1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2018 Exceet Electronics GmbH 4 * Copyright (C) 2018 Bootlin 5 * 6 * Author: Boris Brezillon <boris.brezillon@bootlin.com> 7 */ 8 #include <linux/dmaengine.h> 9 #include <linux/pm_runtime.h> 10 #include <linux/spi/spi.h> 11 #include <linux/spi/spi-mem.h> 12 13 #include "internals.h" 14 15 #define SPI_MEM_MAX_BUSWIDTH 8 16 17 /** 18 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a 19 * memory operation 20 * @ctlr: the SPI controller requesting this dma_map() 21 * @op: the memory operation containing the buffer to map 22 * @sgt: a pointer to a non-initialized sg_table that will be filled by this 23 * function 24 * 25 * Some controllers might want to do DMA on the data buffer embedded in @op. 26 * This helper prepares everything for you and provides a ready-to-use 27 * sg_table. This function is not intended to be called from spi drivers. 28 * Only SPI controller drivers should use it. 29 * Note that the caller must ensure the memory region pointed by 30 * op->data.buf.{in,out} is DMA-able before calling this function. 31 * 32 * Return: 0 in case of success, a negative error code otherwise. 33 */ 34 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, 35 const struct spi_mem_op *op, 36 struct sg_table *sgt) 37 { 38 struct device *dmadev; 39 40 if (!op->data.nbytes) 41 return -EINVAL; 42 43 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) 44 dmadev = ctlr->dma_tx->device->dev; 45 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) 46 dmadev = ctlr->dma_rx->device->dev; 47 else 48 dmadev = ctlr->dev.parent; 49 50 if (!dmadev) 51 return -EINVAL; 52 53 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes, 54 op->data.dir == SPI_MEM_DATA_IN ? 55 DMA_FROM_DEVICE : DMA_TO_DEVICE); 56 } 57 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data); 58 59 /** 60 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a 61 * memory operation 62 * @ctlr: the SPI controller requesting this dma_unmap() 63 * @op: the memory operation containing the buffer to unmap 64 * @sgt: a pointer to an sg_table previously initialized by 65 * spi_controller_dma_map_mem_op_data() 66 * 67 * Some controllers might want to do DMA on the data buffer embedded in @op. 68 * This helper prepares things so that the CPU can access the 69 * op->data.buf.{in,out} buffer again. 70 * 71 * This function is not intended to be called from SPI drivers. Only SPI 72 * controller drivers should use it. 73 * 74 * This function should be called after the DMA operation has finished and is 75 * only valid if the previous spi_controller_dma_map_mem_op_data() call 76 * returned 0. 77 * 78 * Return: 0 in case of success, a negative error code otherwise. 79 */ 80 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, 81 const struct spi_mem_op *op, 82 struct sg_table *sgt) 83 { 84 struct device *dmadev; 85 86 if (!op->data.nbytes) 87 return; 88 89 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) 90 dmadev = ctlr->dma_tx->device->dev; 91 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) 92 dmadev = ctlr->dma_rx->device->dev; 93 else 94 dmadev = ctlr->dev.parent; 95 96 spi_unmap_buf(ctlr, dmadev, sgt, 97 op->data.dir == SPI_MEM_DATA_IN ? 98 DMA_FROM_DEVICE : DMA_TO_DEVICE); 99 } 100 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data); 101 102 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx) 103 { 104 u32 mode = mem->spi->mode; 105 106 switch (buswidth) { 107 case 1: 108 return 0; 109 110 case 2: 111 if ((tx && 112 (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) || 113 (!tx && 114 (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))) 115 return 0; 116 117 break; 118 119 case 4: 120 if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) || 121 (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL)))) 122 return 0; 123 124 break; 125 126 case 8: 127 if ((tx && (mode & SPI_TX_OCTAL)) || 128 (!tx && (mode & SPI_RX_OCTAL))) 129 return 0; 130 131 break; 132 133 default: 134 break; 135 } 136 137 return -ENOTSUPP; 138 } 139 140 static bool spi_mem_check_buswidth(struct spi_mem *mem, 141 const struct spi_mem_op *op) 142 { 143 if (spi_check_buswidth_req(mem, op->cmd.buswidth, true)) 144 return false; 145 146 if (op->addr.nbytes && 147 spi_check_buswidth_req(mem, op->addr.buswidth, true)) 148 return false; 149 150 if (op->dummy.nbytes && 151 spi_check_buswidth_req(mem, op->dummy.buswidth, true)) 152 return false; 153 154 if (op->data.dir != SPI_MEM_NO_DATA && 155 spi_check_buswidth_req(mem, op->data.buswidth, 156 op->data.dir == SPI_MEM_DATA_OUT)) 157 return false; 158 159 return true; 160 } 161 162 bool spi_mem_dtr_supports_op(struct spi_mem *mem, 163 const struct spi_mem_op *op) 164 { 165 if (op->cmd.nbytes != 2) 166 return false; 167 168 return spi_mem_check_buswidth(mem, op); 169 } 170 EXPORT_SYMBOL_GPL(spi_mem_dtr_supports_op); 171 172 bool spi_mem_default_supports_op(struct spi_mem *mem, 173 const struct spi_mem_op *op) 174 { 175 if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr) 176 return false; 177 178 if (op->cmd.nbytes != 1) 179 return false; 180 181 return spi_mem_check_buswidth(mem, op); 182 } 183 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op); 184 185 static bool spi_mem_buswidth_is_valid(u8 buswidth) 186 { 187 if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH) 188 return false; 189 190 return true; 191 } 192 193 static int spi_mem_check_op(const struct spi_mem_op *op) 194 { 195 if (!op->cmd.buswidth || !op->cmd.nbytes) 196 return -EINVAL; 197 198 if ((op->addr.nbytes && !op->addr.buswidth) || 199 (op->dummy.nbytes && !op->dummy.buswidth) || 200 (op->data.nbytes && !op->data.buswidth)) 201 return -EINVAL; 202 203 if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) || 204 !spi_mem_buswidth_is_valid(op->addr.buswidth) || 205 !spi_mem_buswidth_is_valid(op->dummy.buswidth) || 206 !spi_mem_buswidth_is_valid(op->data.buswidth)) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 static bool spi_mem_internal_supports_op(struct spi_mem *mem, 213 const struct spi_mem_op *op) 214 { 215 struct spi_controller *ctlr = mem->spi->controller; 216 217 if (ctlr->mem_ops && ctlr->mem_ops->supports_op) 218 return ctlr->mem_ops->supports_op(mem, op); 219 220 return spi_mem_default_supports_op(mem, op); 221 } 222 223 /** 224 * spi_mem_supports_op() - Check if a memory device and the controller it is 225 * connected to support a specific memory operation 226 * @mem: the SPI memory 227 * @op: the memory operation to check 228 * 229 * Some controllers are only supporting Single or Dual IOs, others might only 230 * support specific opcodes, or it can even be that the controller and device 231 * both support Quad IOs but the hardware prevents you from using it because 232 * only 2 IO lines are connected. 233 * 234 * This function checks whether a specific operation is supported. 235 * 236 * Return: true if @op is supported, false otherwise. 237 */ 238 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) 239 { 240 if (spi_mem_check_op(op)) 241 return false; 242 243 return spi_mem_internal_supports_op(mem, op); 244 } 245 EXPORT_SYMBOL_GPL(spi_mem_supports_op); 246 247 static int spi_mem_access_start(struct spi_mem *mem) 248 { 249 struct spi_controller *ctlr = mem->spi->controller; 250 251 /* 252 * Flush the message queue before executing our SPI memory 253 * operation to prevent preemption of regular SPI transfers. 254 */ 255 spi_flush_queue(ctlr); 256 257 if (ctlr->auto_runtime_pm) { 258 int ret; 259 260 ret = pm_runtime_get_sync(ctlr->dev.parent); 261 if (ret < 0) { 262 pm_runtime_put_noidle(ctlr->dev.parent); 263 dev_err(&ctlr->dev, "Failed to power device: %d\n", 264 ret); 265 return ret; 266 } 267 } 268 269 mutex_lock(&ctlr->bus_lock_mutex); 270 mutex_lock(&ctlr->io_mutex); 271 272 return 0; 273 } 274 275 static void spi_mem_access_end(struct spi_mem *mem) 276 { 277 struct spi_controller *ctlr = mem->spi->controller; 278 279 mutex_unlock(&ctlr->io_mutex); 280 mutex_unlock(&ctlr->bus_lock_mutex); 281 282 if (ctlr->auto_runtime_pm) 283 pm_runtime_put(ctlr->dev.parent); 284 } 285 286 /** 287 * spi_mem_exec_op() - Execute a memory operation 288 * @mem: the SPI memory 289 * @op: the memory operation to execute 290 * 291 * Executes a memory operation. 292 * 293 * This function first checks that @op is supported and then tries to execute 294 * it. 295 * 296 * Return: 0 in case of success, a negative error code otherwise. 297 */ 298 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) 299 { 300 unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0; 301 struct spi_controller *ctlr = mem->spi->controller; 302 struct spi_transfer xfers[4] = { }; 303 struct spi_message msg; 304 u8 *tmpbuf; 305 int ret; 306 307 ret = spi_mem_check_op(op); 308 if (ret) 309 return ret; 310 311 if (!spi_mem_internal_supports_op(mem, op)) 312 return -ENOTSUPP; 313 314 if (ctlr->mem_ops && !mem->spi->cs_gpiod) { 315 ret = spi_mem_access_start(mem); 316 if (ret) 317 return ret; 318 319 ret = ctlr->mem_ops->exec_op(mem, op); 320 321 spi_mem_access_end(mem); 322 323 /* 324 * Some controllers only optimize specific paths (typically the 325 * read path) and expect the core to use the regular SPI 326 * interface in other cases. 327 */ 328 if (!ret || ret != -ENOTSUPP) 329 return ret; 330 } 331 332 tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; 333 334 /* 335 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so 336 * we're guaranteed that this buffer is DMA-able, as required by the 337 * SPI layer. 338 */ 339 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA); 340 if (!tmpbuf) 341 return -ENOMEM; 342 343 spi_message_init(&msg); 344 345 tmpbuf[0] = op->cmd.opcode; 346 xfers[xferpos].tx_buf = tmpbuf; 347 xfers[xferpos].len = op->cmd.nbytes; 348 xfers[xferpos].tx_nbits = op->cmd.buswidth; 349 spi_message_add_tail(&xfers[xferpos], &msg); 350 xferpos++; 351 totalxferlen++; 352 353 if (op->addr.nbytes) { 354 int i; 355 356 for (i = 0; i < op->addr.nbytes; i++) 357 tmpbuf[i + 1] = op->addr.val >> 358 (8 * (op->addr.nbytes - i - 1)); 359 360 xfers[xferpos].tx_buf = tmpbuf + 1; 361 xfers[xferpos].len = op->addr.nbytes; 362 xfers[xferpos].tx_nbits = op->addr.buswidth; 363 spi_message_add_tail(&xfers[xferpos], &msg); 364 xferpos++; 365 totalxferlen += op->addr.nbytes; 366 } 367 368 if (op->dummy.nbytes) { 369 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes); 370 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1; 371 xfers[xferpos].len = op->dummy.nbytes; 372 xfers[xferpos].tx_nbits = op->dummy.buswidth; 373 xfers[xferpos].dummy_data = 1; 374 spi_message_add_tail(&xfers[xferpos], &msg); 375 xferpos++; 376 totalxferlen += op->dummy.nbytes; 377 } 378 379 if (op->data.nbytes) { 380 if (op->data.dir == SPI_MEM_DATA_IN) { 381 xfers[xferpos].rx_buf = op->data.buf.in; 382 xfers[xferpos].rx_nbits = op->data.buswidth; 383 } else { 384 xfers[xferpos].tx_buf = op->data.buf.out; 385 xfers[xferpos].tx_nbits = op->data.buswidth; 386 } 387 388 xfers[xferpos].len = op->data.nbytes; 389 spi_message_add_tail(&xfers[xferpos], &msg); 390 xferpos++; 391 totalxferlen += op->data.nbytes; 392 } 393 394 ret = spi_sync(mem->spi, &msg); 395 396 kfree(tmpbuf); 397 398 if (ret) 399 return ret; 400 401 if (msg.actual_length != totalxferlen) 402 return -EIO; 403 404 return 0; 405 } 406 EXPORT_SYMBOL_GPL(spi_mem_exec_op); 407 408 /** 409 * spi_mem_get_name() - Return the SPI mem device name to be used by the 410 * upper layer if necessary 411 * @mem: the SPI memory 412 * 413 * This function allows SPI mem users to retrieve the SPI mem device name. 414 * It is useful if the upper layer needs to expose a custom name for 415 * compatibility reasons. 416 * 417 * Return: a string containing the name of the memory device to be used 418 * by the SPI mem user 419 */ 420 const char *spi_mem_get_name(struct spi_mem *mem) 421 { 422 return mem->name; 423 } 424 EXPORT_SYMBOL_GPL(spi_mem_get_name); 425 426 /** 427 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to 428 * match controller limitations 429 * @mem: the SPI memory 430 * @op: the operation to adjust 431 * 432 * Some controllers have FIFO limitations and must split a data transfer 433 * operation into multiple ones, others require a specific alignment for 434 * optimized accesses. This function allows SPI mem drivers to split a single 435 * operation into multiple sub-operations when required. 436 * 437 * Return: a negative error code if the controller can't properly adjust @op, 438 * 0 otherwise. Note that @op->data.nbytes will be updated if @op 439 * can't be handled in a single step. 440 */ 441 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) 442 { 443 struct spi_controller *ctlr = mem->spi->controller; 444 size_t len; 445 446 if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size) 447 return ctlr->mem_ops->adjust_op_size(mem, op); 448 449 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 450 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; 451 452 if (len > spi_max_transfer_size(mem->spi)) 453 return -EINVAL; 454 455 op->data.nbytes = min3((size_t)op->data.nbytes, 456 spi_max_transfer_size(mem->spi), 457 spi_max_message_size(mem->spi) - 458 len); 459 if (!op->data.nbytes) 460 return -EINVAL; 461 } 462 463 return 0; 464 } 465 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size); 466 467 static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc, 468 u64 offs, size_t len, void *buf) 469 { 470 struct spi_mem_op op = desc->info.op_tmpl; 471 int ret; 472 473 op.addr.val = desc->info.offset + offs; 474 op.data.buf.in = buf; 475 op.data.nbytes = len; 476 ret = spi_mem_adjust_op_size(desc->mem, &op); 477 if (ret) 478 return ret; 479 480 ret = spi_mem_exec_op(desc->mem, &op); 481 if (ret) 482 return ret; 483 484 return op.data.nbytes; 485 } 486 487 static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc, 488 u64 offs, size_t len, const void *buf) 489 { 490 struct spi_mem_op op = desc->info.op_tmpl; 491 int ret; 492 493 op.addr.val = desc->info.offset + offs; 494 op.data.buf.out = buf; 495 op.data.nbytes = len; 496 ret = spi_mem_adjust_op_size(desc->mem, &op); 497 if (ret) 498 return ret; 499 500 ret = spi_mem_exec_op(desc->mem, &op); 501 if (ret) 502 return ret; 503 504 return op.data.nbytes; 505 } 506 507 /** 508 * spi_mem_dirmap_create() - Create a direct mapping descriptor 509 * @mem: SPI mem device this direct mapping should be created for 510 * @info: direct mapping information 511 * 512 * This function is creating a direct mapping descriptor which can then be used 513 * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write(). 514 * If the SPI controller driver does not support direct mapping, this function 515 * falls back to an implementation using spi_mem_exec_op(), so that the caller 516 * doesn't have to bother implementing a fallback on his own. 517 * 518 * Return: a valid pointer in case of success, and ERR_PTR() otherwise. 519 */ 520 struct spi_mem_dirmap_desc * 521 spi_mem_dirmap_create(struct spi_mem *mem, 522 const struct spi_mem_dirmap_info *info) 523 { 524 struct spi_controller *ctlr = mem->spi->controller; 525 struct spi_mem_dirmap_desc *desc; 526 int ret = -ENOTSUPP; 527 528 /* Make sure the number of address cycles is between 1 and 8 bytes. */ 529 if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8) 530 return ERR_PTR(-EINVAL); 531 532 /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */ 533 if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA) 534 return ERR_PTR(-EINVAL); 535 536 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 537 if (!desc) 538 return ERR_PTR(-ENOMEM); 539 540 desc->mem = mem; 541 desc->info = *info; 542 if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create) 543 ret = ctlr->mem_ops->dirmap_create(desc); 544 545 if (ret) { 546 desc->nodirmap = true; 547 if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl)) 548 ret = -ENOTSUPP; 549 else 550 ret = 0; 551 } 552 553 if (ret) { 554 kfree(desc); 555 return ERR_PTR(ret); 556 } 557 558 return desc; 559 } 560 EXPORT_SYMBOL_GPL(spi_mem_dirmap_create); 561 562 /** 563 * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor 564 * @desc: the direct mapping descriptor to destroy 565 * 566 * This function destroys a direct mapping descriptor previously created by 567 * spi_mem_dirmap_create(). 568 */ 569 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc) 570 { 571 struct spi_controller *ctlr = desc->mem->spi->controller; 572 573 if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy) 574 ctlr->mem_ops->dirmap_destroy(desc); 575 576 kfree(desc); 577 } 578 EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy); 579 580 static void devm_spi_mem_dirmap_release(struct device *dev, void *res) 581 { 582 struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res; 583 584 spi_mem_dirmap_destroy(desc); 585 } 586 587 /** 588 * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach 589 * it to a device 590 * @dev: device the dirmap desc will be attached to 591 * @mem: SPI mem device this direct mapping should be created for 592 * @info: direct mapping information 593 * 594 * devm_ variant of the spi_mem_dirmap_create() function. See 595 * spi_mem_dirmap_create() for more details. 596 * 597 * Return: a valid pointer in case of success, and ERR_PTR() otherwise. 598 */ 599 struct spi_mem_dirmap_desc * 600 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem, 601 const struct spi_mem_dirmap_info *info) 602 { 603 struct spi_mem_dirmap_desc **ptr, *desc; 604 605 ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr), 606 GFP_KERNEL); 607 if (!ptr) 608 return ERR_PTR(-ENOMEM); 609 610 desc = spi_mem_dirmap_create(mem, info); 611 if (IS_ERR(desc)) { 612 devres_free(ptr); 613 } else { 614 *ptr = desc; 615 devres_add(dev, ptr); 616 } 617 618 return desc; 619 } 620 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create); 621 622 static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data) 623 { 624 struct spi_mem_dirmap_desc **ptr = res; 625 626 if (WARN_ON(!ptr || !*ptr)) 627 return 0; 628 629 return *ptr == data; 630 } 631 632 /** 633 * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached 634 * to a device 635 * @dev: device the dirmap desc is attached to 636 * @desc: the direct mapping descriptor to destroy 637 * 638 * devm_ variant of the spi_mem_dirmap_destroy() function. See 639 * spi_mem_dirmap_destroy() for more details. 640 */ 641 void devm_spi_mem_dirmap_destroy(struct device *dev, 642 struct spi_mem_dirmap_desc *desc) 643 { 644 devres_release(dev, devm_spi_mem_dirmap_release, 645 devm_spi_mem_dirmap_match, desc); 646 } 647 EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy); 648 649 /** 650 * spi_mem_dirmap_read() - Read data through a direct mapping 651 * @desc: direct mapping descriptor 652 * @offs: offset to start reading from. Note that this is not an absolute 653 * offset, but the offset within the direct mapping which already has 654 * its own offset 655 * @len: length in bytes 656 * @buf: destination buffer. This buffer must be DMA-able 657 * 658 * This function reads data from a memory device using a direct mapping 659 * previously instantiated with spi_mem_dirmap_create(). 660 * 661 * Return: the amount of data read from the memory device or a negative error 662 * code. Note that the returned size might be smaller than @len, and the caller 663 * is responsible for calling spi_mem_dirmap_read() again when that happens. 664 */ 665 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc, 666 u64 offs, size_t len, void *buf) 667 { 668 struct spi_controller *ctlr = desc->mem->spi->controller; 669 ssize_t ret; 670 671 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN) 672 return -EINVAL; 673 674 if (!len) 675 return 0; 676 677 if (desc->nodirmap) { 678 ret = spi_mem_no_dirmap_read(desc, offs, len, buf); 679 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) { 680 ret = spi_mem_access_start(desc->mem); 681 if (ret) 682 return ret; 683 684 ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf); 685 686 spi_mem_access_end(desc->mem); 687 } else { 688 ret = -ENOTSUPP; 689 } 690 691 return ret; 692 } 693 EXPORT_SYMBOL_GPL(spi_mem_dirmap_read); 694 695 /** 696 * spi_mem_dirmap_write() - Write data through a direct mapping 697 * @desc: direct mapping descriptor 698 * @offs: offset to start writing from. Note that this is not an absolute 699 * offset, but the offset within the direct mapping which already has 700 * its own offset 701 * @len: length in bytes 702 * @buf: source buffer. This buffer must be DMA-able 703 * 704 * This function writes data to a memory device using a direct mapping 705 * previously instantiated with spi_mem_dirmap_create(). 706 * 707 * Return: the amount of data written to the memory device or a negative error 708 * code. Note that the returned size might be smaller than @len, and the caller 709 * is responsible for calling spi_mem_dirmap_write() again when that happens. 710 */ 711 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc, 712 u64 offs, size_t len, const void *buf) 713 { 714 struct spi_controller *ctlr = desc->mem->spi->controller; 715 ssize_t ret; 716 717 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT) 718 return -EINVAL; 719 720 if (!len) 721 return 0; 722 723 if (desc->nodirmap) { 724 ret = spi_mem_no_dirmap_write(desc, offs, len, buf); 725 } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) { 726 ret = spi_mem_access_start(desc->mem); 727 if (ret) 728 return ret; 729 730 ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf); 731 732 spi_mem_access_end(desc->mem); 733 } else { 734 ret = -ENOTSUPP; 735 } 736 737 return ret; 738 } 739 EXPORT_SYMBOL_GPL(spi_mem_dirmap_write); 740 741 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv) 742 { 743 return container_of(drv, struct spi_mem_driver, spidrv.driver); 744 } 745 746 static int spi_mem_probe(struct spi_device *spi) 747 { 748 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 749 struct spi_controller *ctlr = spi->controller; 750 struct spi_mem *mem; 751 752 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL); 753 if (!mem) 754 return -ENOMEM; 755 756 mem->spi = spi; 757 758 if (ctlr->mem_ops && ctlr->mem_ops->get_name) 759 mem->name = ctlr->mem_ops->get_name(mem); 760 else 761 mem->name = dev_name(&spi->dev); 762 763 if (IS_ERR_OR_NULL(mem->name)) 764 return PTR_ERR_OR_ZERO(mem->name); 765 766 spi_set_drvdata(spi, mem); 767 768 return memdrv->probe(mem); 769 } 770 771 static int spi_mem_remove(struct spi_device *spi) 772 { 773 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 774 struct spi_mem *mem = spi_get_drvdata(spi); 775 776 if (memdrv->remove) 777 return memdrv->remove(mem); 778 779 return 0; 780 } 781 782 static void spi_mem_shutdown(struct spi_device *spi) 783 { 784 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 785 struct spi_mem *mem = spi_get_drvdata(spi); 786 787 if (memdrv->shutdown) 788 memdrv->shutdown(mem); 789 } 790 791 /** 792 * spi_mem_driver_register_with_owner() - Register a SPI memory driver 793 * @memdrv: the SPI memory driver to register 794 * @owner: the owner of this driver 795 * 796 * Registers a SPI memory driver. 797 * 798 * Return: 0 in case of success, a negative error core otherwise. 799 */ 800 801 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv, 802 struct module *owner) 803 { 804 memdrv->spidrv.probe = spi_mem_probe; 805 memdrv->spidrv.remove = spi_mem_remove; 806 memdrv->spidrv.shutdown = spi_mem_shutdown; 807 808 return __spi_register_driver(owner, &memdrv->spidrv); 809 } 810 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner); 811 812 /** 813 * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver 814 * @memdrv: the SPI memory driver to unregister 815 * 816 * Unregisters a SPI memory driver. 817 */ 818 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv) 819 { 820 spi_unregister_driver(&memdrv->spidrv); 821 } 822 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister); 823