xref: /linux/drivers/spi/spi-lantiq-ssc.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2015 Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
4  * Copyright (C) 2016 Hauke Mehrtens <hauke@hauke-m.de>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/of.h>
10 #include <linux/platform_device.h>
11 #include <linux/clk.h>
12 #include <linux/io.h>
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/sched.h>
16 #include <linux/completion.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/spi/spi.h>
21 
22 #ifdef CONFIG_LANTIQ
23 #include <lantiq_soc.h>
24 #endif
25 
26 #define LTQ_SPI_RX_IRQ_NAME	"spi_rx"
27 #define LTQ_SPI_TX_IRQ_NAME	"spi_tx"
28 #define LTQ_SPI_ERR_IRQ_NAME	"spi_err"
29 #define LTQ_SPI_FRM_IRQ_NAME	"spi_frm"
30 
31 #define LTQ_SPI_CLC		0x00
32 #define LTQ_SPI_PISEL		0x04
33 #define LTQ_SPI_ID		0x08
34 #define LTQ_SPI_CON		0x10
35 #define LTQ_SPI_STAT		0x14
36 #define LTQ_SPI_WHBSTATE	0x18
37 #define LTQ_SPI_TB		0x20
38 #define LTQ_SPI_RB		0x24
39 #define LTQ_SPI_RXFCON		0x30
40 #define LTQ_SPI_TXFCON		0x34
41 #define LTQ_SPI_FSTAT		0x38
42 #define LTQ_SPI_BRT		0x40
43 #define LTQ_SPI_BRSTAT		0x44
44 #define LTQ_SPI_SFCON		0x60
45 #define LTQ_SPI_SFSTAT		0x64
46 #define LTQ_SPI_GPOCON		0x70
47 #define LTQ_SPI_GPOSTAT		0x74
48 #define LTQ_SPI_FPGO		0x78
49 #define LTQ_SPI_RXREQ		0x80
50 #define LTQ_SPI_RXCNT		0x84
51 #define LTQ_SPI_DMACON		0xec
52 #define LTQ_SPI_IRNEN		0xf4
53 
54 #define LTQ_SPI_CLC_SMC_S	16	/* Clock divider for sleep mode */
55 #define LTQ_SPI_CLC_SMC_M	(0xFF << LTQ_SPI_CLC_SMC_S)
56 #define LTQ_SPI_CLC_RMC_S	8	/* Clock divider for normal run mode */
57 #define LTQ_SPI_CLC_RMC_M	(0xFF << LTQ_SPI_CLC_RMC_S)
58 #define LTQ_SPI_CLC_DISS	BIT(1)	/* Disable status bit */
59 #define LTQ_SPI_CLC_DISR	BIT(0)	/* Disable request bit */
60 
61 #define LTQ_SPI_ID_TXFS_S	24	/* Implemented TX FIFO size */
62 #define LTQ_SPI_ID_RXFS_S	16	/* Implemented RX FIFO size */
63 #define LTQ_SPI_ID_MOD_S	8	/* Module ID */
64 #define LTQ_SPI_ID_MOD_M	(0xff << LTQ_SPI_ID_MOD_S)
65 #define LTQ_SPI_ID_CFG_S	5	/* DMA interface support */
66 #define LTQ_SPI_ID_CFG_M	(1 << LTQ_SPI_ID_CFG_S)
67 #define LTQ_SPI_ID_REV_M	0x1F	/* Hardware revision number */
68 
69 #define LTQ_SPI_CON_BM_S	16	/* Data width selection */
70 #define LTQ_SPI_CON_BM_M	(0x1F << LTQ_SPI_CON_BM_S)
71 #define LTQ_SPI_CON_EM		BIT(24)	/* Echo mode */
72 #define LTQ_SPI_CON_IDLE	BIT(23)	/* Idle bit value */
73 #define LTQ_SPI_CON_ENBV	BIT(22)	/* Enable byte valid control */
74 #define LTQ_SPI_CON_RUEN	BIT(12)	/* Receive underflow error enable */
75 #define LTQ_SPI_CON_TUEN	BIT(11)	/* Transmit underflow error enable */
76 #define LTQ_SPI_CON_AEN		BIT(10)	/* Abort error enable */
77 #define LTQ_SPI_CON_REN		BIT(9)	/* Receive overflow error enable */
78 #define LTQ_SPI_CON_TEN		BIT(8)	/* Transmit overflow error enable */
79 #define LTQ_SPI_CON_LB		BIT(7)	/* Loopback control */
80 #define LTQ_SPI_CON_PO		BIT(6)	/* Clock polarity control */
81 #define LTQ_SPI_CON_PH		BIT(5)	/* Clock phase control */
82 #define LTQ_SPI_CON_HB		BIT(4)	/* Heading control */
83 #define LTQ_SPI_CON_RXOFF	BIT(1)	/* Switch receiver off */
84 #define LTQ_SPI_CON_TXOFF	BIT(0)	/* Switch transmitter off */
85 
86 #define LTQ_SPI_STAT_RXBV_S	28
87 #define LTQ_SPI_STAT_RXBV_M	(0x7 << LTQ_SPI_STAT_RXBV_S)
88 #define LTQ_SPI_STAT_BSY	BIT(13)	/* Busy flag */
89 #define LTQ_SPI_STAT_RUE	BIT(12)	/* Receive underflow error flag */
90 #define LTQ_SPI_STAT_TUE	BIT(11)	/* Transmit underflow error flag */
91 #define LTQ_SPI_STAT_AE		BIT(10)	/* Abort error flag */
92 #define LTQ_SPI_STAT_RE		BIT(9)	/* Receive error flag */
93 #define LTQ_SPI_STAT_TE		BIT(8)	/* Transmit error flag */
94 #define LTQ_SPI_STAT_ME		BIT(7)	/* Mode error flag */
95 #define LTQ_SPI_STAT_MS		BIT(1)	/* Host/target select bit */
96 #define LTQ_SPI_STAT_EN		BIT(0)	/* Enable bit */
97 #define LTQ_SPI_STAT_ERRORS	(LTQ_SPI_STAT_ME | LTQ_SPI_STAT_TE | \
98 				 LTQ_SPI_STAT_RE | LTQ_SPI_STAT_AE | \
99 				 LTQ_SPI_STAT_TUE | LTQ_SPI_STAT_RUE)
100 
101 #define LTQ_SPI_WHBSTATE_SETTUE	BIT(15)	/* Set transmit underflow error flag */
102 #define LTQ_SPI_WHBSTATE_SETAE	BIT(14)	/* Set abort error flag */
103 #define LTQ_SPI_WHBSTATE_SETRE	BIT(13)	/* Set receive error flag */
104 #define LTQ_SPI_WHBSTATE_SETTE	BIT(12)	/* Set transmit error flag */
105 #define LTQ_SPI_WHBSTATE_CLRTUE	BIT(11)	/* Clear transmit underflow error flag */
106 #define LTQ_SPI_WHBSTATE_CLRAE	BIT(10)	/* Clear abort error flag */
107 #define LTQ_SPI_WHBSTATE_CLRRE	BIT(9)	/* Clear receive error flag */
108 #define LTQ_SPI_WHBSTATE_CLRTE	BIT(8)	/* Clear transmit error flag */
109 #define LTQ_SPI_WHBSTATE_SETME	BIT(7)	/* Set mode error flag */
110 #define LTQ_SPI_WHBSTATE_CLRME	BIT(6)	/* Clear mode error flag */
111 #define LTQ_SPI_WHBSTATE_SETRUE	BIT(5)	/* Set receive underflow error flag */
112 #define LTQ_SPI_WHBSTATE_CLRRUE	BIT(4)	/* Clear receive underflow error flag */
113 #define LTQ_SPI_WHBSTATE_SETMS	BIT(3)	/* Set host select bit */
114 #define LTQ_SPI_WHBSTATE_CLRMS	BIT(2)	/* Clear host select bit */
115 #define LTQ_SPI_WHBSTATE_SETEN	BIT(1)	/* Set enable bit (operational mode) */
116 #define LTQ_SPI_WHBSTATE_CLREN	BIT(0)	/* Clear enable bit (config mode */
117 #define LTQ_SPI_WHBSTATE_CLR_ERRORS	(LTQ_SPI_WHBSTATE_CLRRUE | \
118 					 LTQ_SPI_WHBSTATE_CLRME | \
119 					 LTQ_SPI_WHBSTATE_CLRTE | \
120 					 LTQ_SPI_WHBSTATE_CLRRE | \
121 					 LTQ_SPI_WHBSTATE_CLRAE | \
122 					 LTQ_SPI_WHBSTATE_CLRTUE)
123 
124 #define LTQ_SPI_RXFCON_RXFITL_S	8	/* FIFO interrupt trigger level */
125 #define LTQ_SPI_RXFCON_RXFLU	BIT(1)	/* FIFO flush */
126 #define LTQ_SPI_RXFCON_RXFEN	BIT(0)	/* FIFO enable */
127 
128 #define LTQ_SPI_TXFCON_TXFITL_S	8	/* FIFO interrupt trigger level */
129 #define LTQ_SPI_TXFCON_TXFLU	BIT(1)	/* FIFO flush */
130 #define LTQ_SPI_TXFCON_TXFEN	BIT(0)	/* FIFO enable */
131 
132 #define LTQ_SPI_FSTAT_RXFFL_S	0
133 #define LTQ_SPI_FSTAT_TXFFL_S	8
134 
135 #define LTQ_SPI_GPOCON_ISCSBN_S	8
136 #define LTQ_SPI_GPOCON_INVOUTN_S	0
137 
138 #define LTQ_SPI_FGPO_SETOUTN_S	8
139 #define LTQ_SPI_FGPO_CLROUTN_S	0
140 
141 #define LTQ_SPI_RXREQ_RXCNT_M	0xFFFF	/* Receive count value */
142 #define LTQ_SPI_RXCNT_TODO_M	0xFFFF	/* Receive to-do value */
143 
144 #define LTQ_SPI_IRNEN_TFI	BIT(4)	/* TX finished interrupt */
145 #define LTQ_SPI_IRNEN_F		BIT(3)	/* Frame end interrupt request */
146 #define LTQ_SPI_IRNEN_E		BIT(2)	/* Error end interrupt request */
147 #define LTQ_SPI_IRNEN_T_XWAY	BIT(1)	/* Transmit end interrupt request */
148 #define LTQ_SPI_IRNEN_R_XWAY	BIT(0)	/* Receive end interrupt request */
149 #define LTQ_SPI_IRNEN_R_XRX	BIT(1)	/* Transmit end interrupt request */
150 #define LTQ_SPI_IRNEN_T_XRX	BIT(0)	/* Receive end interrupt request */
151 #define LTQ_SPI_IRNEN_ALL	0x1F
152 
153 struct lantiq_ssc_spi;
154 
155 struct lantiq_ssc_hwcfg {
156 	int (*cfg_irq)(struct platform_device *pdev, struct lantiq_ssc_spi *spi);
157 	unsigned int	irnen_r;
158 	unsigned int	irnen_t;
159 	unsigned int	irncr;
160 	unsigned int	irnicr;
161 	bool		irq_ack;
162 	u32		fifo_size_mask;
163 };
164 
165 struct lantiq_ssc_spi {
166 	struct spi_controller		*host;
167 	struct device			*dev;
168 	void __iomem			*regbase;
169 	struct clk			*spi_clk;
170 	struct clk			*fpi_clk;
171 	const struct lantiq_ssc_hwcfg	*hwcfg;
172 
173 	spinlock_t			lock;
174 	struct workqueue_struct		*wq;
175 	struct work_struct		work;
176 
177 	const u8			*tx;
178 	u8				*rx;
179 	unsigned int			tx_todo;
180 	unsigned int			rx_todo;
181 	unsigned int			bits_per_word;
182 	unsigned int			speed_hz;
183 	unsigned int			tx_fifo_size;
184 	unsigned int			rx_fifo_size;
185 	unsigned int			base_cs;
186 	unsigned int			fdx_tx_level;
187 };
188 
189 static u32 lantiq_ssc_readl(const struct lantiq_ssc_spi *spi, u32 reg)
190 {
191 	return __raw_readl(spi->regbase + reg);
192 }
193 
194 static void lantiq_ssc_writel(const struct lantiq_ssc_spi *spi, u32 val,
195 			      u32 reg)
196 {
197 	__raw_writel(val, spi->regbase + reg);
198 }
199 
200 static void lantiq_ssc_maskl(const struct lantiq_ssc_spi *spi, u32 clr,
201 			     u32 set, u32 reg)
202 {
203 	u32 val = __raw_readl(spi->regbase + reg);
204 
205 	val &= ~clr;
206 	val |= set;
207 	__raw_writel(val, spi->regbase + reg);
208 }
209 
210 static unsigned int tx_fifo_level(const struct lantiq_ssc_spi *spi)
211 {
212 	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
213 	u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
214 
215 	return (fstat >> LTQ_SPI_FSTAT_TXFFL_S) & hwcfg->fifo_size_mask;
216 }
217 
218 static unsigned int rx_fifo_level(const struct lantiq_ssc_spi *spi)
219 {
220 	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
221 	u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
222 
223 	return (fstat >> LTQ_SPI_FSTAT_RXFFL_S) & hwcfg->fifo_size_mask;
224 }
225 
226 static unsigned int tx_fifo_free(const struct lantiq_ssc_spi *spi)
227 {
228 	return spi->tx_fifo_size - tx_fifo_level(spi);
229 }
230 
231 static void rx_fifo_reset(const struct lantiq_ssc_spi *spi)
232 {
233 	u32 val = spi->rx_fifo_size << LTQ_SPI_RXFCON_RXFITL_S;
234 
235 	val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU;
236 	lantiq_ssc_writel(spi, val, LTQ_SPI_RXFCON);
237 }
238 
239 static void tx_fifo_reset(const struct lantiq_ssc_spi *spi)
240 {
241 	u32 val = 1 << LTQ_SPI_TXFCON_TXFITL_S;
242 
243 	val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU;
244 	lantiq_ssc_writel(spi, val, LTQ_SPI_TXFCON);
245 }
246 
247 static void rx_fifo_flush(const struct lantiq_ssc_spi *spi)
248 {
249 	lantiq_ssc_maskl(spi, 0, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON);
250 }
251 
252 static void tx_fifo_flush(const struct lantiq_ssc_spi *spi)
253 {
254 	lantiq_ssc_maskl(spi, 0, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON);
255 }
256 
257 static void hw_enter_config_mode(const struct lantiq_ssc_spi *spi)
258 {
259 	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE);
260 }
261 
262 static void hw_enter_active_mode(const struct lantiq_ssc_spi *spi)
263 {
264 	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE);
265 }
266 
267 static void hw_setup_speed_hz(const struct lantiq_ssc_spi *spi,
268 			      unsigned int max_speed_hz)
269 {
270 	u32 spi_clk, brt;
271 
272 	/*
273 	 * SPI module clock is derived from FPI bus clock dependent on
274 	 * divider value in CLC.RMS which is always set to 1.
275 	 *
276 	 *                 f_SPI
277 	 * baudrate = --------------
278 	 *             2 * (BR + 1)
279 	 */
280 	spi_clk = clk_get_rate(spi->fpi_clk) / 2;
281 
282 	if (max_speed_hz > spi_clk)
283 		brt = 0;
284 	else
285 		brt = spi_clk / max_speed_hz - 1;
286 
287 	if (brt > 0xFFFF)
288 		brt = 0xFFFF;
289 
290 	dev_dbg(spi->dev, "spi_clk %u, max_speed_hz %u, brt %u\n",
291 		spi_clk, max_speed_hz, brt);
292 
293 	lantiq_ssc_writel(spi, brt, LTQ_SPI_BRT);
294 }
295 
296 static void hw_setup_bits_per_word(const struct lantiq_ssc_spi *spi,
297 				   unsigned int bits_per_word)
298 {
299 	u32 bm;
300 
301 	/* CON.BM value = bits_per_word - 1 */
302 	bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_S;
303 
304 	lantiq_ssc_maskl(spi, LTQ_SPI_CON_BM_M, bm, LTQ_SPI_CON);
305 }
306 
307 static void hw_setup_clock_mode(const struct lantiq_ssc_spi *spi,
308 				unsigned int mode)
309 {
310 	u32 con_set = 0, con_clr = 0;
311 
312 	/*
313 	 * SPI mode mapping in CON register:
314 	 * Mode CPOL CPHA CON.PO CON.PH
315 	 *  0    0    0      0      1
316 	 *  1    0    1      0      0
317 	 *  2    1    0      1      1
318 	 *  3    1    1      1      0
319 	 */
320 	if (mode & SPI_CPHA)
321 		con_clr |= LTQ_SPI_CON_PH;
322 	else
323 		con_set |= LTQ_SPI_CON_PH;
324 
325 	if (mode & SPI_CPOL)
326 		con_set |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
327 	else
328 		con_clr |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
329 
330 	/* Set heading control */
331 	if (mode & SPI_LSB_FIRST)
332 		con_clr |= LTQ_SPI_CON_HB;
333 	else
334 		con_set |= LTQ_SPI_CON_HB;
335 
336 	/* Set loopback mode */
337 	if (mode & SPI_LOOP)
338 		con_set |= LTQ_SPI_CON_LB;
339 	else
340 		con_clr |= LTQ_SPI_CON_LB;
341 
342 	lantiq_ssc_maskl(spi, con_clr, con_set, LTQ_SPI_CON);
343 }
344 
345 static void lantiq_ssc_hw_init(const struct lantiq_ssc_spi *spi)
346 {
347 	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
348 
349 	/*
350 	 * Set clock divider for run mode to 1 to
351 	 * run at same frequency as FPI bus
352 	 */
353 	lantiq_ssc_writel(spi, 1 << LTQ_SPI_CLC_RMC_S, LTQ_SPI_CLC);
354 
355 	/* Put controller into config mode */
356 	hw_enter_config_mode(spi);
357 
358 	/* Clear error flags */
359 	lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
360 
361 	/* Enable error checking, disable TX/RX */
362 	lantiq_ssc_writel(spi, LTQ_SPI_CON_RUEN | LTQ_SPI_CON_AEN |
363 		LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN | LTQ_SPI_CON_TXOFF |
364 		LTQ_SPI_CON_RXOFF, LTQ_SPI_CON);
365 
366 	/* Setup default SPI mode */
367 	hw_setup_bits_per_word(spi, spi->bits_per_word);
368 	hw_setup_clock_mode(spi, SPI_MODE_0);
369 
370 	/* Enable host mode and clear error flags */
371 	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETMS |
372 			       LTQ_SPI_WHBSTATE_CLR_ERRORS,
373 			       LTQ_SPI_WHBSTATE);
374 
375 	/* Reset GPIO/CS registers */
376 	lantiq_ssc_writel(spi, 0, LTQ_SPI_GPOCON);
377 	lantiq_ssc_writel(spi, 0xFF00, LTQ_SPI_FPGO);
378 
379 	/* Enable and flush FIFOs */
380 	rx_fifo_reset(spi);
381 	tx_fifo_reset(spi);
382 
383 	/* Enable interrupts */
384 	lantiq_ssc_writel(spi, hwcfg->irnen_t | hwcfg->irnen_r |
385 			  LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN);
386 }
387 
388 static int lantiq_ssc_setup(struct spi_device *spidev)
389 {
390 	struct spi_controller *host = spidev->controller;
391 	struct lantiq_ssc_spi *spi = spi_controller_get_devdata(host);
392 	unsigned int cs = spi_get_chipselect(spidev, 0);
393 	u32 gpocon;
394 
395 	/* GPIOs are used for CS */
396 	if (spi_get_csgpiod(spidev, 0))
397 		return 0;
398 
399 	dev_dbg(spi->dev, "using internal chipselect %u\n", cs);
400 
401 	if (cs < spi->base_cs) {
402 		dev_err(spi->dev,
403 			"chipselect %i too small (min %i)\n", cs, spi->base_cs);
404 		return -EINVAL;
405 	}
406 
407 	/* set GPO pin to CS mode */
408 	gpocon = 1 << ((cs - spi->base_cs) + LTQ_SPI_GPOCON_ISCSBN_S);
409 
410 	/* invert GPO pin */
411 	if (spidev->mode & SPI_CS_HIGH)
412 		gpocon |= 1 << (cs - spi->base_cs);
413 
414 	lantiq_ssc_maskl(spi, 0, gpocon, LTQ_SPI_GPOCON);
415 
416 	return 0;
417 }
418 
419 static int lantiq_ssc_prepare_message(struct spi_controller *host,
420 				      struct spi_message *message)
421 {
422 	struct lantiq_ssc_spi *spi = spi_controller_get_devdata(host);
423 
424 	hw_enter_config_mode(spi);
425 	hw_setup_clock_mode(spi, message->spi->mode);
426 	hw_enter_active_mode(spi);
427 
428 	return 0;
429 }
430 
431 static void hw_setup_transfer(struct lantiq_ssc_spi *spi,
432 			      struct spi_device *spidev, struct spi_transfer *t)
433 {
434 	unsigned int speed_hz = t->speed_hz;
435 	unsigned int bits_per_word = t->bits_per_word;
436 	u32 con;
437 
438 	if (bits_per_word != spi->bits_per_word ||
439 		speed_hz != spi->speed_hz) {
440 		hw_enter_config_mode(spi);
441 		hw_setup_speed_hz(spi, speed_hz);
442 		hw_setup_bits_per_word(spi, bits_per_word);
443 		hw_enter_active_mode(spi);
444 
445 		spi->speed_hz = speed_hz;
446 		spi->bits_per_word = bits_per_word;
447 	}
448 
449 	/* Configure transmitter and receiver */
450 	con = lantiq_ssc_readl(spi, LTQ_SPI_CON);
451 	if (t->tx_buf)
452 		con &= ~LTQ_SPI_CON_TXOFF;
453 	else
454 		con |= LTQ_SPI_CON_TXOFF;
455 
456 	if (t->rx_buf)
457 		con &= ~LTQ_SPI_CON_RXOFF;
458 	else
459 		con |= LTQ_SPI_CON_RXOFF;
460 
461 	lantiq_ssc_writel(spi, con, LTQ_SPI_CON);
462 }
463 
464 static int lantiq_ssc_unprepare_message(struct spi_controller *host,
465 					struct spi_message *message)
466 {
467 	struct lantiq_ssc_spi *spi = spi_controller_get_devdata(host);
468 
469 	flush_workqueue(spi->wq);
470 
471 	/* Disable transmitter and receiver while idle */
472 	lantiq_ssc_maskl(spi, 0, LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF,
473 			 LTQ_SPI_CON);
474 
475 	return 0;
476 }
477 
478 static void tx_fifo_write(struct lantiq_ssc_spi *spi)
479 {
480 	const u8 *tx8;
481 	const u16 *tx16;
482 	const u32 *tx32;
483 	u32 data;
484 	unsigned int tx_free = tx_fifo_free(spi);
485 
486 	spi->fdx_tx_level = 0;
487 	while (spi->tx_todo && tx_free) {
488 		switch (spi->bits_per_word) {
489 		case 2 ... 8:
490 			tx8 = spi->tx;
491 			data = *tx8;
492 			spi->tx_todo--;
493 			spi->tx++;
494 			break;
495 		case 16:
496 			tx16 = (u16 *) spi->tx;
497 			data = *tx16;
498 			spi->tx_todo -= 2;
499 			spi->tx += 2;
500 			break;
501 		case 32:
502 			tx32 = (u32 *) spi->tx;
503 			data = *tx32;
504 			spi->tx_todo -= 4;
505 			spi->tx += 4;
506 			break;
507 		default:
508 			WARN_ON(1);
509 			data = 0;
510 			break;
511 		}
512 
513 		lantiq_ssc_writel(spi, data, LTQ_SPI_TB);
514 		tx_free--;
515 		spi->fdx_tx_level++;
516 	}
517 }
518 
519 static void rx_fifo_read_full_duplex(struct lantiq_ssc_spi *spi)
520 {
521 	u8 *rx8;
522 	u16 *rx16;
523 	u32 *rx32;
524 	u32 data;
525 	unsigned int rx_fill = rx_fifo_level(spi);
526 
527 	/*
528 	 * Wait until all expected data to be shifted in.
529 	 * Otherwise, rx overrun may occur.
530 	 */
531 	while (rx_fill != spi->fdx_tx_level)
532 		rx_fill = rx_fifo_level(spi);
533 
534 	while (rx_fill) {
535 		data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
536 
537 		switch (spi->bits_per_word) {
538 		case 2 ... 8:
539 			rx8 = spi->rx;
540 			*rx8 = data;
541 			spi->rx_todo--;
542 			spi->rx++;
543 			break;
544 		case 16:
545 			rx16 = (u16 *) spi->rx;
546 			*rx16 = data;
547 			spi->rx_todo -= 2;
548 			spi->rx += 2;
549 			break;
550 		case 32:
551 			rx32 = (u32 *) spi->rx;
552 			*rx32 = data;
553 			spi->rx_todo -= 4;
554 			spi->rx += 4;
555 			break;
556 		default:
557 			WARN_ON(1);
558 			break;
559 		}
560 
561 		rx_fill--;
562 	}
563 }
564 
565 static void rx_fifo_read_half_duplex(struct lantiq_ssc_spi *spi)
566 {
567 	u32 data, *rx32;
568 	u8 *rx8;
569 	unsigned int rxbv, shift;
570 	unsigned int rx_fill = rx_fifo_level(spi);
571 
572 	/*
573 	 * In RX-only mode the bits per word value is ignored by HW. A value
574 	 * of 32 is used instead. Thus all 4 bytes per FIFO must be read.
575 	 * If remaining RX bytes are less than 4, the FIFO must be read
576 	 * differently. The amount of received and valid bytes is indicated
577 	 * by STAT.RXBV register value.
578 	 */
579 	while (rx_fill) {
580 		if (spi->rx_todo < 4)  {
581 			rxbv = (lantiq_ssc_readl(spi, LTQ_SPI_STAT) &
582 				LTQ_SPI_STAT_RXBV_M) >> LTQ_SPI_STAT_RXBV_S;
583 			data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
584 
585 			shift = (rxbv - 1) * 8;
586 			rx8 = spi->rx;
587 
588 			while (rxbv) {
589 				*rx8++ = (data >> shift) & 0xFF;
590 				rxbv--;
591 				shift -= 8;
592 				spi->rx_todo--;
593 				spi->rx++;
594 			}
595 		} else {
596 			data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
597 			rx32 = (u32 *) spi->rx;
598 
599 			*rx32++ = data;
600 			spi->rx_todo -= 4;
601 			spi->rx += 4;
602 		}
603 		rx_fill--;
604 	}
605 }
606 
607 static void rx_request(struct lantiq_ssc_spi *spi)
608 {
609 	unsigned int rxreq, rxreq_max;
610 
611 	/*
612 	 * To avoid receive overflows at high clocks it is better to request
613 	 * only the amount of bytes that fits into all FIFOs. This value
614 	 * depends on the FIFO size implemented in hardware.
615 	 */
616 	rxreq = spi->rx_todo;
617 	rxreq_max = spi->rx_fifo_size * 4;
618 	if (rxreq > rxreq_max)
619 		rxreq = rxreq_max;
620 
621 	lantiq_ssc_writel(spi, rxreq, LTQ_SPI_RXREQ);
622 }
623 
624 static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
625 {
626 	struct lantiq_ssc_spi *spi = data;
627 	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
628 	u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
629 
630 	spin_lock(&spi->lock);
631 	if (hwcfg->irq_ack)
632 		lantiq_ssc_writel(spi, val, hwcfg->irncr);
633 
634 	if (spi->tx) {
635 		if (spi->rx && spi->rx_todo)
636 			rx_fifo_read_full_duplex(spi);
637 
638 		if (spi->tx_todo)
639 			tx_fifo_write(spi);
640 		else if (!tx_fifo_level(spi))
641 			goto completed;
642 	} else if (spi->rx) {
643 		if (spi->rx_todo) {
644 			rx_fifo_read_half_duplex(spi);
645 
646 			if (spi->rx_todo)
647 				rx_request(spi);
648 			else
649 				goto completed;
650 		} else {
651 			goto completed;
652 		}
653 	}
654 
655 	spin_unlock(&spi->lock);
656 	return IRQ_HANDLED;
657 
658 completed:
659 	queue_work(spi->wq, &spi->work);
660 	spin_unlock(&spi->lock);
661 
662 	return IRQ_HANDLED;
663 }
664 
665 static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
666 {
667 	struct lantiq_ssc_spi *spi = data;
668 	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
669 	u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
670 	u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
671 
672 	if (!(stat & LTQ_SPI_STAT_ERRORS))
673 		return IRQ_NONE;
674 
675 	spin_lock(&spi->lock);
676 	if (hwcfg->irq_ack)
677 		lantiq_ssc_writel(spi, val, hwcfg->irncr);
678 
679 	if (stat & LTQ_SPI_STAT_RUE)
680 		dev_err(spi->dev, "receive underflow error\n");
681 	if (stat & LTQ_SPI_STAT_TUE)
682 		dev_err(spi->dev, "transmit underflow error\n");
683 	if (stat & LTQ_SPI_STAT_AE)
684 		dev_err(spi->dev, "abort error\n");
685 	if (stat & LTQ_SPI_STAT_RE)
686 		dev_err(spi->dev, "receive overflow error\n");
687 	if (stat & LTQ_SPI_STAT_TE)
688 		dev_err(spi->dev, "transmit overflow error\n");
689 	if (stat & LTQ_SPI_STAT_ME)
690 		dev_err(spi->dev, "mode error\n");
691 
692 	/* Clear error flags */
693 	lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
694 
695 	/* set bad status so it can be retried */
696 	if (spi->host->cur_msg)
697 		spi->host->cur_msg->status = -EIO;
698 	queue_work(spi->wq, &spi->work);
699 	spin_unlock(&spi->lock);
700 
701 	return IRQ_HANDLED;
702 }
703 
704 static irqreturn_t intel_lgm_ssc_isr(int irq, void *data)
705 {
706 	struct lantiq_ssc_spi *spi = data;
707 	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
708 	u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
709 
710 	if (!(val & LTQ_SPI_IRNEN_ALL))
711 		return IRQ_NONE;
712 
713 	if (val & LTQ_SPI_IRNEN_E)
714 		return lantiq_ssc_err_interrupt(irq, data);
715 
716 	if ((val & hwcfg->irnen_t) || (val & hwcfg->irnen_r))
717 		return lantiq_ssc_xmit_interrupt(irq, data);
718 
719 	return IRQ_HANDLED;
720 }
721 
722 static int transfer_start(struct lantiq_ssc_spi *spi, struct spi_device *spidev,
723 			  struct spi_transfer *t)
724 {
725 	unsigned long flags;
726 
727 	spin_lock_irqsave(&spi->lock, flags);
728 
729 	spi->tx = t->tx_buf;
730 	spi->rx = t->rx_buf;
731 
732 	if (t->tx_buf) {
733 		spi->tx_todo = t->len;
734 
735 		/* initially fill TX FIFO */
736 		tx_fifo_write(spi);
737 	}
738 
739 	if (spi->rx) {
740 		spi->rx_todo = t->len;
741 
742 		/* start shift clock in RX-only mode */
743 		if (!spi->tx)
744 			rx_request(spi);
745 	}
746 
747 	spin_unlock_irqrestore(&spi->lock, flags);
748 
749 	return t->len;
750 }
751 
752 /*
753  * The driver only gets an interrupt when the FIFO is empty, but there
754  * is an additional shift register from which the data is written to
755  * the wire. We get the last interrupt when the controller starts to
756  * write the last word to the wire, not when it is finished. Do busy
757  * waiting till it finishes.
758  */
759 static void lantiq_ssc_bussy_work(struct work_struct *work)
760 {
761 	struct lantiq_ssc_spi *spi;
762 	unsigned long long timeout = 8LL * 1000LL;
763 	unsigned long end;
764 
765 	spi = container_of(work, typeof(*spi), work);
766 
767 	do_div(timeout, spi->speed_hz);
768 	timeout += timeout + 100; /* some tolerance */
769 
770 	end = jiffies + msecs_to_jiffies(timeout);
771 	do {
772 		u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
773 
774 		if (!(stat & LTQ_SPI_STAT_BSY)) {
775 			spi_finalize_current_transfer(spi->host);
776 			return;
777 		}
778 
779 		cond_resched();
780 	} while (!time_after_eq(jiffies, end));
781 
782 	if (spi->host->cur_msg)
783 		spi->host->cur_msg->status = -EIO;
784 	spi_finalize_current_transfer(spi->host);
785 }
786 
787 static void lantiq_ssc_handle_err(struct spi_controller *host,
788 				  struct spi_message *message)
789 {
790 	struct lantiq_ssc_spi *spi = spi_controller_get_devdata(host);
791 
792 	/* flush FIFOs on timeout */
793 	rx_fifo_flush(spi);
794 	tx_fifo_flush(spi);
795 }
796 
797 static void lantiq_ssc_set_cs(struct spi_device *spidev, bool enable)
798 {
799 	struct lantiq_ssc_spi *spi = spi_controller_get_devdata(spidev->controller);
800 	unsigned int cs = spi_get_chipselect(spidev, 0);
801 	u32 fgpo;
802 
803 	if (!!(spidev->mode & SPI_CS_HIGH) == enable)
804 		fgpo = (1 << (cs - spi->base_cs));
805 	else
806 		fgpo = (1 << (cs - spi->base_cs + LTQ_SPI_FGPO_SETOUTN_S));
807 
808 	lantiq_ssc_writel(spi, fgpo, LTQ_SPI_FPGO);
809 }
810 
811 static int lantiq_ssc_transfer_one(struct spi_controller *host,
812 				   struct spi_device *spidev,
813 				   struct spi_transfer *t)
814 {
815 	struct lantiq_ssc_spi *spi = spi_controller_get_devdata(host);
816 
817 	hw_setup_transfer(spi, spidev, t);
818 
819 	return transfer_start(spi, spidev, t);
820 }
821 
822 static int intel_lgm_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
823 {
824 	int irq;
825 
826 	irq = platform_get_irq(pdev, 0);
827 	if (irq < 0)
828 		return irq;
829 
830 	return devm_request_irq(&pdev->dev, irq, intel_lgm_ssc_isr, 0, "spi", spi);
831 }
832 
833 static int lantiq_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
834 {
835 	int irq, err;
836 
837 	irq = platform_get_irq_byname(pdev, LTQ_SPI_RX_IRQ_NAME);
838 	if (irq < 0)
839 		return irq;
840 
841 	err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
842 			       0, LTQ_SPI_RX_IRQ_NAME, spi);
843 	if (err)
844 		return err;
845 
846 	irq = platform_get_irq_byname(pdev, LTQ_SPI_TX_IRQ_NAME);
847 	if (irq < 0)
848 		return irq;
849 
850 	err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
851 			       0, LTQ_SPI_TX_IRQ_NAME, spi);
852 
853 	if (err)
854 		return err;
855 
856 	irq = platform_get_irq_byname(pdev, LTQ_SPI_ERR_IRQ_NAME);
857 	if (irq < 0)
858 		return irq;
859 
860 	err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_err_interrupt,
861 			       0, LTQ_SPI_ERR_IRQ_NAME, spi);
862 	return err;
863 }
864 
865 static const struct lantiq_ssc_hwcfg lantiq_ssc_xway = {
866 	.cfg_irq	= lantiq_cfg_irq,
867 	.irnen_r	= LTQ_SPI_IRNEN_R_XWAY,
868 	.irnen_t	= LTQ_SPI_IRNEN_T_XWAY,
869 	.irnicr		= 0xF8,
870 	.irncr		= 0xFC,
871 	.fifo_size_mask	= GENMASK(5, 0),
872 	.irq_ack	= false,
873 };
874 
875 static const struct lantiq_ssc_hwcfg lantiq_ssc_xrx = {
876 	.cfg_irq	= lantiq_cfg_irq,
877 	.irnen_r	= LTQ_SPI_IRNEN_R_XRX,
878 	.irnen_t	= LTQ_SPI_IRNEN_T_XRX,
879 	.irnicr		= 0xF8,
880 	.irncr		= 0xFC,
881 	.fifo_size_mask	= GENMASK(5, 0),
882 	.irq_ack	= false,
883 };
884 
885 static const struct lantiq_ssc_hwcfg intel_ssc_lgm = {
886 	.cfg_irq	= intel_lgm_cfg_irq,
887 	.irnen_r	= LTQ_SPI_IRNEN_R_XRX,
888 	.irnen_t	= LTQ_SPI_IRNEN_T_XRX,
889 	.irnicr		= 0xFC,
890 	.irncr		= 0xF8,
891 	.fifo_size_mask	= GENMASK(7, 0),
892 	.irq_ack	= true,
893 };
894 
895 static const struct of_device_id lantiq_ssc_match[] = {
896 	{ .compatible = "lantiq,ase-spi", .data = &lantiq_ssc_xway, },
897 	{ .compatible = "lantiq,falcon-spi", .data = &lantiq_ssc_xrx, },
898 	{ .compatible = "lantiq,xrx100-spi", .data = &lantiq_ssc_xrx, },
899 	{ .compatible = "intel,lgm-spi", .data = &intel_ssc_lgm, },
900 	{},
901 };
902 MODULE_DEVICE_TABLE(of, lantiq_ssc_match);
903 
904 static int lantiq_ssc_probe(struct platform_device *pdev)
905 {
906 	struct device *dev = &pdev->dev;
907 	struct spi_controller *host;
908 	struct lantiq_ssc_spi *spi;
909 	const struct lantiq_ssc_hwcfg *hwcfg;
910 	u32 id, supports_dma, revision;
911 	unsigned int num_cs;
912 	int err;
913 
914 	hwcfg = of_device_get_match_data(dev);
915 
916 	host = spi_alloc_host(dev, sizeof(struct lantiq_ssc_spi));
917 	if (!host)
918 		return -ENOMEM;
919 
920 	spi = spi_controller_get_devdata(host);
921 	spi->host = host;
922 	spi->dev = dev;
923 	spi->hwcfg = hwcfg;
924 	platform_set_drvdata(pdev, spi);
925 	spi->regbase = devm_platform_ioremap_resource(pdev, 0);
926 	if (IS_ERR(spi->regbase)) {
927 		err = PTR_ERR(spi->regbase);
928 		goto err_host_put;
929 	}
930 
931 	err = hwcfg->cfg_irq(pdev, spi);
932 	if (err)
933 		goto err_host_put;
934 
935 	spi->spi_clk = devm_clk_get_enabled(dev, "gate");
936 	if (IS_ERR(spi->spi_clk)) {
937 		err = PTR_ERR(spi->spi_clk);
938 		goto err_host_put;
939 	}
940 
941 	/*
942 	 * Use the old clk_get_fpi() function on Lantiq platform, till it
943 	 * supports common clk.
944 	 */
945 #if defined(CONFIG_LANTIQ) && !defined(CONFIG_COMMON_CLK)
946 	spi->fpi_clk = clk_get_fpi();
947 #else
948 	spi->fpi_clk = clk_get(dev, "freq");
949 #endif
950 	if (IS_ERR(spi->fpi_clk)) {
951 		err = PTR_ERR(spi->fpi_clk);
952 		goto err_host_put;
953 	}
954 
955 	num_cs = 8;
956 	of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs);
957 
958 	spi->base_cs = 1;
959 	of_property_read_u32(pdev->dev.of_node, "base-cs", &spi->base_cs);
960 
961 	spin_lock_init(&spi->lock);
962 	spi->bits_per_word = 8;
963 	spi->speed_hz = 0;
964 
965 	host->dev.of_node = pdev->dev.of_node;
966 	host->num_chipselect = num_cs;
967 	host->use_gpio_descriptors = true;
968 	host->setup = lantiq_ssc_setup;
969 	host->set_cs = lantiq_ssc_set_cs;
970 	host->handle_err = lantiq_ssc_handle_err;
971 	host->prepare_message = lantiq_ssc_prepare_message;
972 	host->unprepare_message = lantiq_ssc_unprepare_message;
973 	host->transfer_one = lantiq_ssc_transfer_one;
974 	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH |
975 			  SPI_LOOP;
976 	host->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 8) |
977 				   SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
978 
979 	spi->wq = alloc_ordered_workqueue(dev_name(dev), WQ_MEM_RECLAIM);
980 	if (!spi->wq) {
981 		err = -ENOMEM;
982 		goto err_clk_put;
983 	}
984 	INIT_WORK(&spi->work, lantiq_ssc_bussy_work);
985 
986 	id = lantiq_ssc_readl(spi, LTQ_SPI_ID);
987 	spi->tx_fifo_size = (id >> LTQ_SPI_ID_TXFS_S) & hwcfg->fifo_size_mask;
988 	spi->rx_fifo_size = (id >> LTQ_SPI_ID_RXFS_S) & hwcfg->fifo_size_mask;
989 	supports_dma = (id & LTQ_SPI_ID_CFG_M) >> LTQ_SPI_ID_CFG_S;
990 	revision = id & LTQ_SPI_ID_REV_M;
991 
992 	lantiq_ssc_hw_init(spi);
993 
994 	dev_info(dev,
995 		"Lantiq SSC SPI controller (Rev %i, TXFS %u, RXFS %u, DMA %u)\n",
996 		revision, spi->tx_fifo_size, spi->rx_fifo_size, supports_dma);
997 
998 	err = devm_spi_register_controller(dev, host);
999 	if (err) {
1000 		dev_err(dev, "failed to register spi host\n");
1001 		goto err_wq_destroy;
1002 	}
1003 
1004 	return 0;
1005 
1006 err_wq_destroy:
1007 	destroy_workqueue(spi->wq);
1008 err_clk_put:
1009 	clk_put(spi->fpi_clk);
1010 err_host_put:
1011 	spi_controller_put(host);
1012 
1013 	return err;
1014 }
1015 
1016 static void lantiq_ssc_remove(struct platform_device *pdev)
1017 {
1018 	struct lantiq_ssc_spi *spi = platform_get_drvdata(pdev);
1019 
1020 	lantiq_ssc_writel(spi, 0, LTQ_SPI_IRNEN);
1021 	lantiq_ssc_writel(spi, 0, LTQ_SPI_CLC);
1022 	rx_fifo_flush(spi);
1023 	tx_fifo_flush(spi);
1024 	hw_enter_config_mode(spi);
1025 
1026 	destroy_workqueue(spi->wq);
1027 	clk_put(spi->fpi_clk);
1028 }
1029 
1030 static struct platform_driver lantiq_ssc_driver = {
1031 	.probe = lantiq_ssc_probe,
1032 	.remove = lantiq_ssc_remove,
1033 	.driver = {
1034 		.name = "spi-lantiq-ssc",
1035 		.of_match_table = lantiq_ssc_match,
1036 	},
1037 };
1038 module_platform_driver(lantiq_ssc_driver);
1039 
1040 MODULE_DESCRIPTION("Lantiq SSC SPI controller driver");
1041 MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@gmail.com>");
1042 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
1043 MODULE_LICENSE("GPL");
1044 MODULE_ALIAS("platform:spi-lantiq-ssc");
1045