xref: /linux/drivers/spi/spi-mem.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 #include <linux/dmaengine.h>
9 #include <linux/iopoll.h>
10 #include <linux/pm_runtime.h>
11 #include <linux/spi/spi.h>
12 #include <linux/spi/spi-mem.h>
13 #include <linux/sched/task_stack.h>
14 
15 #include "internals.h"
16 
17 #define SPI_MEM_MAX_BUSWIDTH		8
18 
19 /**
20  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
21  *					  memory operation
22  * @ctlr: the SPI controller requesting this dma_map()
23  * @op: the memory operation containing the buffer to map
24  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
25  *	 function
26  *
27  * Some controllers might want to do DMA on the data buffer embedded in @op.
28  * This helper prepares everything for you and provides a ready-to-use
29  * sg_table. This function is not intended to be called from spi drivers.
30  * Only SPI controller drivers should use it.
31  * Note that the caller must ensure the memory region pointed by
32  * op->data.buf.{in,out} is DMA-able before calling this function.
33  *
34  * Return: 0 in case of success, a negative error code otherwise.
35  */
36 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
37 				       const struct spi_mem_op *op,
38 				       struct sg_table *sgt)
39 {
40 	struct device *dmadev;
41 
42 	if (!op->data.nbytes)
43 		return -EINVAL;
44 
45 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
46 		dmadev = ctlr->dma_tx->device->dev;
47 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
48 		dmadev = ctlr->dma_rx->device->dev;
49 	else
50 		dmadev = ctlr->dev.parent;
51 
52 	if (!dmadev)
53 		return -EINVAL;
54 
55 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
56 			   op->data.dir == SPI_MEM_DATA_IN ?
57 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
58 }
59 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
60 
61 /**
62  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
63  *					    memory operation
64  * @ctlr: the SPI controller requesting this dma_unmap()
65  * @op: the memory operation containing the buffer to unmap
66  * @sgt: a pointer to an sg_table previously initialized by
67  *	 spi_controller_dma_map_mem_op_data()
68  *
69  * Some controllers might want to do DMA on the data buffer embedded in @op.
70  * This helper prepares things so that the CPU can access the
71  * op->data.buf.{in,out} buffer again.
72  *
73  * This function is not intended to be called from SPI drivers. Only SPI
74  * controller drivers should use it.
75  *
76  * This function should be called after the DMA operation has finished and is
77  * only valid if the previous spi_controller_dma_map_mem_op_data() call
78  * returned 0.
79  *
80  * Return: 0 in case of success, a negative error code otherwise.
81  */
82 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
83 					  const struct spi_mem_op *op,
84 					  struct sg_table *sgt)
85 {
86 	struct device *dmadev;
87 
88 	if (!op->data.nbytes)
89 		return;
90 
91 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
92 		dmadev = ctlr->dma_tx->device->dev;
93 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
94 		dmadev = ctlr->dma_rx->device->dev;
95 	else
96 		dmadev = ctlr->dev.parent;
97 
98 	spi_unmap_buf(ctlr, dmadev, sgt,
99 		      op->data.dir == SPI_MEM_DATA_IN ?
100 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
101 }
102 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
103 
104 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
105 {
106 	u32 mode = mem->spi->mode;
107 
108 	switch (buswidth) {
109 	case 1:
110 		return 0;
111 
112 	case 2:
113 		if ((tx &&
114 		     (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
115 		    (!tx &&
116 		     (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
117 			return 0;
118 
119 		break;
120 
121 	case 4:
122 		if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
123 		    (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
124 			return 0;
125 
126 		break;
127 
128 	case 8:
129 		if ((tx && (mode & SPI_TX_OCTAL)) ||
130 		    (!tx && (mode & SPI_RX_OCTAL)))
131 			return 0;
132 
133 		break;
134 
135 	default:
136 		break;
137 	}
138 
139 	return -ENOTSUPP;
140 }
141 
142 static bool spi_mem_check_buswidth(struct spi_mem *mem,
143 				   const struct spi_mem_op *op)
144 {
145 	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
146 		return false;
147 
148 	if (op->addr.nbytes &&
149 	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
150 		return false;
151 
152 	if (op->dummy.nbytes &&
153 	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
154 		return false;
155 
156 	if (op->data.dir != SPI_MEM_NO_DATA &&
157 	    spi_check_buswidth_req(mem, op->data.buswidth,
158 				   op->data.dir == SPI_MEM_DATA_OUT))
159 		return false;
160 
161 	return true;
162 }
163 
164 bool spi_mem_default_supports_op(struct spi_mem *mem,
165 				 const struct spi_mem_op *op)
166 {
167 	struct spi_controller *ctlr = mem->spi->controller;
168 	bool op_is_dtr =
169 		op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr;
170 
171 	if (op_is_dtr) {
172 		if (!spi_mem_controller_is_capable(ctlr, dtr))
173 			return false;
174 
175 		if (op->data.swap16 && !spi_mem_controller_is_capable(ctlr, swap16))
176 			return false;
177 
178 		if (op->cmd.nbytes != 2)
179 			return false;
180 	} else {
181 		if (op->cmd.nbytes != 1)
182 			return false;
183 	}
184 
185 	if (op->data.ecc) {
186 		if (!spi_mem_controller_is_capable(ctlr, ecc))
187 			return false;
188 	}
189 
190 	return spi_mem_check_buswidth(mem, op);
191 }
192 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
193 
194 static bool spi_mem_buswidth_is_valid(u8 buswidth)
195 {
196 	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
197 		return false;
198 
199 	return true;
200 }
201 
202 static int spi_mem_check_op(const struct spi_mem_op *op)
203 {
204 	if (!op->cmd.buswidth || !op->cmd.nbytes)
205 		return -EINVAL;
206 
207 	if ((op->addr.nbytes && !op->addr.buswidth) ||
208 	    (op->dummy.nbytes && !op->dummy.buswidth) ||
209 	    (op->data.nbytes && !op->data.buswidth))
210 		return -EINVAL;
211 
212 	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
213 	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
214 	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
215 	    !spi_mem_buswidth_is_valid(op->data.buswidth))
216 		return -EINVAL;
217 
218 	/* Buffers must be DMA-able. */
219 	if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_IN &&
220 			 object_is_on_stack(op->data.buf.in)))
221 		return -EINVAL;
222 
223 	if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_OUT &&
224 			 object_is_on_stack(op->data.buf.out)))
225 		return -EINVAL;
226 
227 	return 0;
228 }
229 
230 static bool spi_mem_internal_supports_op(struct spi_mem *mem,
231 					 const struct spi_mem_op *op)
232 {
233 	struct spi_controller *ctlr = mem->spi->controller;
234 
235 	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
236 		return ctlr->mem_ops->supports_op(mem, op);
237 
238 	return spi_mem_default_supports_op(mem, op);
239 }
240 
241 /**
242  * spi_mem_supports_op() - Check if a memory device and the controller it is
243  *			   connected to support a specific memory operation
244  * @mem: the SPI memory
245  * @op: the memory operation to check
246  *
247  * Some controllers are only supporting Single or Dual IOs, others might only
248  * support specific opcodes, or it can even be that the controller and device
249  * both support Quad IOs but the hardware prevents you from using it because
250  * only 2 IO lines are connected.
251  *
252  * This function checks whether a specific operation is supported.
253  *
254  * Return: true if @op is supported, false otherwise.
255  */
256 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
257 {
258 	if (spi_mem_check_op(op))
259 		return false;
260 
261 	return spi_mem_internal_supports_op(mem, op);
262 }
263 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
264 
265 static int spi_mem_access_start(struct spi_mem *mem)
266 {
267 	struct spi_controller *ctlr = mem->spi->controller;
268 
269 	/*
270 	 * Flush the message queue before executing our SPI memory
271 	 * operation to prevent preemption of regular SPI transfers.
272 	 */
273 	spi_flush_queue(ctlr);
274 
275 	if (ctlr->auto_runtime_pm) {
276 		int ret;
277 
278 		ret = pm_runtime_resume_and_get(ctlr->dev.parent);
279 		if (ret < 0) {
280 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
281 				ret);
282 			return ret;
283 		}
284 	}
285 
286 	mutex_lock(&ctlr->bus_lock_mutex);
287 	mutex_lock(&ctlr->io_mutex);
288 
289 	return 0;
290 }
291 
292 static void spi_mem_access_end(struct spi_mem *mem)
293 {
294 	struct spi_controller *ctlr = mem->spi->controller;
295 
296 	mutex_unlock(&ctlr->io_mutex);
297 	mutex_unlock(&ctlr->bus_lock_mutex);
298 
299 	if (ctlr->auto_runtime_pm)
300 		pm_runtime_put(ctlr->dev.parent);
301 }
302 
303 static void spi_mem_add_op_stats(struct spi_statistics __percpu *pcpu_stats,
304 				 const struct spi_mem_op *op, int exec_op_ret)
305 {
306 	struct spi_statistics *stats;
307 	u64 len, l2len;
308 
309 	get_cpu();
310 	stats = this_cpu_ptr(pcpu_stats);
311 	u64_stats_update_begin(&stats->syncp);
312 
313 	/*
314 	 * We do not have the concept of messages or transfers. Let's consider
315 	 * that one operation is equivalent to one message and one transfer.
316 	 */
317 	u64_stats_inc(&stats->messages);
318 	u64_stats_inc(&stats->transfers);
319 
320 	/* Use the sum of all lengths as bytes count and histogram value. */
321 	len = op->cmd.nbytes + op->addr.nbytes;
322 	len += op->dummy.nbytes + op->data.nbytes;
323 	u64_stats_add(&stats->bytes, len);
324 	l2len = min(fls(len), SPI_STATISTICS_HISTO_SIZE) - 1;
325 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
326 
327 	/* Only account for data bytes as transferred bytes. */
328 	if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
329 		u64_stats_add(&stats->bytes_tx, op->data.nbytes);
330 	if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
331 		u64_stats_add(&stats->bytes_rx, op->data.nbytes);
332 
333 	/*
334 	 * A timeout is not an error, following the same behavior as
335 	 * spi_transfer_one_message().
336 	 */
337 	if (exec_op_ret == -ETIMEDOUT)
338 		u64_stats_inc(&stats->timedout);
339 	else if (exec_op_ret)
340 		u64_stats_inc(&stats->errors);
341 
342 	u64_stats_update_end(&stats->syncp);
343 	put_cpu();
344 }
345 
346 /**
347  * spi_mem_exec_op() - Execute a memory operation
348  * @mem: the SPI memory
349  * @op: the memory operation to execute
350  *
351  * Executes a memory operation.
352  *
353  * This function first checks that @op is supported and then tries to execute
354  * it.
355  *
356  * Return: 0 in case of success, a negative error code otherwise.
357  */
358 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
359 {
360 	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
361 	struct spi_controller *ctlr = mem->spi->controller;
362 	struct spi_transfer xfers[4] = { };
363 	struct spi_message msg;
364 	u8 *tmpbuf;
365 	int ret;
366 
367 	ret = spi_mem_check_op(op);
368 	if (ret)
369 		return ret;
370 
371 	if (!spi_mem_internal_supports_op(mem, op))
372 		return -EOPNOTSUPP;
373 
374 	if (ctlr->mem_ops && ctlr->mem_ops->exec_op && !spi_get_csgpiod(mem->spi, 0)) {
375 		ret = spi_mem_access_start(mem);
376 		if (ret)
377 			return ret;
378 
379 		ret = ctlr->mem_ops->exec_op(mem, op);
380 
381 		spi_mem_access_end(mem);
382 
383 		/*
384 		 * Some controllers only optimize specific paths (typically the
385 		 * read path) and expect the core to use the regular SPI
386 		 * interface in other cases.
387 		 */
388 		if (!ret || (ret != -ENOTSUPP && ret != -EOPNOTSUPP)) {
389 			spi_mem_add_op_stats(ctlr->pcpu_statistics, op, ret);
390 			spi_mem_add_op_stats(mem->spi->pcpu_statistics, op, ret);
391 
392 			return ret;
393 		}
394 	}
395 
396 	tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
397 
398 	/*
399 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
400 	 * we're guaranteed that this buffer is DMA-able, as required by the
401 	 * SPI layer.
402 	 */
403 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
404 	if (!tmpbuf)
405 		return -ENOMEM;
406 
407 	spi_message_init(&msg);
408 
409 	tmpbuf[0] = op->cmd.opcode;
410 	xfers[xferpos].tx_buf = tmpbuf;
411 	xfers[xferpos].len = op->cmd.nbytes;
412 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
413 	spi_message_add_tail(&xfers[xferpos], &msg);
414 	xferpos++;
415 	totalxferlen++;
416 
417 	if (op->addr.nbytes) {
418 		int i;
419 
420 		for (i = 0; i < op->addr.nbytes; i++)
421 			tmpbuf[i + 1] = op->addr.val >>
422 					(8 * (op->addr.nbytes - i - 1));
423 
424 		xfers[xferpos].tx_buf = tmpbuf + 1;
425 		xfers[xferpos].len = op->addr.nbytes;
426 		xfers[xferpos].tx_nbits = op->addr.buswidth;
427 		spi_message_add_tail(&xfers[xferpos], &msg);
428 		xferpos++;
429 		totalxferlen += op->addr.nbytes;
430 	}
431 
432 	if (op->dummy.nbytes) {
433 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
434 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
435 		xfers[xferpos].len = op->dummy.nbytes;
436 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
437 		xfers[xferpos].dummy_data = 1;
438 		spi_message_add_tail(&xfers[xferpos], &msg);
439 		xferpos++;
440 		totalxferlen += op->dummy.nbytes;
441 	}
442 
443 	if (op->data.nbytes) {
444 		if (op->data.dir == SPI_MEM_DATA_IN) {
445 			xfers[xferpos].rx_buf = op->data.buf.in;
446 			xfers[xferpos].rx_nbits = op->data.buswidth;
447 		} else {
448 			xfers[xferpos].tx_buf = op->data.buf.out;
449 			xfers[xferpos].tx_nbits = op->data.buswidth;
450 		}
451 
452 		xfers[xferpos].len = op->data.nbytes;
453 		spi_message_add_tail(&xfers[xferpos], &msg);
454 		xferpos++;
455 		totalxferlen += op->data.nbytes;
456 	}
457 
458 	ret = spi_sync(mem->spi, &msg);
459 
460 	kfree(tmpbuf);
461 
462 	if (ret)
463 		return ret;
464 
465 	if (msg.actual_length != totalxferlen)
466 		return -EIO;
467 
468 	return 0;
469 }
470 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
471 
472 /**
473  * spi_mem_get_name() - Return the SPI mem device name to be used by the
474  *			upper layer if necessary
475  * @mem: the SPI memory
476  *
477  * This function allows SPI mem users to retrieve the SPI mem device name.
478  * It is useful if the upper layer needs to expose a custom name for
479  * compatibility reasons.
480  *
481  * Return: a string containing the name of the memory device to be used
482  *	   by the SPI mem user
483  */
484 const char *spi_mem_get_name(struct spi_mem *mem)
485 {
486 	return mem->name;
487 }
488 EXPORT_SYMBOL_GPL(spi_mem_get_name);
489 
490 /**
491  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
492  *			      match controller limitations
493  * @mem: the SPI memory
494  * @op: the operation to adjust
495  *
496  * Some controllers have FIFO limitations and must split a data transfer
497  * operation into multiple ones, others require a specific alignment for
498  * optimized accesses. This function allows SPI mem drivers to split a single
499  * operation into multiple sub-operations when required.
500  *
501  * Return: a negative error code if the controller can't properly adjust @op,
502  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
503  *	   can't be handled in a single step.
504  */
505 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
506 {
507 	struct spi_controller *ctlr = mem->spi->controller;
508 	size_t len;
509 
510 	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
511 		return ctlr->mem_ops->adjust_op_size(mem, op);
512 
513 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
514 		len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
515 
516 		if (len > spi_max_transfer_size(mem->spi))
517 			return -EINVAL;
518 
519 		op->data.nbytes = min3((size_t)op->data.nbytes,
520 				       spi_max_transfer_size(mem->spi),
521 				       spi_max_message_size(mem->spi) -
522 				       len);
523 		if (!op->data.nbytes)
524 			return -EINVAL;
525 	}
526 
527 	return 0;
528 }
529 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
530 
531 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
532 				      u64 offs, size_t len, void *buf)
533 {
534 	struct spi_mem_op op = desc->info.op_tmpl;
535 	int ret;
536 
537 	op.addr.val = desc->info.offset + offs;
538 	op.data.buf.in = buf;
539 	op.data.nbytes = len;
540 	ret = spi_mem_adjust_op_size(desc->mem, &op);
541 	if (ret)
542 		return ret;
543 
544 	ret = spi_mem_exec_op(desc->mem, &op);
545 	if (ret)
546 		return ret;
547 
548 	return op.data.nbytes;
549 }
550 
551 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
552 				       u64 offs, size_t len, const void *buf)
553 {
554 	struct spi_mem_op op = desc->info.op_tmpl;
555 	int ret;
556 
557 	op.addr.val = desc->info.offset + offs;
558 	op.data.buf.out = buf;
559 	op.data.nbytes = len;
560 	ret = spi_mem_adjust_op_size(desc->mem, &op);
561 	if (ret)
562 		return ret;
563 
564 	ret = spi_mem_exec_op(desc->mem, &op);
565 	if (ret)
566 		return ret;
567 
568 	return op.data.nbytes;
569 }
570 
571 /**
572  * spi_mem_dirmap_create() - Create a direct mapping descriptor
573  * @mem: SPI mem device this direct mapping should be created for
574  * @info: direct mapping information
575  *
576  * This function is creating a direct mapping descriptor which can then be used
577  * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
578  * If the SPI controller driver does not support direct mapping, this function
579  * falls back to an implementation using spi_mem_exec_op(), so that the caller
580  * doesn't have to bother implementing a fallback on his own.
581  *
582  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
583  */
584 struct spi_mem_dirmap_desc *
585 spi_mem_dirmap_create(struct spi_mem *mem,
586 		      const struct spi_mem_dirmap_info *info)
587 {
588 	struct spi_controller *ctlr = mem->spi->controller;
589 	struct spi_mem_dirmap_desc *desc;
590 	int ret = -ENOTSUPP;
591 
592 	/* Make sure the number of address cycles is between 1 and 8 bytes. */
593 	if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
594 		return ERR_PTR(-EINVAL);
595 
596 	/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
597 	if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
598 		return ERR_PTR(-EINVAL);
599 
600 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
601 	if (!desc)
602 		return ERR_PTR(-ENOMEM);
603 
604 	desc->mem = mem;
605 	desc->info = *info;
606 	if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
607 		ret = ctlr->mem_ops->dirmap_create(desc);
608 
609 	if (ret) {
610 		desc->nodirmap = true;
611 		if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
612 			ret = -EOPNOTSUPP;
613 		else
614 			ret = 0;
615 	}
616 
617 	if (ret) {
618 		kfree(desc);
619 		return ERR_PTR(ret);
620 	}
621 
622 	return desc;
623 }
624 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
625 
626 /**
627  * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
628  * @desc: the direct mapping descriptor to destroy
629  *
630  * This function destroys a direct mapping descriptor previously created by
631  * spi_mem_dirmap_create().
632  */
633 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
634 {
635 	struct spi_controller *ctlr = desc->mem->spi->controller;
636 
637 	if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
638 		ctlr->mem_ops->dirmap_destroy(desc);
639 
640 	kfree(desc);
641 }
642 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
643 
644 static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
645 {
646 	struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
647 
648 	spi_mem_dirmap_destroy(desc);
649 }
650 
651 /**
652  * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
653  *				  it to a device
654  * @dev: device the dirmap desc will be attached to
655  * @mem: SPI mem device this direct mapping should be created for
656  * @info: direct mapping information
657  *
658  * devm_ variant of the spi_mem_dirmap_create() function. See
659  * spi_mem_dirmap_create() for more details.
660  *
661  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
662  */
663 struct spi_mem_dirmap_desc *
664 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
665 			   const struct spi_mem_dirmap_info *info)
666 {
667 	struct spi_mem_dirmap_desc **ptr, *desc;
668 
669 	ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
670 			   GFP_KERNEL);
671 	if (!ptr)
672 		return ERR_PTR(-ENOMEM);
673 
674 	desc = spi_mem_dirmap_create(mem, info);
675 	if (IS_ERR(desc)) {
676 		devres_free(ptr);
677 	} else {
678 		*ptr = desc;
679 		devres_add(dev, ptr);
680 	}
681 
682 	return desc;
683 }
684 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
685 
686 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
687 {
688 	struct spi_mem_dirmap_desc **ptr = res;
689 
690 	if (WARN_ON(!ptr || !*ptr))
691 		return 0;
692 
693 	return *ptr == data;
694 }
695 
696 /**
697  * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
698  *				   to a device
699  * @dev: device the dirmap desc is attached to
700  * @desc: the direct mapping descriptor to destroy
701  *
702  * devm_ variant of the spi_mem_dirmap_destroy() function. See
703  * spi_mem_dirmap_destroy() for more details.
704  */
705 void devm_spi_mem_dirmap_destroy(struct device *dev,
706 				 struct spi_mem_dirmap_desc *desc)
707 {
708 	devres_release(dev, devm_spi_mem_dirmap_release,
709 		       devm_spi_mem_dirmap_match, desc);
710 }
711 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
712 
713 /**
714  * spi_mem_dirmap_read() - Read data through a direct mapping
715  * @desc: direct mapping descriptor
716  * @offs: offset to start reading from. Note that this is not an absolute
717  *	  offset, but the offset within the direct mapping which already has
718  *	  its own offset
719  * @len: length in bytes
720  * @buf: destination buffer. This buffer must be DMA-able
721  *
722  * This function reads data from a memory device using a direct mapping
723  * previously instantiated with spi_mem_dirmap_create().
724  *
725  * Return: the amount of data read from the memory device or a negative error
726  * code. Note that the returned size might be smaller than @len, and the caller
727  * is responsible for calling spi_mem_dirmap_read() again when that happens.
728  */
729 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
730 			    u64 offs, size_t len, void *buf)
731 {
732 	struct spi_controller *ctlr = desc->mem->spi->controller;
733 	ssize_t ret;
734 
735 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
736 		return -EINVAL;
737 
738 	if (!len)
739 		return 0;
740 
741 	if (desc->nodirmap) {
742 		ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
743 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
744 		ret = spi_mem_access_start(desc->mem);
745 		if (ret)
746 			return ret;
747 
748 		ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
749 
750 		spi_mem_access_end(desc->mem);
751 	} else {
752 		ret = -ENOTSUPP;
753 	}
754 
755 	return ret;
756 }
757 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
758 
759 /**
760  * spi_mem_dirmap_write() - Write data through a direct mapping
761  * @desc: direct mapping descriptor
762  * @offs: offset to start writing from. Note that this is not an absolute
763  *	  offset, but the offset within the direct mapping which already has
764  *	  its own offset
765  * @len: length in bytes
766  * @buf: source buffer. This buffer must be DMA-able
767  *
768  * This function writes data to a memory device using a direct mapping
769  * previously instantiated with spi_mem_dirmap_create().
770  *
771  * Return: the amount of data written to the memory device or a negative error
772  * code. Note that the returned size might be smaller than @len, and the caller
773  * is responsible for calling spi_mem_dirmap_write() again when that happens.
774  */
775 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
776 			     u64 offs, size_t len, const void *buf)
777 {
778 	struct spi_controller *ctlr = desc->mem->spi->controller;
779 	ssize_t ret;
780 
781 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
782 		return -EINVAL;
783 
784 	if (!len)
785 		return 0;
786 
787 	if (desc->nodirmap) {
788 		ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
789 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
790 		ret = spi_mem_access_start(desc->mem);
791 		if (ret)
792 			return ret;
793 
794 		ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
795 
796 		spi_mem_access_end(desc->mem);
797 	} else {
798 		ret = -ENOTSUPP;
799 	}
800 
801 	return ret;
802 }
803 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
804 
805 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
806 {
807 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
808 }
809 
810 static int spi_mem_read_status(struct spi_mem *mem,
811 			       const struct spi_mem_op *op,
812 			       u16 *status)
813 {
814 	const u8 *bytes = (u8 *)op->data.buf.in;
815 	int ret;
816 
817 	ret = spi_mem_exec_op(mem, op);
818 	if (ret)
819 		return ret;
820 
821 	if (op->data.nbytes > 1)
822 		*status = ((u16)bytes[0] << 8) | bytes[1];
823 	else
824 		*status = bytes[0];
825 
826 	return 0;
827 }
828 
829 /**
830  * spi_mem_poll_status() - Poll memory device status
831  * @mem: SPI memory device
832  * @op: the memory operation to execute
833  * @mask: status bitmask to ckeck
834  * @match: (status & mask) expected value
835  * @initial_delay_us: delay in us before starting to poll
836  * @polling_delay_us: time to sleep between reads in us
837  * @timeout_ms: timeout in milliseconds
838  *
839  * This function polls a status register and returns when
840  * (status & mask) == match or when the timeout has expired.
841  *
842  * Return: 0 in case of success, -ETIMEDOUT in case of error,
843  *         -EOPNOTSUPP if not supported.
844  */
845 int spi_mem_poll_status(struct spi_mem *mem,
846 			const struct spi_mem_op *op,
847 			u16 mask, u16 match,
848 			unsigned long initial_delay_us,
849 			unsigned long polling_delay_us,
850 			u16 timeout_ms)
851 {
852 	struct spi_controller *ctlr = mem->spi->controller;
853 	int ret = -EOPNOTSUPP;
854 	int read_status_ret;
855 	u16 status;
856 
857 	if (op->data.nbytes < 1 || op->data.nbytes > 2 ||
858 	    op->data.dir != SPI_MEM_DATA_IN)
859 		return -EINVAL;
860 
861 	if (ctlr->mem_ops && ctlr->mem_ops->poll_status && !spi_get_csgpiod(mem->spi, 0)) {
862 		ret = spi_mem_access_start(mem);
863 		if (ret)
864 			return ret;
865 
866 		ret = ctlr->mem_ops->poll_status(mem, op, mask, match,
867 						 initial_delay_us, polling_delay_us,
868 						 timeout_ms);
869 
870 		spi_mem_access_end(mem);
871 	}
872 
873 	if (ret == -EOPNOTSUPP) {
874 		if (!spi_mem_supports_op(mem, op))
875 			return ret;
876 
877 		if (initial_delay_us < 10)
878 			udelay(initial_delay_us);
879 		else
880 			usleep_range((initial_delay_us >> 2) + 1,
881 				     initial_delay_us);
882 
883 		ret = read_poll_timeout(spi_mem_read_status, read_status_ret,
884 					(read_status_ret || ((status) & mask) == match),
885 					polling_delay_us, timeout_ms * 1000, false, mem,
886 					op, &status);
887 		if (read_status_ret)
888 			return read_status_ret;
889 	}
890 
891 	return ret;
892 }
893 EXPORT_SYMBOL_GPL(spi_mem_poll_status);
894 
895 static int spi_mem_probe(struct spi_device *spi)
896 {
897 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
898 	struct spi_controller *ctlr = spi->controller;
899 	struct spi_mem *mem;
900 
901 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
902 	if (!mem)
903 		return -ENOMEM;
904 
905 	mem->spi = spi;
906 
907 	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
908 		mem->name = ctlr->mem_ops->get_name(mem);
909 	else
910 		mem->name = dev_name(&spi->dev);
911 
912 	if (IS_ERR_OR_NULL(mem->name))
913 		return PTR_ERR_OR_ZERO(mem->name);
914 
915 	spi_set_drvdata(spi, mem);
916 
917 	return memdrv->probe(mem);
918 }
919 
920 static void spi_mem_remove(struct spi_device *spi)
921 {
922 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
923 	struct spi_mem *mem = spi_get_drvdata(spi);
924 
925 	if (memdrv->remove)
926 		memdrv->remove(mem);
927 }
928 
929 static void spi_mem_shutdown(struct spi_device *spi)
930 {
931 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
932 	struct spi_mem *mem = spi_get_drvdata(spi);
933 
934 	if (memdrv->shutdown)
935 		memdrv->shutdown(mem);
936 }
937 
938 /**
939  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
940  * @memdrv: the SPI memory driver to register
941  * @owner: the owner of this driver
942  *
943  * Registers a SPI memory driver.
944  *
945  * Return: 0 in case of success, a negative error core otherwise.
946  */
947 
948 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
949 				       struct module *owner)
950 {
951 	memdrv->spidrv.probe = spi_mem_probe;
952 	memdrv->spidrv.remove = spi_mem_remove;
953 	memdrv->spidrv.shutdown = spi_mem_shutdown;
954 
955 	return __spi_register_driver(owner, &memdrv->spidrv);
956 }
957 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
958 
959 /**
960  * spi_mem_driver_unregister() - Unregister a SPI memory driver
961  * @memdrv: the SPI memory driver to unregister
962  *
963  * Unregisters a SPI memory driver.
964  */
965 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
966 {
967 	spi_unregister_driver(&memdrv->spidrv);
968 }
969 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
970