xref: /linux/drivers/spi/spi-mem.c (revision 8137a49e1567726eb10fcf55ad141ac19804ca6b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 #include <linux/dmaengine.h>
9 #include <linux/iopoll.h>
10 #include <linux/pm_runtime.h>
11 #include <linux/spi/spi.h>
12 #include <linux/spi/spi-mem.h>
13 
14 #include "internals.h"
15 
16 #define SPI_MEM_MAX_BUSWIDTH		8
17 
18 /**
19  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
20  *					  memory operation
21  * @ctlr: the SPI controller requesting this dma_map()
22  * @op: the memory operation containing the buffer to map
23  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
24  *	 function
25  *
26  * Some controllers might want to do DMA on the data buffer embedded in @op.
27  * This helper prepares everything for you and provides a ready-to-use
28  * sg_table. This function is not intended to be called from spi drivers.
29  * Only SPI controller drivers should use it.
30  * Note that the caller must ensure the memory region pointed by
31  * op->data.buf.{in,out} is DMA-able before calling this function.
32  *
33  * Return: 0 in case of success, a negative error code otherwise.
34  */
35 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
36 				       const struct spi_mem_op *op,
37 				       struct sg_table *sgt)
38 {
39 	struct device *dmadev;
40 
41 	if (!op->data.nbytes)
42 		return -EINVAL;
43 
44 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
45 		dmadev = ctlr->dma_tx->device->dev;
46 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
47 		dmadev = ctlr->dma_rx->device->dev;
48 	else
49 		dmadev = ctlr->dev.parent;
50 
51 	if (!dmadev)
52 		return -EINVAL;
53 
54 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
55 			   op->data.dir == SPI_MEM_DATA_IN ?
56 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
57 }
58 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
59 
60 /**
61  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
62  *					    memory operation
63  * @ctlr: the SPI controller requesting this dma_unmap()
64  * @op: the memory operation containing the buffer to unmap
65  * @sgt: a pointer to an sg_table previously initialized by
66  *	 spi_controller_dma_map_mem_op_data()
67  *
68  * Some controllers might want to do DMA on the data buffer embedded in @op.
69  * This helper prepares things so that the CPU can access the
70  * op->data.buf.{in,out} buffer again.
71  *
72  * This function is not intended to be called from SPI drivers. Only SPI
73  * controller drivers should use it.
74  *
75  * This function should be called after the DMA operation has finished and is
76  * only valid if the previous spi_controller_dma_map_mem_op_data() call
77  * returned 0.
78  *
79  * Return: 0 in case of success, a negative error code otherwise.
80  */
81 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
82 					  const struct spi_mem_op *op,
83 					  struct sg_table *sgt)
84 {
85 	struct device *dmadev;
86 
87 	if (!op->data.nbytes)
88 		return;
89 
90 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
91 		dmadev = ctlr->dma_tx->device->dev;
92 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
93 		dmadev = ctlr->dma_rx->device->dev;
94 	else
95 		dmadev = ctlr->dev.parent;
96 
97 	spi_unmap_buf(ctlr, dmadev, sgt,
98 		      op->data.dir == SPI_MEM_DATA_IN ?
99 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
100 }
101 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
102 
103 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
104 {
105 	u32 mode = mem->spi->mode;
106 
107 	switch (buswidth) {
108 	case 1:
109 		return 0;
110 
111 	case 2:
112 		if ((tx &&
113 		     (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
114 		    (!tx &&
115 		     (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
116 			return 0;
117 
118 		break;
119 
120 	case 4:
121 		if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
122 		    (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
123 			return 0;
124 
125 		break;
126 
127 	case 8:
128 		if ((tx && (mode & SPI_TX_OCTAL)) ||
129 		    (!tx && (mode & SPI_RX_OCTAL)))
130 			return 0;
131 
132 		break;
133 
134 	default:
135 		break;
136 	}
137 
138 	return -ENOTSUPP;
139 }
140 
141 static bool spi_mem_check_buswidth(struct spi_mem *mem,
142 				   const struct spi_mem_op *op)
143 {
144 	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
145 		return false;
146 
147 	if (op->addr.nbytes &&
148 	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
149 		return false;
150 
151 	if (op->dummy.nbytes &&
152 	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
153 		return false;
154 
155 	if (op->data.dir != SPI_MEM_NO_DATA &&
156 	    spi_check_buswidth_req(mem, op->data.buswidth,
157 				   op->data.dir == SPI_MEM_DATA_OUT))
158 		return false;
159 
160 	return true;
161 }
162 
163 bool spi_mem_dtr_supports_op(struct spi_mem *mem,
164 			     const struct spi_mem_op *op)
165 {
166 	if (op->cmd.nbytes != 2)
167 		return false;
168 
169 	return spi_mem_check_buswidth(mem, op);
170 }
171 EXPORT_SYMBOL_GPL(spi_mem_dtr_supports_op);
172 
173 bool spi_mem_default_supports_op(struct spi_mem *mem,
174 				 const struct spi_mem_op *op)
175 {
176 	if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
177 		return false;
178 
179 	if (op->cmd.nbytes != 1)
180 		return false;
181 
182 	return spi_mem_check_buswidth(mem, op);
183 }
184 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
185 
186 static bool spi_mem_buswidth_is_valid(u8 buswidth)
187 {
188 	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
189 		return false;
190 
191 	return true;
192 }
193 
194 static int spi_mem_check_op(const struct spi_mem_op *op)
195 {
196 	if (!op->cmd.buswidth || !op->cmd.nbytes)
197 		return -EINVAL;
198 
199 	if ((op->addr.nbytes && !op->addr.buswidth) ||
200 	    (op->dummy.nbytes && !op->dummy.buswidth) ||
201 	    (op->data.nbytes && !op->data.buswidth))
202 		return -EINVAL;
203 
204 	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
205 	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
206 	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
207 	    !spi_mem_buswidth_is_valid(op->data.buswidth))
208 		return -EINVAL;
209 
210 	return 0;
211 }
212 
213 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
214 					 const struct spi_mem_op *op)
215 {
216 	struct spi_controller *ctlr = mem->spi->controller;
217 
218 	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
219 		return ctlr->mem_ops->supports_op(mem, op);
220 
221 	return spi_mem_default_supports_op(mem, op);
222 }
223 
224 /**
225  * spi_mem_supports_op() - Check if a memory device and the controller it is
226  *			   connected to support a specific memory operation
227  * @mem: the SPI memory
228  * @op: the memory operation to check
229  *
230  * Some controllers are only supporting Single or Dual IOs, others might only
231  * support specific opcodes, or it can even be that the controller and device
232  * both support Quad IOs but the hardware prevents you from using it because
233  * only 2 IO lines are connected.
234  *
235  * This function checks whether a specific operation is supported.
236  *
237  * Return: true if @op is supported, false otherwise.
238  */
239 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
240 {
241 	if (spi_mem_check_op(op))
242 		return false;
243 
244 	return spi_mem_internal_supports_op(mem, op);
245 }
246 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
247 
248 static int spi_mem_access_start(struct spi_mem *mem)
249 {
250 	struct spi_controller *ctlr = mem->spi->controller;
251 
252 	/*
253 	 * Flush the message queue before executing our SPI memory
254 	 * operation to prevent preemption of regular SPI transfers.
255 	 */
256 	spi_flush_queue(ctlr);
257 
258 	if (ctlr->auto_runtime_pm) {
259 		int ret;
260 
261 		ret = pm_runtime_get_sync(ctlr->dev.parent);
262 		if (ret < 0) {
263 			pm_runtime_put_noidle(ctlr->dev.parent);
264 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
265 				ret);
266 			return ret;
267 		}
268 	}
269 
270 	mutex_lock(&ctlr->bus_lock_mutex);
271 	mutex_lock(&ctlr->io_mutex);
272 
273 	return 0;
274 }
275 
276 static void spi_mem_access_end(struct spi_mem *mem)
277 {
278 	struct spi_controller *ctlr = mem->spi->controller;
279 
280 	mutex_unlock(&ctlr->io_mutex);
281 	mutex_unlock(&ctlr->bus_lock_mutex);
282 
283 	if (ctlr->auto_runtime_pm)
284 		pm_runtime_put(ctlr->dev.parent);
285 }
286 
287 /**
288  * spi_mem_exec_op() - Execute a memory operation
289  * @mem: the SPI memory
290  * @op: the memory operation to execute
291  *
292  * Executes a memory operation.
293  *
294  * This function first checks that @op is supported and then tries to execute
295  * it.
296  *
297  * Return: 0 in case of success, a negative error code otherwise.
298  */
299 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
300 {
301 	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
302 	struct spi_controller *ctlr = mem->spi->controller;
303 	struct spi_transfer xfers[4] = { };
304 	struct spi_message msg;
305 	u8 *tmpbuf;
306 	int ret;
307 
308 	ret = spi_mem_check_op(op);
309 	if (ret)
310 		return ret;
311 
312 	if (!spi_mem_internal_supports_op(mem, op))
313 		return -ENOTSUPP;
314 
315 	if (ctlr->mem_ops && !mem->spi->cs_gpiod) {
316 		ret = spi_mem_access_start(mem);
317 		if (ret)
318 			return ret;
319 
320 		ret = ctlr->mem_ops->exec_op(mem, op);
321 
322 		spi_mem_access_end(mem);
323 
324 		/*
325 		 * Some controllers only optimize specific paths (typically the
326 		 * read path) and expect the core to use the regular SPI
327 		 * interface in other cases.
328 		 */
329 		if (!ret || ret != -ENOTSUPP)
330 			return ret;
331 	}
332 
333 	tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
334 
335 	/*
336 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
337 	 * we're guaranteed that this buffer is DMA-able, as required by the
338 	 * SPI layer.
339 	 */
340 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
341 	if (!tmpbuf)
342 		return -ENOMEM;
343 
344 	spi_message_init(&msg);
345 
346 	tmpbuf[0] = op->cmd.opcode;
347 	xfers[xferpos].tx_buf = tmpbuf;
348 	xfers[xferpos].len = op->cmd.nbytes;
349 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
350 	spi_message_add_tail(&xfers[xferpos], &msg);
351 	xferpos++;
352 	totalxferlen++;
353 
354 	if (op->addr.nbytes) {
355 		int i;
356 
357 		for (i = 0; i < op->addr.nbytes; i++)
358 			tmpbuf[i + 1] = op->addr.val >>
359 					(8 * (op->addr.nbytes - i - 1));
360 
361 		xfers[xferpos].tx_buf = tmpbuf + 1;
362 		xfers[xferpos].len = op->addr.nbytes;
363 		xfers[xferpos].tx_nbits = op->addr.buswidth;
364 		spi_message_add_tail(&xfers[xferpos], &msg);
365 		xferpos++;
366 		totalxferlen += op->addr.nbytes;
367 	}
368 
369 	if (op->dummy.nbytes) {
370 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
371 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
372 		xfers[xferpos].len = op->dummy.nbytes;
373 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
374 		xfers[xferpos].dummy_data = 1;
375 		spi_message_add_tail(&xfers[xferpos], &msg);
376 		xferpos++;
377 		totalxferlen += op->dummy.nbytes;
378 	}
379 
380 	if (op->data.nbytes) {
381 		if (op->data.dir == SPI_MEM_DATA_IN) {
382 			xfers[xferpos].rx_buf = op->data.buf.in;
383 			xfers[xferpos].rx_nbits = op->data.buswidth;
384 		} else {
385 			xfers[xferpos].tx_buf = op->data.buf.out;
386 			xfers[xferpos].tx_nbits = op->data.buswidth;
387 		}
388 
389 		xfers[xferpos].len = op->data.nbytes;
390 		spi_message_add_tail(&xfers[xferpos], &msg);
391 		xferpos++;
392 		totalxferlen += op->data.nbytes;
393 	}
394 
395 	ret = spi_sync(mem->spi, &msg);
396 
397 	kfree(tmpbuf);
398 
399 	if (ret)
400 		return ret;
401 
402 	if (msg.actual_length != totalxferlen)
403 		return -EIO;
404 
405 	return 0;
406 }
407 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
408 
409 /**
410  * spi_mem_get_name() - Return the SPI mem device name to be used by the
411  *			upper layer if necessary
412  * @mem: the SPI memory
413  *
414  * This function allows SPI mem users to retrieve the SPI mem device name.
415  * It is useful if the upper layer needs to expose a custom name for
416  * compatibility reasons.
417  *
418  * Return: a string containing the name of the memory device to be used
419  *	   by the SPI mem user
420  */
421 const char *spi_mem_get_name(struct spi_mem *mem)
422 {
423 	return mem->name;
424 }
425 EXPORT_SYMBOL_GPL(spi_mem_get_name);
426 
427 /**
428  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
429  *			      match controller limitations
430  * @mem: the SPI memory
431  * @op: the operation to adjust
432  *
433  * Some controllers have FIFO limitations and must split a data transfer
434  * operation into multiple ones, others require a specific alignment for
435  * optimized accesses. This function allows SPI mem drivers to split a single
436  * operation into multiple sub-operations when required.
437  *
438  * Return: a negative error code if the controller can't properly adjust @op,
439  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
440  *	   can't be handled in a single step.
441  */
442 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
443 {
444 	struct spi_controller *ctlr = mem->spi->controller;
445 	size_t len;
446 
447 	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
448 		return ctlr->mem_ops->adjust_op_size(mem, op);
449 
450 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
451 		len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
452 
453 		if (len > spi_max_transfer_size(mem->spi))
454 			return -EINVAL;
455 
456 		op->data.nbytes = min3((size_t)op->data.nbytes,
457 				       spi_max_transfer_size(mem->spi),
458 				       spi_max_message_size(mem->spi) -
459 				       len);
460 		if (!op->data.nbytes)
461 			return -EINVAL;
462 	}
463 
464 	return 0;
465 }
466 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
467 
468 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
469 				      u64 offs, size_t len, void *buf)
470 {
471 	struct spi_mem_op op = desc->info.op_tmpl;
472 	int ret;
473 
474 	op.addr.val = desc->info.offset + offs;
475 	op.data.buf.in = buf;
476 	op.data.nbytes = len;
477 	ret = spi_mem_adjust_op_size(desc->mem, &op);
478 	if (ret)
479 		return ret;
480 
481 	ret = spi_mem_exec_op(desc->mem, &op);
482 	if (ret)
483 		return ret;
484 
485 	return op.data.nbytes;
486 }
487 
488 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
489 				       u64 offs, size_t len, const void *buf)
490 {
491 	struct spi_mem_op op = desc->info.op_tmpl;
492 	int ret;
493 
494 	op.addr.val = desc->info.offset + offs;
495 	op.data.buf.out = buf;
496 	op.data.nbytes = len;
497 	ret = spi_mem_adjust_op_size(desc->mem, &op);
498 	if (ret)
499 		return ret;
500 
501 	ret = spi_mem_exec_op(desc->mem, &op);
502 	if (ret)
503 		return ret;
504 
505 	return op.data.nbytes;
506 }
507 
508 /**
509  * spi_mem_dirmap_create() - Create a direct mapping descriptor
510  * @mem: SPI mem device this direct mapping should be created for
511  * @info: direct mapping information
512  *
513  * This function is creating a direct mapping descriptor which can then be used
514  * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
515  * If the SPI controller driver does not support direct mapping, this function
516  * falls back to an implementation using spi_mem_exec_op(), so that the caller
517  * doesn't have to bother implementing a fallback on his own.
518  *
519  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
520  */
521 struct spi_mem_dirmap_desc *
522 spi_mem_dirmap_create(struct spi_mem *mem,
523 		      const struct spi_mem_dirmap_info *info)
524 {
525 	struct spi_controller *ctlr = mem->spi->controller;
526 	struct spi_mem_dirmap_desc *desc;
527 	int ret = -ENOTSUPP;
528 
529 	/* Make sure the number of address cycles is between 1 and 8 bytes. */
530 	if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
531 		return ERR_PTR(-EINVAL);
532 
533 	/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
534 	if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
535 		return ERR_PTR(-EINVAL);
536 
537 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
538 	if (!desc)
539 		return ERR_PTR(-ENOMEM);
540 
541 	desc->mem = mem;
542 	desc->info = *info;
543 	if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
544 		ret = ctlr->mem_ops->dirmap_create(desc);
545 
546 	if (ret) {
547 		desc->nodirmap = true;
548 		if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
549 			ret = -ENOTSUPP;
550 		else
551 			ret = 0;
552 	}
553 
554 	if (ret) {
555 		kfree(desc);
556 		return ERR_PTR(ret);
557 	}
558 
559 	return desc;
560 }
561 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
562 
563 /**
564  * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
565  * @desc: the direct mapping descriptor to destroy
566  *
567  * This function destroys a direct mapping descriptor previously created by
568  * spi_mem_dirmap_create().
569  */
570 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
571 {
572 	struct spi_controller *ctlr = desc->mem->spi->controller;
573 
574 	if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
575 		ctlr->mem_ops->dirmap_destroy(desc);
576 
577 	kfree(desc);
578 }
579 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
580 
581 static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
582 {
583 	struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
584 
585 	spi_mem_dirmap_destroy(desc);
586 }
587 
588 /**
589  * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
590  *				  it to a device
591  * @dev: device the dirmap desc will be attached to
592  * @mem: SPI mem device this direct mapping should be created for
593  * @info: direct mapping information
594  *
595  * devm_ variant of the spi_mem_dirmap_create() function. See
596  * spi_mem_dirmap_create() for more details.
597  *
598  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
599  */
600 struct spi_mem_dirmap_desc *
601 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
602 			   const struct spi_mem_dirmap_info *info)
603 {
604 	struct spi_mem_dirmap_desc **ptr, *desc;
605 
606 	ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
607 			   GFP_KERNEL);
608 	if (!ptr)
609 		return ERR_PTR(-ENOMEM);
610 
611 	desc = spi_mem_dirmap_create(mem, info);
612 	if (IS_ERR(desc)) {
613 		devres_free(ptr);
614 	} else {
615 		*ptr = desc;
616 		devres_add(dev, ptr);
617 	}
618 
619 	return desc;
620 }
621 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
622 
623 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
624 {
625 	struct spi_mem_dirmap_desc **ptr = res;
626 
627 	if (WARN_ON(!ptr || !*ptr))
628 		return 0;
629 
630 	return *ptr == data;
631 }
632 
633 /**
634  * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
635  *				   to a device
636  * @dev: device the dirmap desc is attached to
637  * @desc: the direct mapping descriptor to destroy
638  *
639  * devm_ variant of the spi_mem_dirmap_destroy() function. See
640  * spi_mem_dirmap_destroy() for more details.
641  */
642 void devm_spi_mem_dirmap_destroy(struct device *dev,
643 				 struct spi_mem_dirmap_desc *desc)
644 {
645 	devres_release(dev, devm_spi_mem_dirmap_release,
646 		       devm_spi_mem_dirmap_match, desc);
647 }
648 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
649 
650 /**
651  * spi_mem_dirmap_read() - Read data through a direct mapping
652  * @desc: direct mapping descriptor
653  * @offs: offset to start reading from. Note that this is not an absolute
654  *	  offset, but the offset within the direct mapping which already has
655  *	  its own offset
656  * @len: length in bytes
657  * @buf: destination buffer. This buffer must be DMA-able
658  *
659  * This function reads data from a memory device using a direct mapping
660  * previously instantiated with spi_mem_dirmap_create().
661  *
662  * Return: the amount of data read from the memory device or a negative error
663  * code. Note that the returned size might be smaller than @len, and the caller
664  * is responsible for calling spi_mem_dirmap_read() again when that happens.
665  */
666 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
667 			    u64 offs, size_t len, void *buf)
668 {
669 	struct spi_controller *ctlr = desc->mem->spi->controller;
670 	ssize_t ret;
671 
672 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
673 		return -EINVAL;
674 
675 	if (!len)
676 		return 0;
677 
678 	if (desc->nodirmap) {
679 		ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
680 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
681 		ret = spi_mem_access_start(desc->mem);
682 		if (ret)
683 			return ret;
684 
685 		ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
686 
687 		spi_mem_access_end(desc->mem);
688 	} else {
689 		ret = -ENOTSUPP;
690 	}
691 
692 	return ret;
693 }
694 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
695 
696 /**
697  * spi_mem_dirmap_write() - Write data through a direct mapping
698  * @desc: direct mapping descriptor
699  * @offs: offset to start writing from. Note that this is not an absolute
700  *	  offset, but the offset within the direct mapping which already has
701  *	  its own offset
702  * @len: length in bytes
703  * @buf: source buffer. This buffer must be DMA-able
704  *
705  * This function writes data to a memory device using a direct mapping
706  * previously instantiated with spi_mem_dirmap_create().
707  *
708  * Return: the amount of data written to the memory device or a negative error
709  * code. Note that the returned size might be smaller than @len, and the caller
710  * is responsible for calling spi_mem_dirmap_write() again when that happens.
711  */
712 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
713 			     u64 offs, size_t len, const void *buf)
714 {
715 	struct spi_controller *ctlr = desc->mem->spi->controller;
716 	ssize_t ret;
717 
718 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
719 		return -EINVAL;
720 
721 	if (!len)
722 		return 0;
723 
724 	if (desc->nodirmap) {
725 		ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
726 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
727 		ret = spi_mem_access_start(desc->mem);
728 		if (ret)
729 			return ret;
730 
731 		ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
732 
733 		spi_mem_access_end(desc->mem);
734 	} else {
735 		ret = -ENOTSUPP;
736 	}
737 
738 	return ret;
739 }
740 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
741 
742 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
743 {
744 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
745 }
746 
747 static int spi_mem_read_status(struct spi_mem *mem,
748 			       const struct spi_mem_op *op,
749 			       u16 *status)
750 {
751 	const u8 *bytes = (u8 *)op->data.buf.in;
752 	int ret;
753 
754 	ret = spi_mem_exec_op(mem, op);
755 	if (ret)
756 		return ret;
757 
758 	if (op->data.nbytes > 1)
759 		*status = ((u16)bytes[0] << 8) | bytes[1];
760 	else
761 		*status = bytes[0];
762 
763 	return 0;
764 }
765 
766 /**
767  * spi_mem_poll_status() - Poll memory device status
768  * @mem: SPI memory device
769  * @op: the memory operation to execute
770  * @mask: status bitmask to ckeck
771  * @match: (status & mask) expected value
772  * @initial_delay_us: delay in us before starting to poll
773  * @polling_delay_us: time to sleep between reads in us
774  * @timeout_ms: timeout in milliseconds
775  *
776  * This function polls a status register and returns when
777  * (status & mask) == match or when the timeout has expired.
778  *
779  * Return: 0 in case of success, -ETIMEDOUT in case of error,
780  *         -EOPNOTSUPP if not supported.
781  */
782 int spi_mem_poll_status(struct spi_mem *mem,
783 			const struct spi_mem_op *op,
784 			u16 mask, u16 match,
785 			unsigned long initial_delay_us,
786 			unsigned long polling_delay_us,
787 			u16 timeout_ms)
788 {
789 	struct spi_controller *ctlr = mem->spi->controller;
790 	int ret = -EOPNOTSUPP;
791 	int read_status_ret;
792 	u16 status;
793 
794 	if (op->data.nbytes < 1 || op->data.nbytes > 2 ||
795 	    op->data.dir != SPI_MEM_DATA_IN)
796 		return -EINVAL;
797 
798 	if (ctlr->mem_ops && ctlr->mem_ops->poll_status) {
799 		ret = spi_mem_access_start(mem);
800 		if (ret)
801 			return ret;
802 
803 		ret = ctlr->mem_ops->poll_status(mem, op, mask, match,
804 						 initial_delay_us, polling_delay_us,
805 						 timeout_ms);
806 
807 		spi_mem_access_end(mem);
808 	}
809 
810 	if (ret == -EOPNOTSUPP) {
811 		if (!spi_mem_supports_op(mem, op))
812 			return ret;
813 
814 		if (initial_delay_us < 10)
815 			udelay(initial_delay_us);
816 		else
817 			usleep_range((initial_delay_us >> 2) + 1,
818 				     initial_delay_us);
819 
820 		ret = read_poll_timeout(spi_mem_read_status, read_status_ret,
821 					(read_status_ret || ((status) & mask) == match),
822 					polling_delay_us, timeout_ms * 1000, false, mem,
823 					op, &status);
824 		if (read_status_ret)
825 			return read_status_ret;
826 	}
827 
828 	return ret;
829 }
830 EXPORT_SYMBOL_GPL(spi_mem_poll_status);
831 
832 static int spi_mem_probe(struct spi_device *spi)
833 {
834 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
835 	struct spi_controller *ctlr = spi->controller;
836 	struct spi_mem *mem;
837 
838 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
839 	if (!mem)
840 		return -ENOMEM;
841 
842 	mem->spi = spi;
843 
844 	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
845 		mem->name = ctlr->mem_ops->get_name(mem);
846 	else
847 		mem->name = dev_name(&spi->dev);
848 
849 	if (IS_ERR_OR_NULL(mem->name))
850 		return PTR_ERR_OR_ZERO(mem->name);
851 
852 	spi_set_drvdata(spi, mem);
853 
854 	return memdrv->probe(mem);
855 }
856 
857 static int spi_mem_remove(struct spi_device *spi)
858 {
859 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
860 	struct spi_mem *mem = spi_get_drvdata(spi);
861 
862 	if (memdrv->remove)
863 		return memdrv->remove(mem);
864 
865 	return 0;
866 }
867 
868 static void spi_mem_shutdown(struct spi_device *spi)
869 {
870 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
871 	struct spi_mem *mem = spi_get_drvdata(spi);
872 
873 	if (memdrv->shutdown)
874 		memdrv->shutdown(mem);
875 }
876 
877 /**
878  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
879  * @memdrv: the SPI memory driver to register
880  * @owner: the owner of this driver
881  *
882  * Registers a SPI memory driver.
883  *
884  * Return: 0 in case of success, a negative error core otherwise.
885  */
886 
887 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
888 				       struct module *owner)
889 {
890 	memdrv->spidrv.probe = spi_mem_probe;
891 	memdrv->spidrv.remove = spi_mem_remove;
892 	memdrv->spidrv.shutdown = spi_mem_shutdown;
893 
894 	return __spi_register_driver(owner, &memdrv->spidrv);
895 }
896 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
897 
898 /**
899  * spi_mem_driver_unregister() - Unregister a SPI memory driver
900  * @memdrv: the SPI memory driver to unregister
901  *
902  * Unregisters a SPI memory driver.
903  */
904 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
905 {
906 	spi_unregister_driver(&memdrv->spidrv);
907 }
908 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
909