1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Intel PCH/PCU SPI flash driver. 4 * 5 * Copyright (C) 2016 - 2022, Intel Corporation 6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com> 7 */ 8 9 #include <linux/iopoll.h> 10 #include <linux/module.h> 11 12 #include <linux/mtd/partitions.h> 13 #include <linux/mtd/spi-nor.h> 14 15 #include <linux/spi/flash.h> 16 #include <linux/spi/spi.h> 17 #include <linux/spi/spi-mem.h> 18 19 #include "spi-intel.h" 20 21 /* Offsets are from @ispi->base */ 22 #define BFPREG 0x00 23 24 #define HSFSTS_CTL 0x04 25 #define HSFSTS_CTL_FSMIE BIT(31) 26 #define HSFSTS_CTL_FDBC_SHIFT 24 27 #define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT) 28 29 #define HSFSTS_CTL_FCYCLE_SHIFT 17 30 #define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT) 31 /* HW sequencer opcodes */ 32 #define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT) 33 #define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT) 34 #define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT) 35 #define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT) 36 #define HSFSTS_CTL_FCYCLE_RDSFDP (0x05 << HSFSTS_CTL_FCYCLE_SHIFT) 37 #define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT) 38 #define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT) 39 #define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT) 40 41 #define HSFSTS_CTL_FGO BIT(16) 42 #define HSFSTS_CTL_FLOCKDN BIT(15) 43 #define HSFSTS_CTL_FDV BIT(14) 44 #define HSFSTS_CTL_SCIP BIT(5) 45 #define HSFSTS_CTL_AEL BIT(2) 46 #define HSFSTS_CTL_FCERR BIT(1) 47 #define HSFSTS_CTL_FDONE BIT(0) 48 49 #define FADDR 0x08 50 #define DLOCK 0x0c 51 #define FDATA(n) (0x10 + ((n) * 4)) 52 53 #define FRACC 0x50 54 55 #define FREG(n) (0x54 + ((n) * 4)) 56 #define FREG_BASE_MASK GENMASK(14, 0) 57 #define FREG_LIMIT_SHIFT 16 58 #define FREG_LIMIT_MASK GENMASK(30, 16) 59 60 /* Offset is from @ispi->pregs */ 61 #define PR(n) ((n) * 4) 62 #define PR_WPE BIT(31) 63 #define PR_LIMIT_SHIFT 16 64 #define PR_LIMIT_MASK GENMASK(30, 16) 65 #define PR_RPE BIT(15) 66 #define PR_BASE_MASK GENMASK(14, 0) 67 68 /* Offsets are from @ispi->sregs */ 69 #define SSFSTS_CTL 0x00 70 #define SSFSTS_CTL_FSMIE BIT(23) 71 #define SSFSTS_CTL_DS BIT(22) 72 #define SSFSTS_CTL_DBC_SHIFT 16 73 #define SSFSTS_CTL_SPOP BIT(11) 74 #define SSFSTS_CTL_ACS BIT(10) 75 #define SSFSTS_CTL_SCGO BIT(9) 76 #define SSFSTS_CTL_COP_SHIFT 12 77 #define SSFSTS_CTL_FRS BIT(7) 78 #define SSFSTS_CTL_DOFRS BIT(6) 79 #define SSFSTS_CTL_AEL BIT(4) 80 #define SSFSTS_CTL_FCERR BIT(3) 81 #define SSFSTS_CTL_FDONE BIT(2) 82 #define SSFSTS_CTL_SCIP BIT(0) 83 84 #define PREOP_OPTYPE 0x04 85 #define OPMENU0 0x08 86 #define OPMENU1 0x0c 87 88 #define OPTYPE_READ_NO_ADDR 0 89 #define OPTYPE_WRITE_NO_ADDR 1 90 #define OPTYPE_READ_WITH_ADDR 2 91 #define OPTYPE_WRITE_WITH_ADDR 3 92 93 /* CPU specifics */ 94 #define BYT_PR 0x74 95 #define BYT_SSFSTS_CTL 0x90 96 #define BYT_FREG_NUM 5 97 #define BYT_PR_NUM 5 98 99 #define LPT_PR 0x74 100 #define LPT_SSFSTS_CTL 0x90 101 #define LPT_FREG_NUM 5 102 #define LPT_PR_NUM 5 103 104 #define BXT_PR 0x84 105 #define BXT_SSFSTS_CTL 0xa0 106 #define BXT_FREG_NUM 12 107 #define BXT_PR_NUM 5 108 109 #define CNL_PR 0x84 110 #define CNL_FREG_NUM 6 111 #define CNL_PR_NUM 5 112 113 #define LVSCC 0xc4 114 #define UVSCC 0xc8 115 #define ERASE_OPCODE_SHIFT 8 116 #define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT) 117 #define ERASE_64K_OPCODE_SHIFT 16 118 #define ERASE_64K_OPCODE_MASK (0xff << ERASE_64K_OPCODE_SHIFT) 119 120 /* Flash descriptor fields */ 121 #define FLVALSIG_MAGIC 0x0ff0a55a 122 #define FLMAP0_NC_MASK GENMASK(9, 8) 123 #define FLMAP0_NC_SHIFT 8 124 #define FLMAP0_FCBA_MASK GENMASK(7, 0) 125 126 #define FLCOMP_C0DEN_MASK GENMASK(3, 0) 127 #define FLCOMP_C0DEN_512K 0x00 128 #define FLCOMP_C0DEN_1M 0x01 129 #define FLCOMP_C0DEN_2M 0x02 130 #define FLCOMP_C0DEN_4M 0x03 131 #define FLCOMP_C0DEN_8M 0x04 132 #define FLCOMP_C0DEN_16M 0x05 133 #define FLCOMP_C0DEN_32M 0x06 134 #define FLCOMP_C0DEN_64M 0x07 135 136 #define INTEL_SPI_TIMEOUT 5000 /* ms */ 137 #define INTEL_SPI_FIFO_SZ 64 138 139 /** 140 * struct intel_spi - Driver private data 141 * @dev: Device pointer 142 * @info: Pointer to board specific info 143 * @base: Beginning of MMIO space 144 * @pregs: Start of protection registers 145 * @sregs: Start of software sequencer registers 146 * @host: Pointer to the SPI controller structure 147 * @nregions: Maximum number of regions 148 * @pr_num: Maximum number of protected range registers 149 * @chip0_size: Size of the first flash chip in bytes 150 * @locked: Is SPI setting locked 151 * @swseq_reg: Use SW sequencer in register reads/writes 152 * @swseq_erase: Use SW sequencer in erase operation 153 * @atomic_preopcode: Holds preopcode when atomic sequence is requested 154 * @opcodes: Opcodes which are supported. This are programmed by BIOS 155 * before it locks down the controller. 156 * @mem_ops: Pointer to SPI MEM ops supported by the controller 157 */ 158 struct intel_spi { 159 struct device *dev; 160 const struct intel_spi_boardinfo *info; 161 void __iomem *base; 162 void __iomem *pregs; 163 void __iomem *sregs; 164 struct spi_controller *host; 165 size_t nregions; 166 size_t pr_num; 167 size_t chip0_size; 168 bool locked; 169 bool swseq_reg; 170 bool swseq_erase; 171 u8 atomic_preopcode; 172 u8 opcodes[8]; 173 const struct intel_spi_mem_op *mem_ops; 174 }; 175 176 struct intel_spi_mem_op { 177 struct spi_mem_op mem_op; 178 u32 replacement_op; 179 int (*exec_op)(struct intel_spi *ispi, 180 const struct spi_mem *mem, 181 const struct intel_spi_mem_op *iop, 182 const struct spi_mem_op *op); 183 }; 184 185 static bool writeable; 186 module_param(writeable, bool, 0); 187 MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)"); 188 189 static void intel_spi_dump_regs(struct intel_spi *ispi) 190 { 191 u32 value; 192 int i; 193 194 dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG)); 195 196 value = readl(ispi->base + HSFSTS_CTL); 197 dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value); 198 if (value & HSFSTS_CTL_FLOCKDN) 199 dev_dbg(ispi->dev, "-> Locked\n"); 200 201 dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR)); 202 dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK)); 203 204 for (i = 0; i < 16; i++) 205 dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n", 206 i, readl(ispi->base + FDATA(i))); 207 208 dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC)); 209 210 for (i = 0; i < ispi->nregions; i++) 211 dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i, 212 readl(ispi->base + FREG(i))); 213 for (i = 0; i < ispi->pr_num; i++) 214 dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i, 215 readl(ispi->pregs + PR(i))); 216 217 if (ispi->sregs) { 218 value = readl(ispi->sregs + SSFSTS_CTL); 219 dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value); 220 dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n", 221 readl(ispi->sregs + PREOP_OPTYPE)); 222 dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", 223 readl(ispi->sregs + OPMENU0)); 224 dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", 225 readl(ispi->sregs + OPMENU1)); 226 } 227 228 dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC)); 229 dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC)); 230 231 dev_dbg(ispi->dev, "Protected regions:\n"); 232 for (i = 0; i < ispi->pr_num; i++) { 233 u32 base, limit; 234 235 value = readl(ispi->pregs + PR(i)); 236 if (!(value & (PR_WPE | PR_RPE))) 237 continue; 238 239 limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT; 240 base = value & PR_BASE_MASK; 241 242 dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n", 243 i, base << 12, (limit << 12) | 0xfff, 244 value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.'); 245 } 246 247 dev_dbg(ispi->dev, "Flash regions:\n"); 248 for (i = 0; i < ispi->nregions; i++) { 249 u32 region, base, limit; 250 251 region = readl(ispi->base + FREG(i)); 252 base = region & FREG_BASE_MASK; 253 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT; 254 255 if (base >= limit || (i > 0 && limit == 0)) 256 dev_dbg(ispi->dev, " %02d disabled\n", i); 257 else 258 dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n", 259 i, base << 12, (limit << 12) | 0xfff); 260 } 261 262 dev_dbg(ispi->dev, "Using %cW sequencer for register access\n", 263 ispi->swseq_reg ? 'S' : 'H'); 264 dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n", 265 ispi->swseq_erase ? 'S' : 'H'); 266 } 267 268 /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */ 269 static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size) 270 { 271 size_t bytes; 272 int i = 0; 273 274 if (size > INTEL_SPI_FIFO_SZ) 275 return -EINVAL; 276 277 while (size > 0) { 278 bytes = min_t(size_t, size, 4); 279 memcpy_fromio(buf, ispi->base + FDATA(i), bytes); 280 size -= bytes; 281 buf += bytes; 282 i++; 283 } 284 285 return 0; 286 } 287 288 /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */ 289 static int intel_spi_write_block(struct intel_spi *ispi, const void *buf, 290 size_t size) 291 { 292 size_t bytes; 293 int i = 0; 294 295 if (size > INTEL_SPI_FIFO_SZ) 296 return -EINVAL; 297 298 while (size > 0) { 299 bytes = min_t(size_t, size, 4); 300 memcpy_toio(ispi->base + FDATA(i), buf, bytes); 301 size -= bytes; 302 buf += bytes; 303 i++; 304 } 305 306 return 0; 307 } 308 309 static int intel_spi_wait_hw_busy(struct intel_spi *ispi) 310 { 311 u32 val; 312 313 return readl_poll_timeout(ispi->base + HSFSTS_CTL, val, 314 !(val & HSFSTS_CTL_SCIP), 0, 315 INTEL_SPI_TIMEOUT * 1000); 316 } 317 318 static int intel_spi_wait_sw_busy(struct intel_spi *ispi) 319 { 320 u32 val; 321 322 return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val, 323 !(val & SSFSTS_CTL_SCIP), 0, 324 INTEL_SPI_TIMEOUT * 1000); 325 } 326 327 static bool intel_spi_set_writeable(struct intel_spi *ispi) 328 { 329 if (!ispi->info->set_writeable) 330 return false; 331 332 return ispi->info->set_writeable(ispi->base, ispi->info->data); 333 } 334 335 static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype) 336 { 337 int i; 338 int preop; 339 340 if (ispi->locked) { 341 for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) 342 if (ispi->opcodes[i] == opcode) 343 return i; 344 345 return -EINVAL; 346 } 347 348 /* The lock is off, so just use index 0 */ 349 writel(opcode, ispi->sregs + OPMENU0); 350 preop = readw(ispi->sregs + PREOP_OPTYPE); 351 writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE); 352 353 return 0; 354 } 355 356 static int intel_spi_hw_cycle(struct intel_spi *ispi, 357 const struct intel_spi_mem_op *iop, size_t len) 358 { 359 u32 val, status; 360 int ret; 361 362 if (!iop->replacement_op) 363 return -EINVAL; 364 365 val = readl(ispi->base + HSFSTS_CTL); 366 val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK); 367 val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT; 368 val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; 369 val |= HSFSTS_CTL_FGO; 370 val |= iop->replacement_op; 371 writel(val, ispi->base + HSFSTS_CTL); 372 373 ret = intel_spi_wait_hw_busy(ispi); 374 if (ret) 375 return ret; 376 377 status = readl(ispi->base + HSFSTS_CTL); 378 if (status & HSFSTS_CTL_FCERR) 379 return -EIO; 380 else if (status & HSFSTS_CTL_AEL) 381 return -EACCES; 382 383 return 0; 384 } 385 386 static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len, 387 int optype) 388 { 389 u32 val = 0, status; 390 u8 atomic_preopcode; 391 int ret; 392 393 ret = intel_spi_opcode_index(ispi, opcode, optype); 394 if (ret < 0) 395 return ret; 396 397 /* 398 * Always clear it after each SW sequencer operation regardless 399 * of whether it is successful or not. 400 */ 401 atomic_preopcode = ispi->atomic_preopcode; 402 ispi->atomic_preopcode = 0; 403 404 /* Only mark 'Data Cycle' bit when there is data to be transferred */ 405 if (len > 0) 406 val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS; 407 val |= ret << SSFSTS_CTL_COP_SHIFT; 408 val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE; 409 val |= SSFSTS_CTL_SCGO; 410 if (atomic_preopcode) { 411 u16 preop; 412 413 switch (optype) { 414 case OPTYPE_WRITE_NO_ADDR: 415 case OPTYPE_WRITE_WITH_ADDR: 416 /* Pick matching preopcode for the atomic sequence */ 417 preop = readw(ispi->sregs + PREOP_OPTYPE); 418 if ((preop & 0xff) == atomic_preopcode) 419 ; /* Do nothing */ 420 else if ((preop >> 8) == atomic_preopcode) 421 val |= SSFSTS_CTL_SPOP; 422 else 423 return -EINVAL; 424 425 /* Enable atomic sequence */ 426 val |= SSFSTS_CTL_ACS; 427 break; 428 429 default: 430 return -EINVAL; 431 } 432 } 433 writel(val, ispi->sregs + SSFSTS_CTL); 434 435 ret = intel_spi_wait_sw_busy(ispi); 436 if (ret) 437 return ret; 438 439 status = readl(ispi->sregs + SSFSTS_CTL); 440 if (status & SSFSTS_CTL_FCERR) 441 return -EIO; 442 else if (status & SSFSTS_CTL_AEL) 443 return -EACCES; 444 445 return 0; 446 } 447 448 static u32 intel_spi_chip_addr(const struct intel_spi *ispi, 449 const struct spi_mem *mem) 450 { 451 /* Pick up the correct start address */ 452 if (!mem) 453 return 0; 454 return (spi_get_chipselect(mem->spi, 0) == 1) ? ispi->chip0_size : 0; 455 } 456 457 static int intel_spi_read_reg(struct intel_spi *ispi, const struct spi_mem *mem, 458 const struct intel_spi_mem_op *iop, 459 const struct spi_mem_op *op) 460 { 461 u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; 462 size_t nbytes = op->data.nbytes; 463 u8 opcode = op->cmd.opcode; 464 int ret; 465 466 writel(addr, ispi->base + FADDR); 467 468 if (ispi->swseq_reg) 469 ret = intel_spi_sw_cycle(ispi, opcode, nbytes, 470 OPTYPE_READ_NO_ADDR); 471 else 472 ret = intel_spi_hw_cycle(ispi, iop, nbytes); 473 474 if (ret) 475 return ret; 476 477 return intel_spi_read_block(ispi, op->data.buf.in, nbytes); 478 } 479 480 static int intel_spi_write_reg(struct intel_spi *ispi, const struct spi_mem *mem, 481 const struct intel_spi_mem_op *iop, 482 const struct spi_mem_op *op) 483 { 484 u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; 485 size_t nbytes = op->data.nbytes; 486 u8 opcode = op->cmd.opcode; 487 int ret; 488 489 /* 490 * This is handled with atomic operation and preop code in Intel 491 * controller so we only verify that it is available. If the 492 * controller is not locked, program the opcode to the PREOP 493 * register for later use. 494 * 495 * When hardware sequencer is used there is no need to program 496 * any opcodes (it handles them automatically as part of a command). 497 */ 498 if (opcode == SPINOR_OP_WREN) { 499 u16 preop; 500 501 if (!ispi->swseq_reg) 502 return 0; 503 504 preop = readw(ispi->sregs + PREOP_OPTYPE); 505 if ((preop & 0xff) != opcode && (preop >> 8) != opcode) { 506 if (ispi->locked) 507 return -EINVAL; 508 writel(opcode, ispi->sregs + PREOP_OPTYPE); 509 } 510 511 /* 512 * This enables atomic sequence on next SW sycle. Will 513 * be cleared after next operation. 514 */ 515 ispi->atomic_preopcode = opcode; 516 return 0; 517 } 518 519 /* 520 * We hope that HW sequencer will do the right thing automatically and 521 * with the SW sequencer we cannot use preopcode anyway, so just ignore 522 * the Write Disable operation and pretend it was completed 523 * successfully. 524 */ 525 if (opcode == SPINOR_OP_WRDI) 526 return 0; 527 528 writel(addr, ispi->base + FADDR); 529 530 /* Write the value beforehand */ 531 ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes); 532 if (ret) 533 return ret; 534 535 if (ispi->swseq_reg) 536 return intel_spi_sw_cycle(ispi, opcode, nbytes, 537 OPTYPE_WRITE_NO_ADDR); 538 return intel_spi_hw_cycle(ispi, iop, nbytes); 539 } 540 541 static int intel_spi_read(struct intel_spi *ispi, const struct spi_mem *mem, 542 const struct intel_spi_mem_op *iop, 543 const struct spi_mem_op *op) 544 { 545 u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; 546 size_t block_size, nbytes = op->data.nbytes; 547 void *read_buf = op->data.buf.in; 548 u32 val, status; 549 int ret; 550 551 /* 552 * Atomic sequence is not expected with HW sequencer reads. Make 553 * sure it is cleared regardless. 554 */ 555 if (WARN_ON_ONCE(ispi->atomic_preopcode)) 556 ispi->atomic_preopcode = 0; 557 558 while (nbytes > 0) { 559 block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ); 560 561 /* Read cannot cross 4K boundary */ 562 block_size = min_t(loff_t, addr + block_size, 563 round_up(addr + 1, SZ_4K)) - addr; 564 565 writel(addr, ispi->base + FADDR); 566 567 val = readl(ispi->base + HSFSTS_CTL); 568 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); 569 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; 570 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT; 571 val |= HSFSTS_CTL_FCYCLE_READ; 572 val |= HSFSTS_CTL_FGO; 573 writel(val, ispi->base + HSFSTS_CTL); 574 575 ret = intel_spi_wait_hw_busy(ispi); 576 if (ret) 577 return ret; 578 579 status = readl(ispi->base + HSFSTS_CTL); 580 if (status & HSFSTS_CTL_FCERR) 581 ret = -EIO; 582 else if (status & HSFSTS_CTL_AEL) 583 ret = -EACCES; 584 585 if (ret < 0) { 586 dev_err(ispi->dev, "read error: %x: %#x\n", addr, status); 587 return ret; 588 } 589 590 ret = intel_spi_read_block(ispi, read_buf, block_size); 591 if (ret) 592 return ret; 593 594 nbytes -= block_size; 595 addr += block_size; 596 read_buf += block_size; 597 } 598 599 return 0; 600 } 601 602 static int intel_spi_write(struct intel_spi *ispi, const struct spi_mem *mem, 603 const struct intel_spi_mem_op *iop, 604 const struct spi_mem_op *op) 605 { 606 u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; 607 size_t block_size, nbytes = op->data.nbytes; 608 const void *write_buf = op->data.buf.out; 609 u32 val, status; 610 int ret; 611 612 /* Not needed with HW sequencer write, make sure it is cleared */ 613 ispi->atomic_preopcode = 0; 614 615 while (nbytes > 0) { 616 block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ); 617 618 /* Write cannot cross 4K boundary */ 619 block_size = min_t(loff_t, addr + block_size, 620 round_up(addr + 1, SZ_4K)) - addr; 621 622 writel(addr, ispi->base + FADDR); 623 624 val = readl(ispi->base + HSFSTS_CTL); 625 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); 626 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; 627 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT; 628 val |= HSFSTS_CTL_FCYCLE_WRITE; 629 630 ret = intel_spi_write_block(ispi, write_buf, block_size); 631 if (ret) { 632 dev_err(ispi->dev, "failed to write block\n"); 633 return ret; 634 } 635 636 /* Start the write now */ 637 val |= HSFSTS_CTL_FGO; 638 writel(val, ispi->base + HSFSTS_CTL); 639 640 ret = intel_spi_wait_hw_busy(ispi); 641 if (ret) { 642 dev_err(ispi->dev, "timeout\n"); 643 return ret; 644 } 645 646 status = readl(ispi->base + HSFSTS_CTL); 647 if (status & HSFSTS_CTL_FCERR) 648 ret = -EIO; 649 else if (status & HSFSTS_CTL_AEL) 650 ret = -EACCES; 651 652 if (ret < 0) { 653 dev_err(ispi->dev, "write error: %x: %#x\n", addr, status); 654 return ret; 655 } 656 657 nbytes -= block_size; 658 addr += block_size; 659 write_buf += block_size; 660 } 661 662 return 0; 663 } 664 665 static int intel_spi_erase(struct intel_spi *ispi, const struct spi_mem *mem, 666 const struct intel_spi_mem_op *iop, 667 const struct spi_mem_op *op) 668 { 669 u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; 670 u8 opcode = op->cmd.opcode; 671 u32 val, status; 672 int ret; 673 674 writel(addr, ispi->base + FADDR); 675 676 if (ispi->swseq_erase) 677 return intel_spi_sw_cycle(ispi, opcode, 0, 678 OPTYPE_WRITE_WITH_ADDR); 679 680 /* Not needed with HW sequencer erase, make sure it is cleared */ 681 ispi->atomic_preopcode = 0; 682 683 val = readl(ispi->base + HSFSTS_CTL); 684 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); 685 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; 686 val |= HSFSTS_CTL_FGO; 687 val |= iop->replacement_op; 688 writel(val, ispi->base + HSFSTS_CTL); 689 690 ret = intel_spi_wait_hw_busy(ispi); 691 if (ret) 692 return ret; 693 694 status = readl(ispi->base + HSFSTS_CTL); 695 if (status & HSFSTS_CTL_FCERR) 696 return -EIO; 697 if (status & HSFSTS_CTL_AEL) 698 return -EACCES; 699 700 return 0; 701 } 702 703 static int intel_spi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) 704 { 705 op->data.nbytes = clamp_val(op->data.nbytes, 0, INTEL_SPI_FIFO_SZ); 706 return 0; 707 } 708 709 static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop, 710 const struct spi_mem_op *op) 711 { 712 if (iop->mem_op.cmd.nbytes != op->cmd.nbytes || 713 iop->mem_op.cmd.buswidth != op->cmd.buswidth || 714 iop->mem_op.cmd.dtr != op->cmd.dtr) 715 return false; 716 717 if (iop->mem_op.addr.nbytes != op->addr.nbytes || 718 iop->mem_op.addr.dtr != op->addr.dtr) 719 return false; 720 721 if (iop->mem_op.data.dir != op->data.dir || 722 iop->mem_op.data.dtr != op->data.dtr) 723 return false; 724 725 if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) { 726 if (iop->mem_op.data.buswidth != op->data.buswidth) 727 return false; 728 } 729 730 return true; 731 } 732 733 static const struct intel_spi_mem_op * 734 intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op) 735 { 736 const struct intel_spi_mem_op *iop; 737 738 for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) { 739 if (iop->mem_op.cmd.opcode == op->cmd.opcode && 740 intel_spi_cmp_mem_op(iop, op)) 741 return iop; 742 } 743 744 return NULL; 745 } 746 747 static bool intel_spi_supports_mem_op(struct spi_mem *mem, 748 const struct spi_mem_op *op) 749 { 750 struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller); 751 const struct intel_spi_mem_op *iop; 752 753 iop = intel_spi_match_mem_op(ispi, op); 754 if (!iop) { 755 dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode); 756 return false; 757 } 758 759 /* 760 * For software sequencer check that the opcode is actually 761 * present in the opmenu if it is locked. 762 */ 763 if (ispi->swseq_reg && ispi->locked) { 764 int i; 765 766 /* Check if it is in the locked opcodes list */ 767 for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) { 768 if (ispi->opcodes[i] == op->cmd.opcode) 769 return true; 770 } 771 772 dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode); 773 return false; 774 } 775 776 return true; 777 } 778 779 static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) 780 { 781 struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller); 782 const struct intel_spi_mem_op *iop; 783 784 iop = intel_spi_match_mem_op(ispi, op); 785 if (!iop) 786 return -EOPNOTSUPP; 787 788 return iop->exec_op(ispi, mem, iop, op); 789 } 790 791 static const char *intel_spi_get_name(struct spi_mem *mem) 792 { 793 const struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller); 794 795 /* 796 * Return name of the flash controller device to be compatible 797 * with the MTD version. 798 */ 799 return dev_name(ispi->dev); 800 } 801 802 static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) 803 { 804 struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller); 805 const struct intel_spi_mem_op *iop; 806 807 iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl); 808 if (!iop) 809 return -EOPNOTSUPP; 810 811 desc->priv = (void *)iop; 812 return 0; 813 } 814 815 static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs, 816 size_t len, void *buf) 817 { 818 struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller); 819 const struct intel_spi_mem_op *iop = desc->priv; 820 struct spi_mem_op op = desc->info.op_tmpl; 821 int ret; 822 823 /* Fill in the gaps */ 824 op.addr.val = offs; 825 op.data.nbytes = len; 826 op.data.buf.in = buf; 827 828 ret = iop->exec_op(ispi, desc->mem, iop, &op); 829 return ret ? ret : len; 830 } 831 832 static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs, 833 size_t len, const void *buf) 834 { 835 struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller); 836 const struct intel_spi_mem_op *iop = desc->priv; 837 struct spi_mem_op op = desc->info.op_tmpl; 838 int ret; 839 840 op.addr.val = offs; 841 op.data.nbytes = len; 842 op.data.buf.out = buf; 843 844 ret = iop->exec_op(ispi, desc->mem, iop, &op); 845 return ret ? ret : len; 846 } 847 848 static const struct spi_controller_mem_ops intel_spi_mem_ops = { 849 .adjust_op_size = intel_spi_adjust_op_size, 850 .supports_op = intel_spi_supports_mem_op, 851 .exec_op = intel_spi_exec_mem_op, 852 .get_name = intel_spi_get_name, 853 .dirmap_create = intel_spi_dirmap_create, 854 .dirmap_read = intel_spi_dirmap_read, 855 .dirmap_write = intel_spi_dirmap_write, 856 }; 857 858 #define INTEL_SPI_OP_ADDR(__nbytes) \ 859 { \ 860 .nbytes = __nbytes, \ 861 } 862 863 #define INTEL_SPI_OP_NO_DATA \ 864 { \ 865 .dir = SPI_MEM_NO_DATA, \ 866 } 867 868 #define INTEL_SPI_OP_DATA_IN(__buswidth) \ 869 { \ 870 .dir = SPI_MEM_DATA_IN, \ 871 .buswidth = __buswidth, \ 872 } 873 874 #define INTEL_SPI_OP_DATA_OUT(__buswidth) \ 875 { \ 876 .dir = SPI_MEM_DATA_OUT, \ 877 .buswidth = __buswidth, \ 878 } 879 880 #define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op) \ 881 { \ 882 .mem_op = { \ 883 .cmd = __cmd, \ 884 .addr = __addr, \ 885 .data = __data, \ 886 }, \ 887 .exec_op = __exec_op, \ 888 } 889 890 #define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl) \ 891 { \ 892 .mem_op = { \ 893 .cmd = __cmd, \ 894 .addr = __addr, \ 895 .data = __data, \ 896 }, \ 897 .exec_op = __exec_op, \ 898 .replacement_op = __repl, \ 899 } 900 901 /* 902 * The controller handles pretty much everything internally based on the 903 * SFDP data but we want to make sure we only support the operations 904 * actually possible. Only check buswidth and transfer direction, the 905 * core validates data. 906 */ 907 #define INTEL_SPI_GENERIC_OPS \ 908 /* Status register operations */ \ 909 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1), \ 910 SPI_MEM_OP_NO_ADDR, \ 911 INTEL_SPI_OP_DATA_IN(1), \ 912 intel_spi_read_reg, \ 913 HSFSTS_CTL_FCYCLE_RDID), \ 914 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1), \ 915 SPI_MEM_OP_NO_ADDR, \ 916 INTEL_SPI_OP_DATA_IN(1), \ 917 intel_spi_read_reg, \ 918 HSFSTS_CTL_FCYCLE_RDSR), \ 919 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1), \ 920 SPI_MEM_OP_NO_ADDR, \ 921 INTEL_SPI_OP_DATA_OUT(1), \ 922 intel_spi_write_reg, \ 923 HSFSTS_CTL_FCYCLE_WRSR), \ 924 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSFDP, 1), \ 925 INTEL_SPI_OP_ADDR(3), \ 926 INTEL_SPI_OP_DATA_IN(1), \ 927 intel_spi_read_reg, \ 928 HSFSTS_CTL_FCYCLE_RDSFDP), \ 929 /* Normal read */ \ 930 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ 931 INTEL_SPI_OP_ADDR(3), \ 932 INTEL_SPI_OP_DATA_IN(1), \ 933 intel_spi_read), \ 934 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ 935 INTEL_SPI_OP_ADDR(3), \ 936 INTEL_SPI_OP_DATA_IN(2), \ 937 intel_spi_read), \ 938 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ 939 INTEL_SPI_OP_ADDR(3), \ 940 INTEL_SPI_OP_DATA_IN(4), \ 941 intel_spi_read), \ 942 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ 943 INTEL_SPI_OP_ADDR(4), \ 944 INTEL_SPI_OP_DATA_IN(1), \ 945 intel_spi_read), \ 946 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ 947 INTEL_SPI_OP_ADDR(4), \ 948 INTEL_SPI_OP_DATA_IN(2), \ 949 intel_spi_read), \ 950 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ 951 INTEL_SPI_OP_ADDR(4), \ 952 INTEL_SPI_OP_DATA_IN(4), \ 953 intel_spi_read), \ 954 /* Fast read */ \ 955 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ 956 INTEL_SPI_OP_ADDR(3), \ 957 INTEL_SPI_OP_DATA_IN(1), \ 958 intel_spi_read), \ 959 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ 960 INTEL_SPI_OP_ADDR(3), \ 961 INTEL_SPI_OP_DATA_IN(2), \ 962 intel_spi_read), \ 963 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ 964 INTEL_SPI_OP_ADDR(3), \ 965 INTEL_SPI_OP_DATA_IN(4), \ 966 intel_spi_read), \ 967 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ 968 INTEL_SPI_OP_ADDR(4), \ 969 INTEL_SPI_OP_DATA_IN(1), \ 970 intel_spi_read), \ 971 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ 972 INTEL_SPI_OP_ADDR(4), \ 973 INTEL_SPI_OP_DATA_IN(2), \ 974 intel_spi_read), \ 975 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ 976 INTEL_SPI_OP_ADDR(4), \ 977 INTEL_SPI_OP_DATA_IN(4), \ 978 intel_spi_read), \ 979 /* Read with 4-byte address opcode */ \ 980 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \ 981 INTEL_SPI_OP_ADDR(4), \ 982 INTEL_SPI_OP_DATA_IN(1), \ 983 intel_spi_read), \ 984 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \ 985 INTEL_SPI_OP_ADDR(4), \ 986 INTEL_SPI_OP_DATA_IN(2), \ 987 intel_spi_read), \ 988 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \ 989 INTEL_SPI_OP_ADDR(4), \ 990 INTEL_SPI_OP_DATA_IN(4), \ 991 intel_spi_read), \ 992 /* Fast read with 4-byte address opcode */ \ 993 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \ 994 INTEL_SPI_OP_ADDR(4), \ 995 INTEL_SPI_OP_DATA_IN(1), \ 996 intel_spi_read), \ 997 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \ 998 INTEL_SPI_OP_ADDR(4), \ 999 INTEL_SPI_OP_DATA_IN(2), \ 1000 intel_spi_read), \ 1001 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \ 1002 INTEL_SPI_OP_ADDR(4), \ 1003 INTEL_SPI_OP_DATA_IN(4), \ 1004 intel_spi_read), \ 1005 /* Write operations */ \ 1006 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \ 1007 INTEL_SPI_OP_ADDR(3), \ 1008 INTEL_SPI_OP_DATA_OUT(1), \ 1009 intel_spi_write), \ 1010 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \ 1011 INTEL_SPI_OP_ADDR(4), \ 1012 INTEL_SPI_OP_DATA_OUT(1), \ 1013 intel_spi_write), \ 1014 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1), \ 1015 INTEL_SPI_OP_ADDR(4), \ 1016 INTEL_SPI_OP_DATA_OUT(1), \ 1017 intel_spi_write), \ 1018 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1), \ 1019 SPI_MEM_OP_NO_ADDR, \ 1020 SPI_MEM_OP_NO_DATA, \ 1021 intel_spi_write_reg), \ 1022 INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1), \ 1023 SPI_MEM_OP_NO_ADDR, \ 1024 SPI_MEM_OP_NO_DATA, \ 1025 intel_spi_write_reg), \ 1026 /* Erase operations */ \ 1027 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \ 1028 INTEL_SPI_OP_ADDR(3), \ 1029 SPI_MEM_OP_NO_DATA, \ 1030 intel_spi_erase, \ 1031 HSFSTS_CTL_FCYCLE_ERASE), \ 1032 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \ 1033 INTEL_SPI_OP_ADDR(4), \ 1034 SPI_MEM_OP_NO_DATA, \ 1035 intel_spi_erase, \ 1036 HSFSTS_CTL_FCYCLE_ERASE), \ 1037 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1), \ 1038 INTEL_SPI_OP_ADDR(4), \ 1039 SPI_MEM_OP_NO_DATA, \ 1040 intel_spi_erase, \ 1041 HSFSTS_CTL_FCYCLE_ERASE) \ 1042 1043 static const struct intel_spi_mem_op generic_mem_ops[] = { 1044 INTEL_SPI_GENERIC_OPS, 1045 { }, 1046 }; 1047 1048 static const struct intel_spi_mem_op erase_64k_mem_ops[] = { 1049 INTEL_SPI_GENERIC_OPS, 1050 /* 64k sector erase operations */ 1051 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1), 1052 INTEL_SPI_OP_ADDR(3), 1053 SPI_MEM_OP_NO_DATA, 1054 intel_spi_erase, 1055 HSFSTS_CTL_FCYCLE_ERASE_64K), 1056 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1), 1057 INTEL_SPI_OP_ADDR(4), 1058 SPI_MEM_OP_NO_DATA, 1059 intel_spi_erase, 1060 HSFSTS_CTL_FCYCLE_ERASE_64K), 1061 INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1), 1062 INTEL_SPI_OP_ADDR(4), 1063 SPI_MEM_OP_NO_DATA, 1064 intel_spi_erase, 1065 HSFSTS_CTL_FCYCLE_ERASE_64K), 1066 { }, 1067 }; 1068 1069 static int intel_spi_init(struct intel_spi *ispi) 1070 { 1071 u32 opmenu0, opmenu1, lvscc, uvscc, val; 1072 bool erase_64k = false; 1073 int i; 1074 1075 switch (ispi->info->type) { 1076 case INTEL_SPI_BYT: 1077 ispi->sregs = ispi->base + BYT_SSFSTS_CTL; 1078 ispi->pregs = ispi->base + BYT_PR; 1079 ispi->nregions = BYT_FREG_NUM; 1080 ispi->pr_num = BYT_PR_NUM; 1081 ispi->swseq_reg = true; 1082 break; 1083 1084 case INTEL_SPI_LPT: 1085 ispi->sregs = ispi->base + LPT_SSFSTS_CTL; 1086 ispi->pregs = ispi->base + LPT_PR; 1087 ispi->nregions = LPT_FREG_NUM; 1088 ispi->pr_num = LPT_PR_NUM; 1089 ispi->swseq_reg = true; 1090 break; 1091 1092 case INTEL_SPI_BXT: 1093 ispi->sregs = ispi->base + BXT_SSFSTS_CTL; 1094 ispi->pregs = ispi->base + BXT_PR; 1095 ispi->nregions = BXT_FREG_NUM; 1096 ispi->pr_num = BXT_PR_NUM; 1097 erase_64k = true; 1098 break; 1099 1100 case INTEL_SPI_CNL: 1101 ispi->sregs = NULL; 1102 ispi->pregs = ispi->base + CNL_PR; 1103 ispi->nregions = CNL_FREG_NUM; 1104 ispi->pr_num = CNL_PR_NUM; 1105 erase_64k = true; 1106 break; 1107 1108 default: 1109 return -EINVAL; 1110 } 1111 1112 /* Try to disable write protection if user asked to do so */ 1113 if (writeable && !intel_spi_set_writeable(ispi)) { 1114 dev_warn(ispi->dev, "can't disable chip write protection\n"); 1115 writeable = false; 1116 } 1117 1118 /* Disable #SMI generation from HW sequencer */ 1119 val = readl(ispi->base + HSFSTS_CTL); 1120 val &= ~HSFSTS_CTL_FSMIE; 1121 writel(val, ispi->base + HSFSTS_CTL); 1122 1123 /* 1124 * Determine whether erase operation should use HW or SW sequencer. 1125 * 1126 * The HW sequencer has a predefined list of opcodes, with only the 1127 * erase opcode being programmable in LVSCC and UVSCC registers. 1128 * If these registers don't contain a valid erase opcode, erase 1129 * cannot be done using HW sequencer. 1130 */ 1131 lvscc = readl(ispi->base + LVSCC); 1132 uvscc = readl(ispi->base + UVSCC); 1133 if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK)) 1134 ispi->swseq_erase = true; 1135 /* SPI controller on Intel BXT supports 64K erase opcode */ 1136 if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase) 1137 if (!(lvscc & ERASE_64K_OPCODE_MASK) || 1138 !(uvscc & ERASE_64K_OPCODE_MASK)) 1139 erase_64k = false; 1140 1141 if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) { 1142 dev_err(ispi->dev, "software sequencer not supported, but required\n"); 1143 return -EINVAL; 1144 } 1145 1146 /* 1147 * Some controllers can only do basic operations using hardware 1148 * sequencer. All other operations are supposed to be carried out 1149 * using software sequencer. 1150 */ 1151 if (ispi->swseq_reg) { 1152 /* Disable #SMI generation from SW sequencer */ 1153 val = readl(ispi->sregs + SSFSTS_CTL); 1154 val &= ~SSFSTS_CTL_FSMIE; 1155 writel(val, ispi->sregs + SSFSTS_CTL); 1156 } 1157 1158 /* Check controller's lock status */ 1159 val = readl(ispi->base + HSFSTS_CTL); 1160 ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN); 1161 1162 if (ispi->locked && ispi->sregs) { 1163 /* 1164 * BIOS programs allowed opcodes and then locks down the 1165 * register. So read back what opcodes it decided to support. 1166 * That's the set we are going to support as well. 1167 */ 1168 opmenu0 = readl(ispi->sregs + OPMENU0); 1169 opmenu1 = readl(ispi->sregs + OPMENU1); 1170 1171 if (opmenu0 && opmenu1) { 1172 for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) { 1173 ispi->opcodes[i] = opmenu0 >> i * 8; 1174 ispi->opcodes[i + 4] = opmenu1 >> i * 8; 1175 } 1176 } 1177 } 1178 1179 if (erase_64k) { 1180 dev_dbg(ispi->dev, "Using erase_64k memory operations"); 1181 ispi->mem_ops = erase_64k_mem_ops; 1182 } else { 1183 dev_dbg(ispi->dev, "Using generic memory operations"); 1184 ispi->mem_ops = generic_mem_ops; 1185 } 1186 1187 intel_spi_dump_regs(ispi); 1188 return 0; 1189 } 1190 1191 static bool intel_spi_is_protected(const struct intel_spi *ispi, 1192 unsigned int base, unsigned int limit) 1193 { 1194 int i; 1195 1196 for (i = 0; i < ispi->pr_num; i++) { 1197 u32 pr_base, pr_limit, pr_value; 1198 1199 pr_value = readl(ispi->pregs + PR(i)); 1200 if (!(pr_value & (PR_WPE | PR_RPE))) 1201 continue; 1202 1203 pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT; 1204 pr_base = pr_value & PR_BASE_MASK; 1205 1206 if (pr_base >= base && pr_limit <= limit) 1207 return true; 1208 } 1209 1210 return false; 1211 } 1212 1213 /* 1214 * There will be a single partition holding all enabled flash regions. We 1215 * call this "BIOS". 1216 */ 1217 static void intel_spi_fill_partition(struct intel_spi *ispi, 1218 struct mtd_partition *part) 1219 { 1220 u64 end; 1221 int i; 1222 1223 memset(part, 0, sizeof(*part)); 1224 1225 /* Start from the mandatory descriptor region */ 1226 part->size = 4096; 1227 part->name = "BIOS"; 1228 1229 /* 1230 * Now try to find where this partition ends based on the flash 1231 * region registers. 1232 */ 1233 for (i = 1; i < ispi->nregions; i++) { 1234 u32 region, base, limit; 1235 1236 region = readl(ispi->base + FREG(i)); 1237 base = region & FREG_BASE_MASK; 1238 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT; 1239 1240 if (base >= limit || limit == 0) 1241 continue; 1242 1243 /* 1244 * If any of the regions have protection bits set, make the 1245 * whole partition read-only to be on the safe side. 1246 * 1247 * Also if the user did not ask the chip to be writeable 1248 * mask the bit too. 1249 */ 1250 if (!writeable || intel_spi_is_protected(ispi, base, limit)) 1251 part->mask_flags |= MTD_WRITEABLE; 1252 1253 end = (limit << 12) + 4096; 1254 if (end > part->size) 1255 part->size = end; 1256 } 1257 1258 /* 1259 * Regions can refer to the second chip too so in this case we 1260 * just make the BIOS partition to occupy the whole chip. 1261 */ 1262 if (ispi->chip0_size && part->size > ispi->chip0_size) 1263 part->size = MTDPART_SIZ_FULL; 1264 } 1265 1266 static int intel_spi_read_desc(struct intel_spi *ispi) 1267 { 1268 struct spi_mem_op op = 1269 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 0), 1270 SPI_MEM_OP_ADDR(3, 0, 0), 1271 SPI_MEM_OP_NO_DUMMY, 1272 SPI_MEM_OP_DATA_IN(0, NULL, 0)); 1273 u32 buf[2], nc, fcba, flcomp; 1274 ssize_t ret; 1275 1276 op.addr.val = 0x10; 1277 op.data.buf.in = buf; 1278 op.data.nbytes = sizeof(buf); 1279 1280 ret = intel_spi_read(ispi, NULL, NULL, &op); 1281 if (ret) { 1282 dev_warn(ispi->dev, "failed to read descriptor\n"); 1283 return ret; 1284 } 1285 1286 dev_dbg(ispi->dev, "FLVALSIG=0x%08x\n", buf[0]); 1287 dev_dbg(ispi->dev, "FLMAP0=0x%08x\n", buf[1]); 1288 1289 if (buf[0] != FLVALSIG_MAGIC) { 1290 dev_warn(ispi->dev, "descriptor signature not valid\n"); 1291 return -ENODEV; 1292 } 1293 1294 fcba = (buf[1] & FLMAP0_FCBA_MASK) << 4; 1295 dev_dbg(ispi->dev, "FCBA=%#x\n", fcba); 1296 1297 op.addr.val = fcba; 1298 op.data.buf.in = &flcomp; 1299 op.data.nbytes = sizeof(flcomp); 1300 1301 ret = intel_spi_read(ispi, NULL, NULL, &op); 1302 if (ret) { 1303 dev_warn(ispi->dev, "failed to read FLCOMP\n"); 1304 return -ENODEV; 1305 } 1306 1307 dev_dbg(ispi->dev, "FLCOMP=0x%08x\n", flcomp); 1308 1309 switch (flcomp & FLCOMP_C0DEN_MASK) { 1310 case FLCOMP_C0DEN_512K: 1311 ispi->chip0_size = SZ_512K; 1312 break; 1313 case FLCOMP_C0DEN_1M: 1314 ispi->chip0_size = SZ_1M; 1315 break; 1316 case FLCOMP_C0DEN_2M: 1317 ispi->chip0_size = SZ_2M; 1318 break; 1319 case FLCOMP_C0DEN_4M: 1320 ispi->chip0_size = SZ_4M; 1321 break; 1322 case FLCOMP_C0DEN_8M: 1323 ispi->chip0_size = SZ_8M; 1324 break; 1325 case FLCOMP_C0DEN_16M: 1326 ispi->chip0_size = SZ_16M; 1327 break; 1328 case FLCOMP_C0DEN_32M: 1329 ispi->chip0_size = SZ_32M; 1330 break; 1331 case FLCOMP_C0DEN_64M: 1332 ispi->chip0_size = SZ_64M; 1333 break; 1334 default: 1335 return -EINVAL; 1336 } 1337 1338 dev_dbg(ispi->dev, "chip0 size %zd KB\n", ispi->chip0_size / SZ_1K); 1339 1340 nc = (buf[1] & FLMAP0_NC_MASK) >> FLMAP0_NC_SHIFT; 1341 if (!nc) 1342 ispi->host->num_chipselect = 1; 1343 else if (nc == 1) 1344 ispi->host->num_chipselect = 2; 1345 else 1346 return -EINVAL; 1347 1348 dev_dbg(ispi->dev, "%u flash components found\n", 1349 ispi->host->num_chipselect); 1350 return 0; 1351 } 1352 1353 static int intel_spi_populate_chip(struct intel_spi *ispi) 1354 { 1355 struct flash_platform_data *pdata; 1356 struct mtd_partition *parts; 1357 struct spi_board_info chip; 1358 int ret; 1359 1360 ret = intel_spi_read_desc(ispi); 1361 if (ret) 1362 return ret; 1363 1364 pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL); 1365 if (!pdata) 1366 return -ENOMEM; 1367 1368 pdata->nr_parts = 1; 1369 pdata->parts = devm_kcalloc(ispi->dev, pdata->nr_parts, 1370 sizeof(*pdata->parts), GFP_KERNEL); 1371 if (!pdata->parts) 1372 return -ENOMEM; 1373 1374 intel_spi_fill_partition(ispi, pdata->parts); 1375 1376 memset(&chip, 0, sizeof(chip)); 1377 snprintf(chip.modalias, 8, "spi-nor"); 1378 chip.platform_data = pdata; 1379 1380 if (!spi_new_device(ispi->host, &chip)) 1381 return -ENODEV; 1382 1383 /* Add the second chip if present */ 1384 if (ispi->host->num_chipselect < 2) 1385 return 0; 1386 1387 pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL); 1388 if (!pdata) 1389 return -ENOMEM; 1390 1391 pdata->name = devm_kasprintf(ispi->dev, GFP_KERNEL, "%s-chip1", 1392 dev_name(ispi->dev)); 1393 if (!pdata->name) 1394 return -ENOMEM; 1395 1396 pdata->nr_parts = 1; 1397 parts = devm_kcalloc(ispi->dev, pdata->nr_parts, sizeof(*parts), 1398 GFP_KERNEL); 1399 if (!parts) 1400 return -ENOMEM; 1401 1402 parts[0].size = MTDPART_SIZ_FULL; 1403 parts[0].name = "BIOS1"; 1404 pdata->parts = parts; 1405 1406 chip.platform_data = pdata; 1407 chip.chip_select = 1; 1408 1409 if (!spi_new_device(ispi->host, &chip)) 1410 return -ENODEV; 1411 return 0; 1412 } 1413 1414 /** 1415 * intel_spi_probe() - Probe the Intel SPI flash controller 1416 * @dev: Pointer to the parent device 1417 * @mem: MMIO resource 1418 * @info: Platform specific information 1419 * 1420 * Probes Intel SPI flash controller and creates the flash chip device. 1421 * Returns %0 on success and negative errno in case of failure. 1422 */ 1423 int intel_spi_probe(struct device *dev, struct resource *mem, 1424 const struct intel_spi_boardinfo *info) 1425 { 1426 struct spi_controller *host; 1427 struct intel_spi *ispi; 1428 int ret; 1429 1430 host = devm_spi_alloc_host(dev, sizeof(*ispi)); 1431 if (!host) 1432 return -ENOMEM; 1433 1434 host->mem_ops = &intel_spi_mem_ops; 1435 1436 ispi = spi_controller_get_devdata(host); 1437 1438 ispi->base = devm_ioremap_resource(dev, mem); 1439 if (IS_ERR(ispi->base)) 1440 return PTR_ERR(ispi->base); 1441 1442 ispi->dev = dev; 1443 ispi->host = host; 1444 ispi->info = info; 1445 1446 ret = intel_spi_init(ispi); 1447 if (ret) 1448 return ret; 1449 1450 ret = devm_spi_register_controller(dev, host); 1451 if (ret) 1452 return ret; 1453 1454 return intel_spi_populate_chip(ispi); 1455 } 1456 EXPORT_SYMBOL_GPL(intel_spi_probe); 1457 1458 MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver"); 1459 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>"); 1460 MODULE_LICENSE("GPL v2"); 1461