlr->mem_ops->adjust_op_size(mem, op);
509 
510 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
511 		len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
512 
513 		if (len > spi_max_transfer_size(mem->spi))
514 			return -EINVAL;
515 
516 		op->data.nbytes = min3((size_t)op->data.nbytes,
517 				       spi_max_transfer_size(mem->spi),
518 				       spi_max_message_size(mem->spi) -
519 				       len);
520 		if (!op->data.nbytes)
521 			return -EINVAL;
522 	}
523 
524 	return 0;
525 }
526 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
527 
528 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
529 				      u64 offs, size_t len, void *buf)
530 {
531 	struct spi_mem_op op = desc->info.op_tmpl;
532 	int ret;
533 
534 	op.addr.val = desc->info.offset + offs;
535 	op.data.buf.in = buf;
536 	op.data.nbytes = len;
537 	ret = spi_mem_adjust_op_size(desc->mem, &op);
538 	if (ret)
539 		return ret;
540 
541 	ret = spi_mem_exec_op(desc->mem, &op);
542 	if (ret)
543 		return ret;
544 
545 	return op.data.nbytes;
546 }
547 
548 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
549 				       u64 offs, size_t len, const void *buf)
550 {
551 	struct spi_mem_op op = desc->info.op_tmpl;
552 	int ret;
553 
554 	op.addr.val = desc->info.offset + offs;
555 	op.data.buf.out = buf;
556 	op.data.nbytes = len;
557 	ret = spi_mem_adjust_op_size(desc->mem, &op);
558 	if (ret)
559 		return ret;
560 
561 	ret = spi_mem_exec_op(desc->mem, &op);
562 	if (ret)
563 		return ret;
564 
565 	return op.data.nbytes;
566 }
567 
568 /**
569  * spi_mem_dirmap_create() - Create a direct mapping descriptor
570  * @mem: SPI mem device this direct mapping should be created for
571  * @info: direct mapping information
572  *
573  * This function is creating a direct mapping descriptor which can then be used
574  * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
575  * If the SPI controller driver does not support direct mapping, this function
576  * falls back to an implementation using spi_mem_exec_op(), so that the caller
577  * doesn't have to bother implementing a fallback on his own.
578  *
579  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
580  */
581 struct spi_mem_dirmap_desc *
582 spi_mem_dirmap_create(struct spi_mem *mem,
583 		      const struct spi_mem_dirmap_info *info)
584 {
585 	struct spi_controller *ctlr = mem->spi->controller;
586 	struct spi_mem_dirmap_desc *desc;
587 	int ret = -ENOTSUPP;
588 
589 	/* Make sure the number of address cycles is between 1 and 8 bytes. */
590 	if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
591 		return ERR_PTR(-EINVAL);
592 
593 	/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
594 	if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
595 		return ERR_PTR(-EINVAL);
596 
597 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
598 	if (!desc)
599 		return ERR_PTR(-ENOMEM);
600 
601 	desc->mem = mem;
602 	desc->info = *info;
603 	if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
604 		ret = ctlr->mem_ops->dirmap_create(desc);
605 
606 	if (ret) {
607 		desc->nodirmap = true;
608 		if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
609 			ret = -EOPNOTSUPP;
610 		else
611 			ret = 0;
612 	}
613 
614 	if (ret) {
615 		kfree(desc);
616 		return ERR_PTR(ret);
617 	}
618 
619 	return desc;
620 }
621 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
622 
623 /**
624  * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
625  * @desc: the direct mapping descriptor to destroy
626  *
627  * This function destroys a direct mapping descriptor previously created by
628  * spi_mem_dirmap_create().
629  */
630 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
631 {
632 	struct spi_controller *ctlr = desc->mem->spi->controller;
633 
634 	if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
635 		ctlr->mem_ops->dirmap_destroy(desc);
636 
637 	kfree(desc);
638 }
639 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
640 
641 static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
642 {
643 	struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
644 
645 	spi_mem_dirmap_destroy(desc);
646 }
647 
648 /**
649  * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
650  *				  it to a device
651  * @dev: device the dirmap desc will be attached to
652  * @mem: SPI mem device this direct mapping should be created for
653  * @info: direct mapping information
654  *
655  * devm_ variant of the spi_mem_dirmap_create() function. See
656  * spi_mem_dirmap_create() for more details.
657  *
658  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
659  */
660 struct spi_mem_dirmap_desc *
661 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
662 			   const struct spi_mem_dirmap_info *info)
663 {
664 	struct spi_mem_dirmap_desc **ptr, *desc;
665 
666 	ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
667 			   GFP_KERNEL);
668 	if (!ptr)
669 		return ERR_PTR(-ENOMEM);
670 
671 	desc = spi_mem_dirmap_create(mem, info);
672 	if (IS_ERR(desc)) {
673 		devres_free(ptr);
674 	} else {
675 		*ptr = desc;
676 		devres_add(dev, ptr);
677 	}
678 
679 	return desc;
680 }
681 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
682 
683 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
684 {
685 	struct spi_mem_dirmap_desc **ptr = res;
686 
687 	if (WARN_ON(!ptr || !*ptr))
688 		return 0;
689 
690 	return *ptr == data;
691 }
692 
693 /**
694  * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
695  *				   to a device
696  * @dev: device the dirmap desc is attached to
697  * @desc: the direct mapping descriptor to destroy
698  *
699  * devm_ variant of the spi_mem_dirmap_destroy() function. See
700  * spi_mem_dirmap_destroy() for more details.
701  */
702 void devm_spi_mem_dirmap_destroy(struct device *dev,
703 				 struct spi_mem_dirmap_desc *desc)
704 {
705 	devres_release(dev, devm_spi_mem_dirmap_release,
706 		       devm_spi_mem_dirmap_match, desc);
707 }
708 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
709 
710 /**
711  * spi_mem_dirmap_read() - Read data through a direct mapping
712  * @desc: direct mapping descriptor
713  * @offs: offset to start reading from. Note that this is not an absolute
714  *	  offset, but the offset within the direct mapping which already has
715  *	  its own offset
716  * @len: length in bytes
717  * @buf: destination buffer. This buffer must be DMA-able
718  *
719  * This function reads data from a memory device using a direct mapping
720  * previously instantiated with spi_mem_dirmap_create().
721  *
722  * Return: the amount of data read from the memory device or a negative error
723  * code. Note that the returned size might be smaller than @len, and the caller
724  * is responsible for calling spi_mem_dirmap_read() again when that happens.
725  */
726 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
727 			    u64 offs, size_t len, void *buf)
728 {
729 	struct spi_controller *ctlr = desc->mem->spi->controller;
730 	ssize_t ret;
731 
732 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
733 		return -EINVAL;
734 
735 	if (!len)
736 		return 0;
737 
738 	if (desc->nodirmap) {
739 		ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
740 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
741 		ret = spi_mem_access_start(desc->mem);
742 		if (ret)
743 			return ret;
744 
745 		ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
746 
747 		spi_mem_access_end(desc->mem);
748 	} else {
749 		ret = -ENOTSUPP;
750 	}
751 
752 	return ret;
753 }
754 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
755 
756 /**
757  * spi_mem_dirmap_write() - Write data through a direct mapping
758  * @desc: direct mapping descriptor
759  * @offs: offset to start writing from. Note that this is not an absolute
760  *	  offset, but the offset within the direct mapping which already has
761  *	  its own offset
762  * @len: length in bytes
763  * @buf: source buffer. This buffer must be DMA-able
764  *
765  * This function writes data to a memory device using a direct mapping
766  * previously instantiated with spi_mem_dirmap_create().
767  *
768  * Return: the amount of data written to the memory device or a negative error
769  * code. Note that the returned size might be smaller than @len, and the caller
770  * is responsible for calling spi_mem_dirmap_write() again when that happens.
771  */
772 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
773 			     u64 offs, size_t len, const void *buf)
774 {
775 	struct spi_controller *ctlr = desc->mem->spi->controller;
776 	ssize_t ret;
777 
778 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
779 		return -EINVAL;
780 
781 	if (!len)
782 		return 0;
783 
784 	if (desc->nodirmap) {
785 		ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
786 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
787 		ret = spi_mem_access_start(desc->mem);
788 		if (ret)
789 			return ret;
790 
791 		ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
792 
793 		spi_mem_access_end(desc->mem);
794 	} else {
795 		ret = -ENOTSUPP;
796 	}
797 
798 	return ret;
799 }
800 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
801 
802 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
803 {
804 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
805 }
806 
807 static int spi_mem_read_status(struct spi_mem *mem,
808 			       const struct spi_mem_op *op,
809 			       u16 *status)
810 {
811 	const u8 *bytes = (u8 *)op->data.buf.in;
812 	int ret;
813 
814 	ret = spi_mem_exec_op(mem, op);
815 	if (ret)
816 		return ret;
817 
818 	if (op->data.nbytes > 1)
819 		*status = ((u16)bytes[0] << 8) | bytes[1];
820 	else
821 		*status = bytes[0];
822 
823 	return 0;
824 }
825 
826 /**
827  * spi_mem_poll_status() - Poll memory device status
828  * @mem: SPI memory device
829  * @op: the memory operation to execute
830  * @mask: status bitmask to ckeck
831  * @match: (status & mask) expected value
832  * @initial_delay_us: delay in us before starting to poll
833  * @polling_delay_us: time to sleep between reads in us
834  * @timeout_ms: timeout in milliseconds
835  *
836  * This function polls a status register and returns when
837  * (status & mask) == match or when the timeout has expired.
838  *
839  * Return: 0 in case of success, -ETIMEDOUT in case of error,
840  *         -EOPNOTSUPP if not supported.
841  */
842 int spi_mem_poll_status(struct spi_mem *mem,
843 			const struct spi_mem_op *op,
844 			u16 mask, u16 match,
845 			unsigned long initial_delay_us,
846 			unsigned long polling_delay_us,
847 			u16 timeout_ms)
848 {
849 	struct spi_controller *ctlr = mem->spi->controller;
850 	int ret = -EOPNOTSUPP;
851 	int read_status_ret;
852 	u16 status;
853 
854 	if (op->data.nbytes < 1 || op->data.nbytes > 2 ||
855 	    op->data.dir != SPI_MEM_DATA_IN)
856 		return -EINVAL;
857 
858 	if (ctlr->mem_ops && ctlr->mem_ops->poll_status && !spi_get_csgpiod(mem->spi, 0)) {
859 		ret = spi_mem_access_start(mem);
860 		if (ret)
861 			return ret;
862 
863 		ret = ctlr->mem_ops->poll_status(mem, op, mask, match,
864 						 initial_delay_us, polling_delay_us,
865 						 timeout_ms);
866 
867 		spi_mem_access_end(mem);
868 	}
869 
870 	if (ret == -EOPNOTSUPP) {
871 		if (!spi_mem_supports_op(mem, op))
872 			return ret;
873 
874 		if (initial_delay_us < 10)
875 			udelay(initial_delay_us);
876 		else
877 			usleep_range((initial_delay_us >> 2) + 1,
878 				     initial_delay_us);
879 
880 		ret = read_poll_timeout(spi_mem_read_status, read_status_ret,
881 					(read_status_ret || ((status) & mask) == match),
882 					polling_delay_us, timeout_ms * 1000, false, mem,
883 					op, &status);
884 		if (read_status_ret)
885 			return read_status_ret;
886 	}
887 
888 	return ret;
889 }
890 EXPORT_SYMBOL_GPL(spi_mem_poll_status);
891 
892 static int spi_mem_probe(struct spi_device *spi)
893 {
894 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
895 	struct spi_controller *ctlr = spi->controller;
896 	struct spi_mem *mem;
897 
898 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
899 	if (!mem)
900 		return -ENOMEM;
901 
902 	mem->spi = spi;
903 
904 	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
905 		mem->name = ctlr->mem_ops->get_name(mem);
906 	else
907 		mem->name = dev_name(&spi->dev);
908 
909 	if (IS_ERR_OR_NULL(mem->name))
910 		return PTR_ERR_OR_ZERO(mem->name);
911 
912 	spi_set_drvdata(spi, mem);
913 
914 	return memdrv->probe(mem);
915 }
916 
917 static void spi_mem_remove(struct spi_device *spi)
918 {
919 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
920 	struct spi_mem *mem = spi_get_drvdata(spi);
921 
922 	if (memdrv->remove)
923 		memdrv->remove(mem);
924 }
925 
926 static void spi_mem_shutdown(struct spi_device *spi)
927 {
928 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
929 	struct spi_mem *mem = spi_get_drvdata(spi);
930 
931 	if (memdrv->shutdown)
932 		memdrv->shutdown(mem);
933 }
934 
935 /**
936  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
937  * @memdrv: the SPI memory driver to register
938  * @owner: the owner of this driver
939  *
940  * Registers a SPI memory driver.
941  *
942  * Return: 0 in case of success, a negative error core otherwise.
943  */
944 
945 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
946 				       struct module *owner)
947 {
948 	memdrv->spidrv.probe = spi_mem_probe;
949 	memdrv->spidrv.remove = spi_mem_remove;
950 	memdrv->spidrv.shutdown = spi_mem_shutdown;
951 
952 	return __spi_register_driver(owner, &memdrv->spidrv);
953 }
954 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
955 
956 /**
957  * spi_mem_driver_unregister() - Unregister a SPI memory driver
958  * @memdrv: the SPI memory driver to unregister
959  *
960  * Unregisters a SPI memory driver.
961  */
962 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
963 {
964 	spi_unregister_driver(&memdrv->spidrv);
965 }
966 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
967