1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2018 Exceet Electronics GmbH 4 * Copyright (C) 2018 Bootlin 5 * 6 * Author: Boris Brezillon <boris.brezillon@bootlin.com> 7 */ 8 #include <linux/dmaengine.h> 9 #include <linux/iopoll.h> 10 #include <linux/pm_runtime.h> 11 #include <linux/spi/spi.h> 12 #include <linux/spi/spi-mem.h> 13 #include <linux/sched/task_stack.h> 14 15 #include "internals.h" 16 17 #define SPI_MEM_MAX_BUSWIDTH 8 18 19 /** 20 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a 21 * memory operation 22 * @ctlr: the SPI controller requesting this dma_map() 23 * @op: the memory operation containing the buffer to map 24 * @sgt: a pointer to a non-initialized sg_table that will be filled by this 25 * function 26 * 27 * Some controllers might want to do DMA on the data buffer embedded in @op. 28 * This helper prepares everything for you and provides a ready-to-use 29 * sg_table. This function is not intended to be called from spi drivers. 30 * Only SPI controller drivers should use it. 31 * Note that the caller must ensure the memory region pointed by 32 * op->data.buf.{in,out} is DMA-able before calling this function. 33 * 34 * Return: 0 in case of success, a negative error code otherwise. 35 */ 36 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, 37 const struct spi_mem_op *op, 38 struct sg_table *sgt) 39 { 40 struct device *dmadev; 41 42 if (!op->data.nbytes) 43 return -EINVAL; 44 45 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) 46 dmadev = ctlr->dma_tx->device->dev; 47 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) 48 dmadev = ctlr->dma_rx->device->dev; 49 else 50 dmadev = ctlr->dev.parent; 51 52 if (!dmadev) 53 return -EINVAL; 54 55 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes, 56 op->data.dir == SPI_MEM_DATA_IN ? 57 DMA_FROM_DEVICE : DMA_TO_DEVICE); 58 } 59 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data); 60 61 /** 62 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a 63 * memory operation 64 * @ctlr: the SPI controller requesting this dma_unmap() 65 * @op: the memory operation containing the buffer to unmap 66 * @sgt: a pointer to an sg_table previously initialized by 67 * spi_controller_dma_map_mem_op_data() 68 * 69 * Some controllers might want to do DMA on the data buffer embedded in @op. 70 * This helper prepares things so that the CPU can access the 71 * op->data.buf.{in,out} buffer again. 72 * 73 * This function is not intended to be called from SPI drivers. Only SPI 74 * controller drivers should use it. 75 * 76 * This function should be called after the DMA operation has finished and is 77 * only valid if the previous spi_controller_dma_map_mem_op_data() call 78 * returned 0. 79 * 80 * Return: 0 in case of success, a negative error code otherwise. 81 */ 82 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, 83 const struct spi_mem_op *op, 84 struct sg_table *sgt) 85 { 86 struct device *dmadev; 87 88 if (!op->data.nbytes) 89 return; 90 91 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) 92 dmadev = ctlr->dma_tx->device->dev; 93 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) 94 dmadev = ctlr->dma_rx->device->dev; 95 else 96 dmadev = ctlr->dev.parent; 97 98 spi_unmap_buf(ctlr, dmadev, sgt, 99 op->data.dir == SPI_MEM_DATA_IN ? 100 DMA_FROM_DEVICE : DMA_TO_DEVICE); 101 } 102 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data); 103 104 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx) 105 { 106 u32 mode = mem->spi->mode; 107 108 switch (buswidth) { 109 case 1: 110 return 0; 111 112 case 2: 113 if ((tx && 114 (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) || 115 (!tx && 116 (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))) 117 return 0; 118 119 break; 120 121 case 4: 122 if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) || 123 (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL)))) 124 return 0; 125 126 break; 127 128 case 8: 129 if ((tx && (mode & SPI_TX_OCTAL)) || 130 (!tx && (mode & SPI_RX_OCTAL))) 131 return 0; 132 133 break; 134 135 default: 136 break; 137 } 138 139 return -ENOTSUPP; 140 } 141 142 static bool spi_mem_check_buswidth(struct spi_mem *mem, 143 const struct spi_mem_op *op) 144 { 145 if (spi_check_buswidth_req(mem, op->cmd.buswidth, true)) 146 return false; 147 148 if (op->addr.nbytes && 149 spi_check_buswidth_req(mem, op->addr.buswidth, true)) 150 return false; 151 152 if (op->dummy.nbytes && 153 spi_check_buswidth_req(mem, op->dummy.buswidth, true)) 154 return false; 155 156 if (op->data.dir != SPI_MEM_NO_DATA && 157 spi_check_buswidth_req(mem, op->data.buswidth, 158 op->data.dir == SPI_MEM_DATA_OUT)) 159 return false; 160 161 return true; 162 } 163 164 bool spi_mem_default_supports_op(struct spi_mem *mem, 165 const struct spi_mem_op *op) 166 { 167 struct spi_controller *ctlr = mem->spi->controller; 168 bool op_is_dtr = 169 op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr; 170 171 if (op_is_dtr) { 172 if (!spi_mem_controller_is_capable(ctlr, dtr)) 173 return false; 174 175 if (op->cmd.nbytes != 2) 176 return false; 177 } else { 178 if (op->cmd.nbytes != 1) 179 return false; 180 } 181 182 if (op->data.ecc) { 183 if (!spi_mem_controller_is_capable(ctlr, ecc)) 184 return false; 185 } 186 187 return spi_mem_check_buswidth(mem, op); 188 } 189 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op); 190 191 static bool spi_mem_buswidth_is_valid(u8 buswidth) 192 { 193 if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH) 194 return false; 195 196 return true; 197 } 198 199 static int spi_mem_check_op(const struct spi_mem_op *op) 200 { 201 if (!op->cmd.buswidth || !op->cmd.nbytes) 202 return -EINVAL; 203 204 if ((op->addr.nbytes && !op->addr.buswidth) || 205 (op->dummy.nbytes && !op->dummy.buswidth) || 206 (op->data.nbytes && !op->data.buswidth)) 207 return -EINVAL; 208 209 if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) || 210 !spi_mem_buswidth_is_valid(op->addr.buswidth) || 211 !spi_mem_buswidth_is_valid(op->dummy.buswidth) || 212 !spi_mem_buswidth_is_valid(op->data.buswidth)) 213 return -EINVAL; 214 215 /* Buffers must be DMA-able. */ 216 if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_IN && 217 object_is_on_stack(op->data.buf.in))) 218 return -EINVAL; 219 220 if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_OUT && 221 object_is_on_stack(op->data.buf.out))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 static bool spi_mem_internal_supports_op(struct spi_mem *mem, 228 const struct spi_mem_op *op) 229 { 230 struct spi_controller *ctlr = mem->spi->controller; 231 232 if (ctlr->mem_ops && ctlr->mem_ops->supports_op) 233 return ctlr->mem_ops->supports_op(mem, op); 234 235 return spi_mem_default_supports_op(mem, op); 236 } 237 238 /** 239 * spi_mem_supports_op() - Check if a memory device and the controller it is 240 * connected to support a specific memory operation 241 * @mem: the SPI memory 242 * @op: the memory operation to check 243 * 244 * Some controllers are only supporting Single or Dual IOs, others might only 245 * support specific opcodes, or it can even be that the controller and device 246 * both support Quad IOs but the hardware prevents you from using it because 247 * only 2 IO lines are connected. 248 * 249 * This function checks whether a specific operation is supported. 250 * 251 * Return: true if @op is supported, false otherwise. 252 */ 253 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) 254 { 255 if (spi_mem_check_op(op)) 256 return false; 257 258 return spi_mem_internal_supports_op(mem, op); 259 } 260 EXPORT_SYMBOL_GPL(spi_mem_supports_op); 261 262 static int spi_mem_access_start(struct spi_mem *mem) 263 { 264 struct spi_controller *ctlr = mem->spi->controller; 265 266 /* 267 * Flush the message queue before executing our SPI memory 268 * operation to prevent preemption of regular SPI transfers. 269 */ 270 spi_flush_queue(ctlr); 271 272 if (ctlr->auto_runtime_pm) { 273 int ret; 274 275 ret = pm_runtime_resume_and_get(ctlr->dev.parent); 276 if (ret < 0) { 277 dev_err(&ctlr->dev, "Failed to power device: %d\n", 278 ret); 279 return ret; 280 } 281 } 282 283 mutex_lock(&ctlr->bus_lock_mutex); 284 mutex_lock(&ctlr->io_mutex); 285 286 return 0; 287 } 288 289 static void spi_mem_access_end(struct spi_mem *mem) 290 { 291 struct spi_controller *ctlr = mem->spi->controller; 292 293 mutex_unlock(&ctlr->io_mutex); 294 mutex_unlock(&ctlr->bus_lock_mutex); 295 296 if (ctlr->auto_runtime_pm) 297 pm_runtime_put(ctlr->dev.parent); 298 } 299 300 /** 301 * spi_mem_exec_op() - Execute a memory operation 302 * @mem: the SPI memory 303 * @op: the memory operation to execute 304 * 305 * Executes a memory operation. 306 * 307 * This function first checks that @op is supported and then tries to execute 308 * it. 309 * 310 * Return: 0 in case of success, a negative error code otherwise. 311 */ 312 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) 313 { 314 unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0; 315 struct spi_controller *ctlr = mem->spi->controller; 316 struct spi_transfer xfers[4] = { }; 317 struct spi_message msg; 318 u8 *tmpbuf; 319 int ret; 320 321 ret = spi_mem_check_op(op); 322 if (ret) 323 return ret; 324 325 if (!spi_mem_internal_supports_op(mem, op)) 326 return -ENOTSUPP; 327 328 if (ctlr->mem_ops && ctlr->mem_ops->exec_op && !spi_get_csgpiod(mem->spi, 0)) { 329 ret = spi_mem_access_start(mem); 330 if (ret) 331 return ret; 332 333 ret = ctlr->mem_ops->exec_op(mem, op); 334 335 spi_mem_access_end(mem); 336 337 /* 338 * Some controllers only optimize specific paths (typically the 339 * read path) and expect the core to use the regular SPI 340 * interface in other cases. 341 */ 342 if (!ret || ret != -ENOTSUPP) 343 return ret; 344 } 345 346 tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; 347 348 /* 349 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so 350 * we're guaranteed that this buffer is DMA-able, as required by the 351 * SPI layer. 352 */ 353 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA); 354 if (!tmpbuf) 355 return -ENOMEM; 356 357 spi_message_init(&msg); 358 359 tmpbuf[0] = op->cmd.opcode; 360 xfers[xferpos].tx_buf = tmpbuf; 361 xfers[xferpos].len = op->cmd.nbytes; 362 xfers[xferpos].tx_nbits = op->cmd.buswidth; 363 spi_message_add_tail(&xfers[xferpos], &msg); 364 xferpos++; 365 totalxferlen++; 366 367 if (op->addr.nbytes) { 368 int i; 369 370 for (i = 0; i < op->addr.nbytes; i++) 371 tmpbuf[i + 1] = op->addr.val >> 372 (8 * (op->addr.nbytes - i - 1)); 373 374 xfers[xferpos].tx_buf = tmpbuf + 1; 375 xfers[xferpos].len = op->addr.nbytes; 376 xfers[xferpos].tx_nbits = op->addr.buswidth; 377 spi_message_add_tail(&xfers[xferpos], &msg); 378 xferpos++; 379 totalxferlen += op->addr.nbytes; 380 } 381 382 if (op->dummy.nbytes) { 383 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes); 384 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1; 385 xfers[xferpos].len = op->dummy.nbytes; 386 xfers[xferpos].tx_nbits = op->dummy.buswidth; 387 xfers[xferpos].dummy_data = 1; 388 spi_message_add_tail(&xfers[xferpos], &msg); 389 xferpos++; 390 totalxferlen += op->dummy.nbytes; 391 } 392 393 if (op->data.nbytes) { 394 if (op->data.dir == SPI_MEM_DATA_IN) { 395 xfers[xferpos].rx_buf = op->data.buf.in; 396 xfers[xferpos].rx_nbits = op->data.buswidth; 397 } else { 398 xfers[xferpos].tx_buf = op->data.buf.out; 399 xfers[xferpos].tx_nbits = op->data.buswidth; 400 } 401 402 xfers[xferpos].len = op->data.nbytes; 403 spi_message_add_tail(&xfers[xferpos], &msg); 404 xferpos++; 405 totalxferlen += op->data.nbytes; 406 } 407 408 ret = spi_sync(mem->spi, &msg); 409 410 kfree(tmpbuf); 411 412 if (ret) 413 return ret; 414 415 if (msg.actual_length != totalxferlen) 416 return -EIO; 417 418 return 0; 419 } 420 EXPORT_SYMBOL_GPL(spi_mem_exec_op); 421 422 /** 423 * spi_mem_get_name() - Return the SPI mem device name to be used by the 424 * upper layer if necessary 425 * @mem: the SPI memory 426 * 427 * This function allows SPI mem users to retrieve the SPI mem device name. 428 * It is useful if the upper layer needs to expose a custom name for 429 * compatibility reasons. 430 * 431 * Return: a string containing the name of the memory device to be used 432 * by the SPI mem user 433 */ 434 const char *spi_mem_get_name(struct spi_mem *mem) 435 { 436 return mem->name; 437 } 438 EXPORT_SYMBOL_GPL(spi_mem_get_name); 439 440 /** 441 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to 442 * match controller limitations 443 * @mem: the SPI memory 444 * @op: the operation to adjust 445 * 446 * Some controllers have FIFO limitations and must split a data transfer 447 * operation into multiple ones, others require a specific alignment for 448 * optimized accesses. This function allows SPI mem drivers to split a single 449 * operation into multiple sub-operations when required. 450 * 451 * Return: a negative error code if the controller can't properly adjust @op, 452 * 0 otherwise. Note that @op->data.nbytes will be updated if @op 453 * can't be handled in a single step. 454 */ 455 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) 456 { 457 struct spi_controller *ctlr = mem->spi->controller; 458 size_t len; 459 460 if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size) 461 return ctlr->mem_ops->adjust_op_size(mem, op); 462 463 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 464 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; 465 466 if (len > spi_max_transfer_size(mem->spi)) 467 return -EINVAL; 468 469 op->data.nbytes = min3((size_t)op->data.nbytes, 470 spi_max_transfer_size(mem->spi), 471 spi_max_message_size(mem->spi) - 472 len); 473 if (!op->data.nbytes) 474 return -EINVAL; 475 } 476 477 return 0; 478 } 479 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size); 480 481 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc, 482 u64 offs, size_t len, void *buf) 483 { 484 struct spi_mem_op op = desc->info.op_tmpl; 485 int ret; 486 487 op.addr.val = desc->info.offset + offs; 488 op.data.buf.in = buf; 489 op.data.nbytes = len; 490 ret = spi_mem_adjust_op_size(desc->mem, &op); 491 if (ret) 492 return ret; 493 494 ret = spi_mem_exec_op(desc->mem, &op); 495 if (ret) 496 return ret; 497 498 return op.data.nbytes; 499 } 500 501 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc, 502 u64 offs, size_t len, const void *buf) 503 { 504 struct spi_mem_op op = desc->info.op_tmpl; 505 int ret; 506 507 op.addr.val = desc->info.offset + offs; 508 op.data.buf.out = buf; 509 op.data.nbytes = len; 510 ret = spi_mem_adjust_op_size(desc->mem, &op); 511 if (ret) 512 return ret; 513 514 ret = spi_mem_exec_op(desc->mem, &op); 515 if (ret) 516 return ret; 517 518 return op.data.nbytes; 519 } 520 521 /** 522 * spi_mem_dirmap_create() - Create a direct mapping descriptor 523 * @mem: SPI mem device this direct mapping should be created for 524 * @info: direct mapping information 525 * 526 * This function is creating a direct mapping descriptor which can then be used 527 * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write(). 528 * If the SPI controller driver does not support direct mapping, this function 529 * falls back to an implementation using spi_mem_exec_op(), so that the caller 530 * doesn't have to bother implementing a fallback on his own. 531 * 532 * Return: a valid pointer in case of success, and ERR_PTR() otherwise. 533 */ 534 struct spi_mem_dirmap_desc * 535 spi_mem_dirmap_create(struct spi_mem *mem, 536 const struct spi_mem_dirmap_info *info) 537 { 538 struct spi_controller *ctlr = mem->spi->controller; 539 struct spi_mem_dirmap_desc *desc; 540 int ret = -ENOTSUPP; 541 542 /* Make sure the number of address cycles is between 1 and 8 bytes. */ 543 if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8) 544 return ERR_PTR(-EINVAL); 545 546 /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */ 547 if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA) 548 return ERR_PTR(-EINVAL); 549 550 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 551 if (!desc) 552 return ERR_PTR(-ENOMEM); 553 554 desc->mem = mem; 555 desc->info = *info; 556 if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create) 557 ret = ctlr->mem_ops->dirmap_create(desc); 558 559 if (ret) { 560 desc->nodirmap = true; 561 if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl)) 562 ret = -ENOTSUPP; 563 else 564 ret = 0; 565 } 566 567 if (ret) { 568 kfree(desc); 569 return ERR_PTR(ret); 570 } 571 572 return desc; 573 } 574 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create); 575 576 /** 577 * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor 578 * @desc: the direct mapping descriptor to destroy 579 * 580 * This function destroys a direct mapping descriptor previously created by 581 * spi_mem_dirmap_create(). 582 */ 583 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc) 584 { 585 struct spi_controller *ctlr = desc->mem->spi->controller; 586 587 if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy) 588 ctlr->mem_ops->dirmap_destroy(desc); 589 590 kfree(desc); 591 } 592 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy); 593 594 static void devm_spi_mem_dirmap_release(struct device *dev, void *res) 595 { 596 struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res; 597 598 spi_mem_dirmap_destroy(desc); 599 } 600 601 /** 602 * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach 603 * it to a device 604 * @dev: device the dirmap desc will be attached to 605 * @mem: SPI mem device this direct mapping should be created for 606 * @info: direct mapping information 607 * 608 * devm_ variant of the spi_mem_dirmap_create() function. See 609 * spi_mem_dirmap_create() for more details. 610 * 611 * Return: a valid pointer in case of success, and ERR_PTR() otherwise. 612 */ 613 struct spi_mem_dirmap_desc * 614 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem, 615 const struct spi_mem_dirmap_info *info) 616 { 617 struct spi_mem_dirmap_desc **ptr, *desc; 618 619 ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr), 620 GFP_KERNEL); 621 if (!ptr) 622 return ERR_PTR(-ENOMEM); 623 624 desc = spi_mem_dirmap_create(mem, info); 625 if (IS_ERR(desc)) { 626 devres_free(ptr); 627 } else { 628 *ptr = desc; 629 devres_add(dev, ptr); 630 } 631 632 return desc; 633 } 634 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create); 635 636 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data) 637 { 638 struct spi_mem_dirmap_desc **ptr = res; 639 640 if (WARN_ON(!ptr || !*ptr)) 641 return 0; 642 643 return *ptr == data; 644 } 645 646 /** 647 * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached 648 * to a device 649 * @dev: device the dirmap desc is attached to 650 * @desc: the direct mapping descriptor to destroy 651 * 652 * devm_ variant of the spi_mem_dirmap_destroy() function. See 653 * spi_mem_dirmap_destroy() for more details. 654 */ 655 void devm_spi_mem_dirmap_destroy(struct device *dev, 656 struct spi_mem_dirmap_desc *desc) 657 { 658 devres_release(dev, devm_spi_mem_dirmap_release, 659 devm_spi_mem_dirmap_match, desc); 660 } 661 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy); 662 663 /** 664 * spi_mem_dirmap_read() - Read data through a direct mapping 665 * @desc: direct mapping descriptor 666 * @offs: offset to start reading from. Note that this is not an absolute 667 * offset, but the offset within the direct mapping which already has 668 * its own offset 669 * @len: length in bytes 670 * @buf: destination buffer. This buffer must be DMA-able 671 * 672 * This function reads data from a memory device using a direct mapping 673 * previously instantiated with spi_mem_dirmap_create(). 674 * 675 * Return: the amount of data read from the memory device or a negative error 676 * code. Note that the returned size might be smaller than @len, and the caller 677 * is responsible for calling spi_mem_dirmap_read() again when that happens. 678 */ 679 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc, 680 u64 offs, size_t len, void *buf) 681 { 682 struct spi_controller *ctlr = desc->mem->spi->controller; 683 ssize_t ret; 684 685 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN) 686 return -EINVAL; 687 688 if (!len) 689 return 0; 690 691 if (desc->nodirmap) { 692 ret = spi_mem_no_dirmap_read(desc, offs, len, buf); 693 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) { 694 ret = spi_mem_access_start(desc->mem); 695 if (ret) 696 return ret; 697 698 ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf); 699 700 spi_mem_access_end(desc->mem); 701 } else { 702 ret = -ENOTSUPP; 703 } 704 705 return ret; 706 } 707 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read); 708 709 /** 710 * spi_mem_dirmap_write() - Write data through a direct mapping 711 * @desc: direct mapping descriptor 712 * @offs: offset to start writing from. Note that this is not an absolute 713 * offset, but the offset within the direct mapping which already has 714 * its own offset 715 * @len: length in bytes 716 * @buf: source buffer. This buffer must be DMA-able 717 * 718 * This function writes data to a memory device using a direct mapping 719 * previously instantiated with spi_mem_dirmap_create(). 720 * 721 * Return: the amount of data written to the memory device or a negative error 722 * code. Note that the returned size might be smaller than @len, and the caller 723 * is responsible for calling spi_mem_dirmap_write() again when that happens. 724 */ 725 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc, 726 u64 offs, size_t len, const void *buf) 727 { 728 struct spi_controller *ctlr = desc->mem->spi->controller; 729 ssize_t ret; 730 731 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT) 732 return -EINVAL; 733 734 if (!len) 735 return 0; 736 737 if (desc->nodirmap) { 738 ret = spi_mem_no_dirmap_write(desc, offs, len, buf); 739 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) { 740 ret = spi_mem_access_start(desc->mem); 741 if (ret) 742 return ret; 743 744 ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf); 745 746 spi_mem_access_end(desc->mem); 747 } else { 748 ret = -ENOTSUPP; 749 } 750 751 return ret; 752 } 753 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write); 754 755 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv) 756 { 757 return container_of(drv, struct spi_mem_driver, spidrv.driver); 758 } 759 760 static int spi_mem_read_status(struct spi_mem *mem, 761 const struct spi_mem_op *op, 762 u16 *status) 763 { 764 const u8 *bytes = (u8 *)op->data.buf.in; 765 int ret; 766 767 ret = spi_mem_exec_op(mem, op); 768 if (ret) 769 return ret; 770 771 if (op->data.nbytes > 1) 772 *status = ((u16)bytes[0] << 8) | bytes[1]; 773 else 774 *status = bytes[0]; 775 776 return 0; 777 } 778 779 /** 780 * spi_mem_poll_status() - Poll memory device status 781 * @mem: SPI memory device 782 * @op: the memory operation to execute 783 * @mask: status bitmask to ckeck 784 * @match: (status & mask) expected value 785 * @initial_delay_us: delay in us before starting to poll 786 * @polling_delay_us: time to sleep between reads in us 787 * @timeout_ms: timeout in milliseconds 788 * 789 * This function polls a status register and returns when 790 * (status & mask) == match or when the timeout has expired. 791 * 792 * Return: 0 in case of success, -ETIMEDOUT in case of error, 793 * -EOPNOTSUPP if not supported. 794 */ 795 int spi_mem_poll_status(struct spi_mem *mem, 796 const struct spi_mem_op *op, 797 u16 mask, u16 match, 798 unsigned long initial_delay_us, 799 unsigned long polling_delay_us, 800 u16 timeout_ms) 801 { 802 struct spi_controller *ctlr = mem->spi->controller; 803 int ret = -EOPNOTSUPP; 804 int read_status_ret; 805 u16 status; 806 807 if (op->data.nbytes < 1 || op->data.nbytes > 2 || 808 op->data.dir != SPI_MEM_DATA_IN) 809 return -EINVAL; 810 811 if (ctlr->mem_ops && ctlr->mem_ops->poll_status && !spi_get_csgpiod(mem->spi, 0)) { 812 ret = spi_mem_access_start(mem); 813 if (ret) 814 return ret; 815 816 ret = ctlr->mem_ops->poll_status(mem, op, mask, match, 817 initial_delay_us, polling_delay_us, 818 timeout_ms); 819 820 spi_mem_access_end(mem); 821 } 822 823 if (ret == -EOPNOTSUPP) { 824 if (!spi_mem_supports_op(mem, op)) 825 return ret; 826 827 if (initial_delay_us < 10) 828 udelay(initial_delay_us); 829 else 830 usleep_range((initial_delay_us >> 2) + 1, 831 initial_delay_us); 832 833 ret = read_poll_timeout(spi_mem_read_status, read_status_ret, 834 (read_status_ret || ((status) & mask) == match), 835 polling_delay_us, timeout_ms * 1000, false, mem, 836 op, &status); 837 if (read_status_ret) 838 return read_status_ret; 839 } 840 841 return ret; 842 } 843 EXPORT_SYMBOL_GPL(spi_mem_poll_status); 844 845 static int spi_mem_probe(struct spi_device *spi) 846 { 847 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 848 struct spi_controller *ctlr = spi->controller; 849 struct spi_mem *mem; 850 851 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL); 852 if (!mem) 853 return -ENOMEM; 854 855 mem->spi = spi; 856 857 if (ctlr->mem_ops && ctlr->mem_ops->get_name) 858 mem->name = ctlr->mem_ops->get_name(mem); 859 else 860 mem->name = dev_name(&spi->dev); 861 862 if (IS_ERR_OR_NULL(mem->name)) 863 return PTR_ERR_OR_ZERO(mem->name); 864 865 spi_set_drvdata(spi, mem); 866 867 return memdrv->probe(mem); 868 } 869 870 static void spi_mem_remove(struct spi_device *spi) 871 { 872 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 873 struct spi_mem *mem = spi_get_drvdata(spi); 874 875 if (memdrv->remove) 876 memdrv->remove(mem); 877 } 878 879 static void spi_mem_shutdown(struct spi_device *spi) 880 { 881 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 882 struct spi_mem *mem = spi_get_drvdata(spi); 883 884 if (memdrv->shutdown) 885 memdrv->shutdown(mem); 886 } 887 888 /** 889 * spi_mem_driver_register_with_owner() - Register a SPI memory driver 890 * @memdrv: the SPI memory driver to register 891 * @owner: the owner of this driver 892 * 893 * Registers a SPI memory driver. 894 * 895 * Return: 0 in case of success, a negative error core otherwise. 896 */ 897 898 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv, 899 struct module *owner) 900 { 901 memdrv->spidrv.probe = spi_mem_probe; 902 memdrv->spidrv.remove = spi_mem_remove; 903 memdrv->spidrv.shutdown = spi_mem_shutdown; 904 905 return __spi_register_driver(owner, &memdrv->spidrv); 906 } 907 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner); 908 909 /** 910 * spi_mem_driver_unregister() - Unregister a SPI memory driver 911 * @memdrv: the SPI memory driver to unregister 912 * 913 * Unregisters a SPI memory driver. 914 */ 915 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv) 916 { 917 spi_unregister_driver(&memdrv->spidrv); 918 } 919 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister); 920