1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2018 Exceet Electronics GmbH 4 * Copyright (C) 2018 Bootlin 5 * 6 * Author: Boris Brezillon <boris.brezillon@bootlin.com> 7 */ 8 #include <linux/dmaengine.h> 9 #include <linux/iopoll.h> 10 #include <linux/pm_runtime.h> 11 #include <linux/spi/spi.h> 12 #include <linux/spi/spi-mem.h> 13 #include <linux/sched/task_stack.h> 14 15 #include "internals.h" 16 17 #define SPI_MEM_MAX_BUSWIDTH 8 18 19 /** 20 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a 21 * memory operation 22 * @ctlr: the SPI controller requesting this dma_map() 23 * @op: the memory operation containing the buffer to map 24 * @sgt: a pointer to a non-initialized sg_table that will be filled by this 25 * function 26 * 27 * Some controllers might want to do DMA on the data buffer embedded in @op. 28 * This helper prepares everything for you and provides a ready-to-use 29 * sg_table. This function is not intended to be called from spi drivers. 30 * Only SPI controller drivers should use it. 31 * Note that the caller must ensure the memory region pointed by 32 * op->data.buf.{in,out} is DMA-able before calling this function. 33 * 34 * Return: 0 in case of success, a negative error code otherwise. 35 */ 36 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, 37 const struct spi_mem_op *op, 38 struct sg_table *sgt) 39 { 40 struct device *dmadev; 41 42 if (!op->data.nbytes) 43 return -EINVAL; 44 45 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) 46 dmadev = ctlr->dma_tx->device->dev; 47 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) 48 dmadev = ctlr->dma_rx->device->dev; 49 else 50 dmadev = ctlr->dev.parent; 51 52 if (!dmadev) 53 return -EINVAL; 54 55 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes, 56 op->data.dir == SPI_MEM_DATA_IN ? 57 DMA_FROM_DEVICE : DMA_TO_DEVICE); 58 } 59 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data); 60 61 /** 62 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a 63 * memory operation 64 * @ctlr: the SPI controller requesting this dma_unmap() 65 * @op: the memory operation containing the buffer to unmap 66 * @sgt: a pointer to an sg_table previously initialized by 67 * spi_controller_dma_map_mem_op_data() 68 * 69 * Some controllers might want to do DMA on the data buffer embedded in @op. 70 * This helper prepares things so that the CPU can access the 71 * op->data.buf.{in,out} buffer again. 72 * 73 * This function is not intended to be called from SPI drivers. Only SPI 74 * controller drivers should use it. 75 * 76 * This function should be called after the DMA operation has finished and is 77 * only valid if the previous spi_controller_dma_map_mem_op_data() call 78 * returned 0. 79 * 80 * Return: 0 in case of success, a negative error code otherwise. 81 */ 82 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, 83 const struct spi_mem_op *op, 84 struct sg_table *sgt) 85 { 86 struct device *dmadev; 87 88 if (!op->data.nbytes) 89 return; 90 91 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) 92 dmadev = ctlr->dma_tx->device->dev; 93 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) 94 dmadev = ctlr->dma_rx->device->dev; 95 else 96 dmadev = ctlr->dev.parent; 97 98 spi_unmap_buf(ctlr, dmadev, sgt, 99 op->data.dir == SPI_MEM_DATA_IN ? 100 DMA_FROM_DEVICE : DMA_TO_DEVICE); 101 } 102 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data); 103 104 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx) 105 { 106 u32 mode = mem->spi->mode; 107 108 switch (buswidth) { 109 case 1: 110 return 0; 111 112 case 2: 113 if ((tx && 114 (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) || 115 (!tx && 116 (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))) 117 return 0; 118 119 break; 120 121 case 4: 122 if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) || 123 (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL)))) 124 return 0; 125 126 break; 127 128 case 8: 129 if ((tx && (mode & SPI_TX_OCTAL)) || 130 (!tx && (mode & SPI_RX_OCTAL))) 131 return 0; 132 133 break; 134 135 default: 136 break; 137 } 138 139 return -ENOTSUPP; 140 } 141 142 static bool spi_mem_check_buswidth(struct spi_mem *mem, 143 const struct spi_mem_op *op) 144 { 145 if (spi_check_buswidth_req(mem, op->cmd.buswidth, true)) 146 return false; 147 148 if (op->addr.nbytes && 149 spi_check_buswidth_req(mem, op->addr.buswidth, true)) 150 return false; 151 152 if (op->dummy.nbytes && 153 spi_check_buswidth_req(mem, op->dummy.buswidth, true)) 154 return false; 155 156 if (op->data.dir != SPI_MEM_NO_DATA && 157 spi_check_buswidth_req(mem, op->data.buswidth, 158 op->data.dir == SPI_MEM_DATA_OUT)) 159 return false; 160 161 return true; 162 } 163 164 bool spi_mem_default_supports_op(struct spi_mem *mem, 165 const struct spi_mem_op *op) 166 { 167 struct spi_controller *ctlr = mem->spi->controller; 168 bool op_is_dtr = 169 op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr; 170 171 if (op_is_dtr) { 172 if (!spi_mem_controller_is_capable(ctlr, dtr)) 173 return false; 174 175 if (op->data.swap16 && !spi_mem_controller_is_capable(ctlr, swap16)) 176 return false; 177 178 if (op->cmd.nbytes != 2) 179 return false; 180 } else { 181 if (op->cmd.nbytes != 1) 182 return false; 183 } 184 185 if (op->data.ecc) { 186 if (!spi_mem_controller_is_capable(ctlr, ecc)) 187 return false; 188 } 189 190 return spi_mem_check_buswidth(mem, op); 191 } 192 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op); 193 194 static bool spi_mem_buswidth_is_valid(u8 buswidth) 195 { 196 if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH) 197 return false; 198 199 return true; 200 } 201 202 static int spi_mem_check_op(const struct spi_mem_op *op) 203 { 204 if (!op->cmd.buswidth || !op->cmd.nbytes) 205 return -EINVAL; 206 207 if ((op->addr.nbytes && !op->addr.buswidth) || 208 (op->dummy.nbytes && !op->dummy.buswidth) || 209 (op->data.nbytes && !op->data.buswidth)) 210 return -EINVAL; 211 212 if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) || 213 !spi_mem_buswidth_is_valid(op->addr.buswidth) || 214 !spi_mem_buswidth_is_valid(op->dummy.buswidth) || 215 !spi_mem_buswidth_is_valid(op->data.buswidth)) 216 return -EINVAL; 217 218 /* Buffers must be DMA-able. */ 219 if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_IN && 220 object_is_on_stack(op->data.buf.in))) 221 return -EINVAL; 222 223 if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_OUT && 224 object_is_on_stack(op->data.buf.out))) 225 return -EINVAL; 226 227 return 0; 228 } 229 230 static bool spi_mem_internal_supports_op(struct spi_mem *mem, 231 const struct spi_mem_op *op) 232 { 233 struct spi_controller *ctlr = mem->spi->controller; 234 235 if (ctlr->mem_ops && ctlr->mem_ops->supports_op) 236 return ctlr->mem_ops->supports_op(mem, op); 237 238 return spi_mem_default_supports_op(mem, op); 239 } 240 241 /** 242 * spi_mem_supports_op() - Check if a memory device and the controller it is 243 * connected to support a specific memory operation 244 * @mem: the SPI memory 245 * @op: the memory operation to check 246 * 247 * Some controllers are only supporting Single or Dual IOs, others might only 248 * support specific opcodes, or it can even be that the controller and device 249 * both support Quad IOs but the hardware prevents you from using it because 250 * only 2 IO lines are connected. 251 * 252 * This function checks whether a specific operation is supported. 253 * 254 * Return: true if @op is supported, false otherwise. 255 */ 256 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) 257 { 258 if (spi_mem_check_op(op)) 259 return false; 260 261 return spi_mem_internal_supports_op(mem, op); 262 } 263 EXPORT_SYMBOL_GPL(spi_mem_supports_op); 264 265 static int spi_mem_access_start(struct spi_mem *mem) 266 { 267 struct spi_controller *ctlr = mem->spi->controller; 268 269 /* 270 * Flush the message queue before executing our SPI memory 271 * operation to prevent preemption of regular SPI transfers. 272 */ 273 spi_flush_queue(ctlr); 274 275 if (ctlr->auto_runtime_pm) { 276 int ret; 277 278 ret = pm_runtime_resume_and_get(ctlr->dev.parent); 279 if (ret < 0) { 280 dev_err(&ctlr->dev, "Failed to power device: %d\n", 281 ret); 282 return ret; 283 } 284 } 285 286 mutex_lock(&ctlr->bus_lock_mutex); 287 mutex_lock(&ctlr->io_mutex); 288 289 return 0; 290 } 291 292 static void spi_mem_access_end(struct spi_mem *mem) 293 { 294 struct spi_controller *ctlr = mem->spi->controller; 295 296 mutex_unlock(&ctlr->io_mutex); 297 mutex_unlock(&ctlr->bus_lock_mutex); 298 299 if (ctlr->auto_runtime_pm) 300 pm_runtime_put(ctlr->dev.parent); 301 } 302 303 static void spi_mem_add_op_stats(struct spi_statistics __percpu *pcpu_stats, 304 const struct spi_mem_op *op, int exec_op_ret) 305 { 306 struct spi_statistics *stats; 307 u64 len, l2len; 308 309 get_cpu(); 310 stats = this_cpu_ptr(pcpu_stats); 311 u64_stats_update_begin(&stats->syncp); 312 313 /* 314 * We do not have the concept of messages or transfers. Let's consider 315 * that one operation is equivalent to one message and one transfer. 316 */ 317 u64_stats_inc(&stats->messages); 318 u64_stats_inc(&stats->transfers); 319 320 /* Use the sum of all lengths as bytes count and histogram value. */ 321 len = op->cmd.nbytes + op->addr.nbytes; 322 len += op->dummy.nbytes + op->data.nbytes; 323 u64_stats_add(&stats->bytes, len); 324 l2len = min(fls(len), SPI_STATISTICS_HISTO_SIZE) - 1; 325 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 326 327 /* Only account for data bytes as transferred bytes. */ 328 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) 329 u64_stats_add(&stats->bytes_tx, op->data.nbytes); 330 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) 331 u64_stats_add(&stats->bytes_rx, op->data.nbytes); 332 333 /* 334 * A timeout is not an error, following the same behavior as 335 * spi_transfer_one_message(). 336 */ 337 if (exec_op_ret == -ETIMEDOUT) 338 u64_stats_inc(&stats->timedout); 339 else if (exec_op_ret) 340 u64_stats_inc(&stats->errors); 341 342 u64_stats_update_end(&stats->syncp); 343 put_cpu(); 344 } 345 346 /** 347 * spi_mem_exec_op() - Execute a memory operation 348 * @mem: the SPI memory 349 * @op: the memory operation to execute 350 * 351 * Executes a memory operation. 352 * 353 * This function first checks that @op is supported and then tries to execute 354 * it. 355 * 356 * Return: 0 in case of success, a negative error code otherwise. 357 */ 358 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) 359 { 360 unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0; 361 struct spi_controller *ctlr = mem->spi->controller; 362 struct spi_transfer xfers[4] = { }; 363 struct spi_message msg; 364 u8 *tmpbuf; 365 int ret; 366 367 ret = spi_mem_check_op(op); 368 if (ret) 369 return ret; 370 371 if (!spi_mem_internal_supports_op(mem, op)) 372 return -EOPNOTSUPP; 373 374 if (ctlr->mem_ops && ctlr->mem_ops->exec_op && !spi_get_csgpiod(mem->spi, 0)) { 375 ret = spi_mem_access_start(mem); 376 if (ret) 377 return ret; 378 379 ret = ctlr->mem_ops->exec_op(mem, op); 380 381 spi_mem_access_end(mem); 382 383 /* 384 * Some controllers only optimize specific paths (typically the 385 * read path) and expect the core to use the regular SPI 386 * interface in other cases. 387 */ 388 if (!ret || (ret != -ENOTSUPP && ret != -EOPNOTSUPP)) { 389 spi_mem_add_op_stats(ctlr->pcpu_statistics, op, ret); 390 spi_mem_add_op_stats(mem->spi->pcpu_statistics, op, ret); 391 392 return ret; 393 } 394 } 395 396 tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; 397 398 /* 399 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so 400 * we're guaranteed that this buffer is DMA-able, as required by the 401 * SPI layer. 402 */ 403 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA); 404 if (!tmpbuf) 405 return -ENOMEM; 406 407 spi_message_init(&msg); 408 409 tmpbuf[0] = op->cmd.opcode; 410 xfers[xferpos].tx_buf = tmpbuf; 411 xfers[xferpos].len = op->cmd.nbytes; 412 xfers[xferpos].tx_nbits = op->cmd.buswidth; 413 spi_message_add_tail(&xfers[xferpos], &msg); 414 xferpos++; 415 totalxferlen++; 416 417 if (op->addr.nbytes) { 418 int i; 419 420 for (i = 0; i < op->addr.nbytes; i++) 421 tmpbuf[i + 1] = op->addr.val >> 422 (8 * (op->addr.nbytes - i - 1)); 423 424 xfers[xferpos].tx_buf = tmpbuf + 1; 425 xfers[xferpos].len = op->addr.nbytes; 426 xfers[xferpos].tx_nbits = op->addr.buswidth; 427 spi_message_add_tail(&xfers[xferpos], &msg); 428 xferpos++; 429 totalxferlen += op->addr.nbytes; 430 } 431 432 if (op->dummy.nbytes) { 433 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes); 434 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1; 435 xfers[xferpos].len = op->dummy.nbytes; 436 xfers[xferpos].tx_nbits = op->dummy.buswidth; 437 xfers[xferpos].dummy_data = 1; 438 spi_message_add_tail(&xfers[xferpos], &msg); 439 xferpos++; 440 totalxferlen += op->dummy.nbytes; 441 } 442 443 if (op->data.nbytes) { 444 if (op->data.dir == SPI_MEM_DATA_IN) { 445 xfers[xferpos].rx_buf = op->data.buf.in; 446 xfers[xferpos].rx_nbits = op->data.buswidth; 447 } else { 448 xfers[xferpos].tx_buf = op->data.buf.out; 449 xfers[xferpos].tx_nbits = op->data.buswidth; 450 } 451 452 xfers[xferpos].len = op->data.nbytes; 453 spi_message_add_tail(&xfers[xferpos], &msg); 454 xferpos++; 455 totalxferlen += op->data.nbytes; 456 } 457 458 ret = spi_sync(mem->spi, &msg); 459 460 kfree(tmpbuf); 461 462 if (ret) 463 return ret; 464 465 if (msg.actual_length != totalxferlen) 466 return -EIO; 467 468 return 0; 469 } 470 EXPORT_SYMBOL_GPL(spi_mem_exec_op); 471 472 /** 473 * spi_mem_get_name() - Return the SPI mem device name to be used by the 474 * upper layer if necessary 475 * @mem: the SPI memory 476 * 477 * This function allows SPI mem users to retrieve the SPI mem device name. 478 * It is useful if the upper layer needs to expose a custom name for 479 * compatibility reasons. 480 * 481 * Return: a string containing the name of the memory device to be used 482 * by the SPI mem user 483 */ 484 const char *spi_mem_get_name(struct spi_mem *mem) 485 { 486 return mem->name; 487 } 488 EXPORT_SYMBOL_GPL(spi_mem_get_name); 489 490 /** 491 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to 492 * match controller limitations 493 * @mem: the SPI memory 494 * @op: the operation to adjust 495 * 496 * Some controllers have FIFO limitations and must split a data transfer 497 * operation into multiple ones, others require a specific alignment for 498 * optimized accesses. This function allows SPI mem drivers to split a single 499 * operation into multiple sub-operations when required. 500 * 501 * Return: a negative error code if the controller can't properly adjust @op, 502 * 0 otherwise. Note that @op->data.nbytes will be updated if @op 503 * can't be handled in a single step. 504 */ 505 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) 506 { 507 struct spi_controller *ctlr = mem->spi->controller; 508 size_t len; 509 510 if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size) 511 return ctlr->mem_ops->adjust_op_size(mem, op); 512 513 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 514 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; 515 516 if (len > spi_max_transfer_size(mem->spi)) 517 return -EINVAL; 518 519 op->data.nbytes = min3((size_t)op->data.nbytes, 520 spi_max_transfer_size(mem->spi), 521 spi_max_message_size(mem->spi) - 522 len); 523 if (!op->data.nbytes) 524 return -EINVAL; 525 } 526 527 return 0; 528 } 529 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size); 530 531 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc, 532 u64 offs, size_t len, void *buf) 533 { 534 struct spi_mem_op op = desc->info.op_tmpl; 535 int ret; 536 537 op.addr.val = desc->info.offset + offs; 538 op.data.buf.in = buf; 539 op.data.nbytes = len; 540 ret = spi_mem_adjust_op_size(desc->mem, &op); 541 if (ret) 542 return ret; 543 544 ret = spi_mem_exec_op(desc->mem, &op); 545 if (ret) 546 return ret; 547 548 return op.data.nbytes; 549 } 550 551 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc, 552 u64 offs, size_t len, const void *buf) 553 { 554 struct spi_mem_op op = desc->info.op_tmpl; 555 int ret; 556 557 op.addr.val = desc->info.offset + offs; 558 op.data.buf.out = buf; 559 op.data.nbytes = len; 560 ret = spi_mem_adjust_op_size(desc->mem, &op); 561 if (ret) 562 return ret; 563 564 ret = spi_mem_exec_op(desc->mem, &op); 565 if (ret) 566 return ret; 567 568 return op.data.nbytes; 569 } 570 571 /** 572 * spi_mem_dirmap_create() - Create a direct mapping descriptor 573 * @mem: SPI mem device this direct mapping should be created for 574 * @info: direct mapping information 575 * 576 * This function is creating a direct mapping descriptor which can then be used 577 * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write(). 578 * If the SPI controller driver does not support direct mapping, this function 579 * falls back to an implementation using spi_mem_exec_op(), so that the caller 580 * doesn't have to bother implementing a fallback on his own. 581 * 582 * Return: a valid pointer in case of success, and ERR_PTR() otherwise. 583 */ 584 struct spi_mem_dirmap_desc * 585 spi_mem_dirmap_create(struct spi_mem *mem, 586 const struct spi_mem_dirmap_info *info) 587 { 588 struct spi_controller *ctlr = mem->spi->controller; 589 struct spi_mem_dirmap_desc *desc; 590 int ret = -ENOTSUPP; 591 592 /* Make sure the number of address cycles is between 1 and 8 bytes. */ 593 if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8) 594 return ERR_PTR(-EINVAL); 595 596 /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */ 597 if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA) 598 return ERR_PTR(-EINVAL); 599 600 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 601 if (!desc) 602 return ERR_PTR(-ENOMEM); 603 604 desc->mem = mem; 605 desc->info = *info; 606 if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create) 607 ret = ctlr->mem_ops->dirmap_create(desc); 608 609 if (ret) { 610 desc->nodirmap = true; 611 if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl)) 612 ret = -EOPNOTSUPP; 613 else 614 ret = 0; 615 } 616 617 if (ret) { 618 kfree(desc); 619 return ERR_PTR(ret); 620 } 621 622 return desc; 623 } 624 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create); 625 626 /** 627 * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor 628 * @desc: the direct mapping descriptor to destroy 629 * 630 * This function destroys a direct mapping descriptor previously created by 631 * spi_mem_dirmap_create(). 632 */ 633 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc) 634 { 635 struct spi_controller *ctlr = desc->mem->spi->controller; 636 637 if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy) 638 ctlr->mem_ops->dirmap_destroy(desc); 639 640 kfree(desc); 641 } 642 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy); 643 644 static void devm_spi_mem_dirmap_release(struct device *dev, void *res) 645 { 646 struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res; 647 648 spi_mem_dirmap_destroy(desc); 649 } 650 651 /** 652 * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach 653 * it to a device 654 * @dev: device the dirmap desc will be attached to 655 * @mem: SPI mem device this direct mapping should be created for 656 * @info: direct mapping information 657 * 658 * devm_ variant of the spi_mem_dirmap_create() function. See 659 * spi_mem_dirmap_create() for more details. 660 * 661 * Return: a valid pointer in case of success, and ERR_PTR() otherwise. 662 */ 663 struct spi_mem_dirmap_desc * 664 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem, 665 const struct spi_mem_dirmap_info *info) 666 { 667 struct spi_mem_dirmap_desc **ptr, *desc; 668 669 ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr), 670 GFP_KERNEL); 671 if (!ptr) 672 return ERR_PTR(-ENOMEM); 673 674 desc = spi_mem_dirmap_create(mem, info); 675 if (IS_ERR(desc)) { 676 devres_free(ptr); 677 } else { 678 *ptr = desc; 679 devres_add(dev, ptr); 680 } 681 682 return desc; 683 } 684 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create); 685 686 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data) 687 { 688 struct spi_mem_dirmap_desc **ptr = res; 689 690 if (WARN_ON(!ptr || !*ptr)) 691 return 0; 692 693 return *ptr == data; 694 } 695 696 /** 697 * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached 698 * to a device 699 * @dev: device the dirmap desc is attached to 700 * @desc: the direct mapping descriptor to destroy 701 * 702 * devm_ variant of the spi_mem_dirmap_destroy() function. See 703 * spi_mem_dirmap_destroy() for more details. 704 */ 705 void devm_spi_mem_dirmap_destroy(struct device *dev, 706 struct spi_mem_dirmap_desc *desc) 707 { 708 devres_release(dev, devm_spi_mem_dirmap_release, 709 devm_spi_mem_dirmap_match, desc); 710 } 711 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy); 712 713 /** 714 * spi_mem_dirmap_read() - Read data through a direct mapping 715 * @desc: direct mapping descriptor 716 * @offs: offset to start reading from. Note that this is not an absolute 717 * offset, but the offset within the direct mapping which already has 718 * its own offset 719 * @len: length in bytes 720 * @buf: destination buffer. This buffer must be DMA-able 721 * 722 * This function reads data from a memory device using a direct mapping 723 * previously instantiated with spi_mem_dirmap_create(). 724 * 725 * Return: the amount of data read from the memory device or a negative error 726 * code. Note that the returned size might be smaller than @len, and the caller 727 * is responsible for calling spi_mem_dirmap_read() again when that happens. 728 */ 729 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc, 730 u64 offs, size_t len, void *buf) 731 { 732 struct spi_controller *ctlr = desc->mem->spi->controller; 733 ssize_t ret; 734 735 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN) 736 return -EINVAL; 737 738 if (!len) 739 return 0; 740 741 if (desc->nodirmap) { 742 ret = spi_mem_no_dirmap_read(desc, offs, len, buf); 743 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) { 744 ret = spi_mem_access_start(desc->mem); 745 if (ret) 746 return ret; 747 748 ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf); 749 750 spi_mem_access_end(desc->mem); 751 } else { 752 ret = -ENOTSUPP; 753 } 754 755 return ret; 756 } 757 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read); 758 759 /** 760 * spi_mem_dirmap_write() - Write data through a direct mapping 761 * @desc: direct mapping descriptor 762 * @offs: offset to start writing from. Note that this is not an absolute 763 * offset, but the offset within the direct mapping which already has 764 * its own offset 765 * @len: length in bytes 766 * @buf: source buffer. This buffer must be DMA-able 767 * 768 * This function writes data to a memory device using a direct mapping 769 * previously instantiated with spi_mem_dirmap_create(). 770 * 771 * Return: the amount of data written to the memory device or a negative error 772 * code. Note that the returned size might be smaller than @len, and the caller 773 * is responsible for calling spi_mem_dirmap_write() again when that happens. 774 */ 775 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc, 776 u64 offs, size_t len, const void *buf) 777 { 778 struct spi_controller *ctlr = desc->mem->spi->controller; 779 ssize_t ret; 780 781 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT) 782 return -EINVAL; 783 784 if (!len) 785 return 0; 786 787 if (desc->nodirmap) { 788 ret = spi_mem_no_dirmap_write(desc, offs, len, buf); 789 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) { 790 ret = spi_mem_access_start(desc->mem); 791 if (ret) 792 return ret; 793 794 ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf); 795 796 spi_mem_access_end(desc->mem); 797 } else { 798 ret = -ENOTSUPP; 799 } 800 801 return ret; 802 } 803 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write); 804 805 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv) 806 { 807 return container_of(drv, struct spi_mem_driver, spidrv.driver); 808 } 809 810 static int spi_mem_read_status(struct spi_mem *mem, 811 const struct spi_mem_op *op, 812 u16 *status) 813 { 814 const u8 *bytes = (u8 *)op->data.buf.in; 815 int ret; 816 817 ret = spi_mem_exec_op(mem, op); 818 if (ret) 819 return ret; 820 821 if (op->data.nbytes > 1) 822 *status = ((u16)bytes[0] << 8) | bytes[1]; 823 else 824 *status = bytes[0]; 825 826 return 0; 827 } 828 829 /** 830 * spi_mem_poll_status() - Poll memory device status 831 * @mem: SPI memory device 832 * @op: the memory operation to execute 833 * @mask: status bitmask to ckeck 834 * @match: (status & mask) expected value 835 * @initial_delay_us: delay in us before starting to poll 836 * @polling_delay_us: time to sleep between reads in us 837 * @timeout_ms: timeout in milliseconds 838 * 839 * This function polls a status register and returns when 840 * (status & mask) == match or when the timeout has expired. 841 * 842 * Return: 0 in case of success, -ETIMEDOUT in case of error, 843 * -EOPNOTSUPP if not supported. 844 */ 845 int spi_mem_poll_status(struct spi_mem *mem, 846 const struct spi_mem_op *op, 847 u16 mask, u16 match, 848 unsigned long initial_delay_us, 849 unsigned long polling_delay_us, 850 u16 timeout_ms) 851 { 852 struct spi_controller *ctlr = mem->spi->controller; 853 int ret = -EOPNOTSUPP; 854 int read_status_ret; 855 u16 status; 856 857 if (op->data.nbytes < 1 || op->data.nbytes > 2 || 858 op->data.dir != SPI_MEM_DATA_IN) 859 return -EINVAL; 860 861 if (ctlr->mem_ops && ctlr->mem_ops->poll_status && !spi_get_csgpiod(mem->spi, 0)) { 862 ret = spi_mem_access_start(mem); 863 if (ret) 864 return ret; 865 866 ret = ctlr->mem_ops->poll_status(mem, op, mask, match, 867 initial_delay_us, polling_delay_us, 868 timeout_ms); 869 870 spi_mem_access_end(mem); 871 } 872 873 if (ret == -EOPNOTSUPP) { 874 if (!spi_mem_supports_op(mem, op)) 875 return ret; 876 877 if (initial_delay_us < 10) 878 udelay(initial_delay_us); 879 else 880 usleep_range((initial_delay_us >> 2) + 1, 881 initial_delay_us); 882 883 ret = read_poll_timeout(spi_mem_read_status, read_status_ret, 884 (read_status_ret || ((status) & mask) == match), 885 polling_delay_us, timeout_ms * 1000, false, mem, 886 op, &status); 887 if (read_status_ret) 888 return read_status_ret; 889 } 890 891 return ret; 892 } 893 EXPORT_SYMBOL_GPL(spi_mem_poll_status); 894 895 static int spi_mem_probe(struct spi_device *spi) 896 { 897 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 898 struct spi_controller *ctlr = spi->controller; 899 struct spi_mem *mem; 900 901 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL); 902 if (!mem) 903 return -ENOMEM; 904 905 mem->spi = spi; 906 907 if (ctlr->mem_ops && ctlr->mem_ops->get_name) 908 mem->name = ctlr->mem_ops->get_name(mem); 909 else 910 mem->name = dev_name(&spi->dev); 911 912 if (IS_ERR_OR_NULL(mem->name)) 913 return PTR_ERR_OR_ZERO(mem->name); 914 915 spi_set_drvdata(spi, mem); 916 917 return memdrv->probe(mem); 918 } 919 920 static void spi_mem_remove(struct spi_device *spi) 921 { 922 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 923 struct spi_mem *mem = spi_get_drvdata(spi); 924 925 if (memdrv->remove) 926 memdrv->remove(mem); 927 } 928 929 static void spi_mem_shutdown(struct spi_device *spi) 930 { 931 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 932 struct spi_mem *mem = spi_get_drvdata(spi); 933 934 if (memdrv->shutdown) 935 memdrv->shutdown(mem); 936 } 937 938 /** 939 * spi_mem_driver_register_with_owner() - Register a SPI memory driver 940 * @memdrv: the SPI memory driver to register 941 * @owner: the owner of this driver 942 * 943 * Registers a SPI memory driver. 944 * 945 * Return: 0 in case of success, a negative error core otherwise. 946 */ 947 948 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv, 949 struct module *owner) 950 { 951 memdrv->spidrv.probe = spi_mem_probe; 952 memdrv->spidrv.remove = spi_mem_remove; 953 memdrv->spidrv.shutdown = spi_mem_shutdown; 954 955 return __spi_register_driver(owner, &memdrv->spidrv); 956 } 957 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner); 958 959 /** 960 * spi_mem_driver_unregister() - Unregister a SPI memory driver 961 * @memdrv: the SPI memory driver to unregister 962 * 963 * Unregisters a SPI memory driver. 964 */ 965 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv) 966 { 967 spi_unregister_driver(&memdrv->spidrv); 968 } 969 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister); 970