xref: /linux/drivers/spi/spi-intel.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel PCH/PCU SPI flash driver.
4  *
5  * Copyright (C) 2016 - 2022, Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  */
8 
9 #include <linux/iopoll.h>
10 #include <linux/module.h>
11 
12 #include <linux/mtd/partitions.h>
13 #include <linux/mtd/spi-nor.h>
14 
15 #include <linux/spi/flash.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18 
19 #include "spi-intel.h"
20 
21 /* Offsets are from @ispi->base */
22 #define BFPREG				0x00
23 
24 #define HSFSTS_CTL			0x04
25 #define HSFSTS_CTL_FSMIE		BIT(31)
26 #define HSFSTS_CTL_FDBC_SHIFT		24
27 #define HSFSTS_CTL_FDBC_MASK		(0x3f << HSFSTS_CTL_FDBC_SHIFT)
28 
29 #define HSFSTS_CTL_FCYCLE_SHIFT		17
30 #define HSFSTS_CTL_FCYCLE_MASK		(0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
31 /* HW sequencer opcodes */
32 #define HSFSTS_CTL_FCYCLE_READ		(0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
33 #define HSFSTS_CTL_FCYCLE_WRITE		(0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
34 #define HSFSTS_CTL_FCYCLE_ERASE		(0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
35 #define HSFSTS_CTL_FCYCLE_ERASE_64K	(0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
36 #define HSFSTS_CTL_FCYCLE_RDSFDP	(0x05 << HSFSTS_CTL_FCYCLE_SHIFT)
37 #define HSFSTS_CTL_FCYCLE_RDID		(0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
38 #define HSFSTS_CTL_FCYCLE_WRSR		(0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
39 #define HSFSTS_CTL_FCYCLE_RDSR		(0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
40 
41 #define HSFSTS_CTL_FGO			BIT(16)
42 #define HSFSTS_CTL_FLOCKDN		BIT(15)
43 #define HSFSTS_CTL_FDV			BIT(14)
44 #define HSFSTS_CTL_SCIP			BIT(5)
45 #define HSFSTS_CTL_AEL			BIT(2)
46 #define HSFSTS_CTL_FCERR		BIT(1)
47 #define HSFSTS_CTL_FDONE		BIT(0)
48 
49 #define FADDR				0x08
50 #define DLOCK				0x0c
51 #define FDATA(n)			(0x10 + ((n) * 4))
52 
53 #define FRACC				0x50
54 
55 #define FREG(n)				(0x54 + ((n) * 4))
56 #define FREG_BASE_MASK			GENMASK(14, 0)
57 #define FREG_LIMIT_SHIFT		16
58 #define FREG_LIMIT_MASK			GENMASK(30, 16)
59 
60 /* Offset is from @ispi->pregs */
61 #define PR(n)				((n) * 4)
62 #define PR_WPE				BIT(31)
63 #define PR_LIMIT_SHIFT			16
64 #define PR_LIMIT_MASK			GENMASK(30, 16)
65 #define PR_RPE				BIT(15)
66 #define PR_BASE_MASK			GENMASK(14, 0)
67 
68 /* Offsets are from @ispi->sregs */
69 #define SSFSTS_CTL			0x00
70 #define SSFSTS_CTL_FSMIE		BIT(23)
71 #define SSFSTS_CTL_DS			BIT(22)
72 #define SSFSTS_CTL_DBC_SHIFT		16
73 #define SSFSTS_CTL_SPOP			BIT(11)
74 #define SSFSTS_CTL_ACS			BIT(10)
75 #define SSFSTS_CTL_SCGO			BIT(9)
76 #define SSFSTS_CTL_COP_SHIFT		12
77 #define SSFSTS_CTL_FRS			BIT(7)
78 #define SSFSTS_CTL_DOFRS		BIT(6)
79 #define SSFSTS_CTL_AEL			BIT(4)
80 #define SSFSTS_CTL_FCERR		BIT(3)
81 #define SSFSTS_CTL_FDONE		BIT(2)
82 #define SSFSTS_CTL_SCIP			BIT(0)
83 
84 #define PREOP_OPTYPE			0x04
85 #define OPMENU0				0x08
86 #define OPMENU1				0x0c
87 
88 #define OPTYPE_READ_NO_ADDR		0
89 #define OPTYPE_WRITE_NO_ADDR		1
90 #define OPTYPE_READ_WITH_ADDR		2
91 #define OPTYPE_WRITE_WITH_ADDR		3
92 
93 /* CPU specifics */
94 #define BYT_PR				0x74
95 #define BYT_SSFSTS_CTL			0x90
96 #define BYT_FREG_NUM			5
97 #define BYT_PR_NUM			5
98 
99 #define LPT_PR				0x74
100 #define LPT_SSFSTS_CTL			0x90
101 #define LPT_FREG_NUM			5
102 #define LPT_PR_NUM			5
103 
104 #define BXT_PR				0x84
105 #define BXT_SSFSTS_CTL			0xa0
106 #define BXT_FREG_NUM			12
107 #define BXT_PR_NUM			5
108 
109 #define CNL_PR				0x84
110 #define CNL_FREG_NUM			6
111 #define CNL_PR_NUM			5
112 
113 #define LVSCC				0xc4
114 #define UVSCC				0xc8
115 #define ERASE_OPCODE_SHIFT		8
116 #define ERASE_OPCODE_MASK		(0xff << ERASE_OPCODE_SHIFT)
117 #define ERASE_64K_OPCODE_SHIFT		16
118 #define ERASE_64K_OPCODE_MASK		(0xff << ERASE_64K_OPCODE_SHIFT)
119 
120 /* Flash descriptor fields */
121 #define FLVALSIG_MAGIC			0x0ff0a55a
122 #define FLMAP0_NC_MASK			GENMASK(9, 8)
123 #define FLMAP0_NC_SHIFT			8
124 #define FLMAP0_FCBA_MASK		GENMASK(7, 0)
125 
126 #define FLCOMP_C0DEN_MASK		GENMASK(3, 0)
127 #define FLCOMP_C0DEN_512K		0x00
128 #define FLCOMP_C0DEN_1M			0x01
129 #define FLCOMP_C0DEN_2M			0x02
130 #define FLCOMP_C0DEN_4M			0x03
131 #define FLCOMP_C0DEN_8M			0x04
132 #define FLCOMP_C0DEN_16M		0x05
133 #define FLCOMP_C0DEN_32M		0x06
134 #define FLCOMP_C0DEN_64M		0x07
135 
136 #define INTEL_SPI_TIMEOUT		5000 /* ms */
137 #define INTEL_SPI_FIFO_SZ		64
138 
139 /**
140  * struct intel_spi - Driver private data
141  * @dev: Device pointer
142  * @info: Pointer to board specific info
143  * @base: Beginning of MMIO space
144  * @pregs: Start of protection registers
145  * @sregs: Start of software sequencer registers
146  * @host: Pointer to the SPI controller structure
147  * @nregions: Maximum number of regions
148  * @pr_num: Maximum number of protected range registers
149  * @chip0_size: Size of the first flash chip in bytes
150  * @locked: Is SPI setting locked
151  * @protected: Whether the regions are write protected
152  * @bios_locked: Is BIOS region locked
153  * @swseq_reg: Use SW sequencer in register reads/writes
154  * @swseq_erase: Use SW sequencer in erase operation
155  * @atomic_preopcode: Holds preopcode when atomic sequence is requested
156  * @opcodes: Opcodes which are supported. This are programmed by BIOS
157  *           before it locks down the controller.
158  * @mem_ops: Pointer to SPI MEM ops supported by the controller
159  */
160 struct intel_spi {
161 	struct device *dev;
162 	const struct intel_spi_boardinfo *info;
163 	void __iomem *base;
164 	void __iomem *pregs;
165 	void __iomem *sregs;
166 	struct spi_controller *host;
167 	size_t nregions;
168 	size_t pr_num;
169 	size_t chip0_size;
170 	bool locked;
171 	bool protected;
172 	bool bios_locked;
173 	bool swseq_reg;
174 	bool swseq_erase;
175 	u8 atomic_preopcode;
176 	u8 opcodes[8];
177 	const struct intel_spi_mem_op *mem_ops;
178 };
179 
180 struct intel_spi_mem_op {
181 	struct spi_mem_op mem_op;
182 	u32 replacement_op;
183 	int (*exec_op)(struct intel_spi *ispi,
184 		       const struct spi_mem *mem,
185 		       const struct intel_spi_mem_op *iop,
186 		       const struct spi_mem_op *op);
187 };
188 
189 static bool writeable;
190 module_param(writeable, bool, 0);
191 MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
192 
193 static void intel_spi_dump_regs(struct intel_spi *ispi)
194 {
195 	u32 value;
196 	int i;
197 
198 	dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
199 
200 	value = readl(ispi->base + HSFSTS_CTL);
201 	dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
202 	if (value & HSFSTS_CTL_FLOCKDN)
203 		dev_dbg(ispi->dev, "-> Locked\n");
204 
205 	dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
206 	dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
207 
208 	for (i = 0; i < 16; i++)
209 		dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
210 			i, readl(ispi->base + FDATA(i)));
211 
212 	dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
213 
214 	for (i = 0; i < ispi->nregions; i++)
215 		dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
216 			readl(ispi->base + FREG(i)));
217 	for (i = 0; i < ispi->pr_num; i++)
218 		dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
219 			readl(ispi->pregs + PR(i)));
220 
221 	if (ispi->sregs) {
222 		value = readl(ispi->sregs + SSFSTS_CTL);
223 		dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
224 		dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
225 			readl(ispi->sregs + PREOP_OPTYPE));
226 		dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
227 			readl(ispi->sregs + OPMENU0));
228 		dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
229 			readl(ispi->sregs + OPMENU1));
230 	}
231 
232 	dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
233 	dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
234 
235 	dev_dbg(ispi->dev, "Protected regions:\n");
236 	for (i = 0; i < ispi->pr_num; i++) {
237 		u32 base, limit;
238 
239 		value = readl(ispi->pregs + PR(i));
240 		if (!(value & (PR_WPE | PR_RPE)))
241 			continue;
242 
243 		limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
244 		base = value & PR_BASE_MASK;
245 
246 		dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
247 			i, base << 12, (limit << 12) | 0xfff,
248 			value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.');
249 	}
250 
251 	dev_dbg(ispi->dev, "Flash regions:\n");
252 	for (i = 0; i < ispi->nregions; i++) {
253 		u32 region, base, limit;
254 
255 		region = readl(ispi->base + FREG(i));
256 		base = region & FREG_BASE_MASK;
257 		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
258 
259 		if (base >= limit || (i > 0 && limit == 0))
260 			dev_dbg(ispi->dev, " %02d disabled\n", i);
261 		else
262 			dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
263 				i, base << 12, (limit << 12) | 0xfff);
264 	}
265 
266 	dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
267 		ispi->swseq_reg ? 'S' : 'H');
268 	dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
269 		ispi->swseq_erase ? 'S' : 'H');
270 }
271 
272 /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
273 static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
274 {
275 	size_t bytes;
276 	int i = 0;
277 
278 	if (size > INTEL_SPI_FIFO_SZ)
279 		return -EINVAL;
280 
281 	while (size > 0) {
282 		bytes = min_t(size_t, size, 4);
283 		memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
284 		size -= bytes;
285 		buf += bytes;
286 		i++;
287 	}
288 
289 	return 0;
290 }
291 
292 /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
293 static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
294 				 size_t size)
295 {
296 	size_t bytes;
297 	int i = 0;
298 
299 	if (size > INTEL_SPI_FIFO_SZ)
300 		return -EINVAL;
301 
302 	while (size > 0) {
303 		bytes = min_t(size_t, size, 4);
304 		memcpy_toio(ispi->base + FDATA(i), buf, bytes);
305 		size -= bytes;
306 		buf += bytes;
307 		i++;
308 	}
309 
310 	return 0;
311 }
312 
313 static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
314 {
315 	u32 val;
316 
317 	return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
318 				  !(val & HSFSTS_CTL_SCIP), 0,
319 				  INTEL_SPI_TIMEOUT * 1000);
320 }
321 
322 static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
323 {
324 	u32 val;
325 
326 	return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
327 				  !(val & SSFSTS_CTL_SCIP), 0,
328 				  INTEL_SPI_TIMEOUT * 1000);
329 }
330 
331 static bool intel_spi_set_writeable(struct intel_spi *ispi)
332 {
333 	if (!ispi->info->set_writeable)
334 		return false;
335 
336 	return ispi->info->set_writeable(ispi->base, ispi->info->data);
337 }
338 
339 static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
340 {
341 	int i;
342 	int preop;
343 
344 	if (ispi->locked) {
345 		for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
346 			if (ispi->opcodes[i] == opcode)
347 				return i;
348 
349 		return -EINVAL;
350 	}
351 
352 	/* The lock is off, so just use index 0 */
353 	writel(opcode, ispi->sregs + OPMENU0);
354 	preop = readw(ispi->sregs + PREOP_OPTYPE);
355 	writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
356 
357 	return 0;
358 }
359 
360 static int intel_spi_hw_cycle(struct intel_spi *ispi,
361 			      const struct intel_spi_mem_op *iop, size_t len)
362 {
363 	u32 val, status;
364 	int ret;
365 
366 	if (!iop->replacement_op)
367 		return -EINVAL;
368 
369 	val = readl(ispi->base + HSFSTS_CTL);
370 	val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
371 	val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
372 	val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
373 	val |= HSFSTS_CTL_FGO;
374 	val |= iop->replacement_op;
375 	writel(val, ispi->base + HSFSTS_CTL);
376 
377 	ret = intel_spi_wait_hw_busy(ispi);
378 	if (ret)
379 		return ret;
380 
381 	status = readl(ispi->base + HSFSTS_CTL);
382 	if (status & HSFSTS_CTL_FCERR)
383 		return -EIO;
384 	else if (status & HSFSTS_CTL_AEL)
385 		return -EACCES;
386 
387 	return 0;
388 }
389 
390 static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
391 			      int optype)
392 {
393 	u32 val = 0, status;
394 	u8 atomic_preopcode;
395 	int ret;
396 
397 	ret = intel_spi_opcode_index(ispi, opcode, optype);
398 	if (ret < 0)
399 		return ret;
400 
401 	/*
402 	 * Always clear it after each SW sequencer operation regardless
403 	 * of whether it is successful or not.
404 	 */
405 	atomic_preopcode = ispi->atomic_preopcode;
406 	ispi->atomic_preopcode = 0;
407 
408 	/* Only mark 'Data Cycle' bit when there is data to be transferred */
409 	if (len > 0)
410 		val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
411 	val |= ret << SSFSTS_CTL_COP_SHIFT;
412 	val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
413 	val |= SSFSTS_CTL_SCGO;
414 	if (atomic_preopcode) {
415 		u16 preop;
416 
417 		switch (optype) {
418 		case OPTYPE_WRITE_NO_ADDR:
419 		case OPTYPE_WRITE_WITH_ADDR:
420 			/* Pick matching preopcode for the atomic sequence */
421 			preop = readw(ispi->sregs + PREOP_OPTYPE);
422 			if ((preop & 0xff) == atomic_preopcode)
423 				; /* Do nothing */
424 			else if ((preop >> 8) == atomic_preopcode)
425 				val |= SSFSTS_CTL_SPOP;
426 			else
427 				return -EINVAL;
428 
429 			/* Enable atomic sequence */
430 			val |= SSFSTS_CTL_ACS;
431 			break;
432 
433 		default:
434 			return -EINVAL;
435 		}
436 	}
437 	writel(val, ispi->sregs + SSFSTS_CTL);
438 
439 	ret = intel_spi_wait_sw_busy(ispi);
440 	if (ret)
441 		return ret;
442 
443 	status = readl(ispi->sregs + SSFSTS_CTL);
444 	if (status & SSFSTS_CTL_FCERR)
445 		return -EIO;
446 	else if (status & SSFSTS_CTL_AEL)
447 		return -EACCES;
448 
449 	return 0;
450 }
451 
452 static u32 intel_spi_chip_addr(const struct intel_spi *ispi,
453 			       const struct spi_mem *mem)
454 {
455 	/* Pick up the correct start address */
456 	if (!mem)
457 		return 0;
458 	return (spi_get_chipselect(mem->spi, 0) == 1) ? ispi->chip0_size : 0;
459 }
460 
461 static int intel_spi_read_reg(struct intel_spi *ispi, const struct spi_mem *mem,
462 			      const struct intel_spi_mem_op *iop,
463 			      const struct spi_mem_op *op)
464 {
465 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
466 	size_t nbytes = op->data.nbytes;
467 	u8 opcode = op->cmd.opcode;
468 	int ret;
469 
470 	writel(addr, ispi->base + FADDR);
471 
472 	if (ispi->swseq_reg)
473 		ret = intel_spi_sw_cycle(ispi, opcode, nbytes,
474 					 OPTYPE_READ_NO_ADDR);
475 	else
476 		ret = intel_spi_hw_cycle(ispi, iop, nbytes);
477 
478 	if (ret)
479 		return ret;
480 
481 	return intel_spi_read_block(ispi, op->data.buf.in, nbytes);
482 }
483 
484 static int intel_spi_write_reg(struct intel_spi *ispi, const struct spi_mem *mem,
485 			       const struct intel_spi_mem_op *iop,
486 			       const struct spi_mem_op *op)
487 {
488 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
489 	size_t nbytes = op->data.nbytes;
490 	u8 opcode = op->cmd.opcode;
491 	int ret;
492 
493 	/*
494 	 * This is handled with atomic operation and preop code in Intel
495 	 * controller so we only verify that it is available. If the
496 	 * controller is not locked, program the opcode to the PREOP
497 	 * register for later use.
498 	 *
499 	 * When hardware sequencer is used there is no need to program
500 	 * any opcodes (it handles them automatically as part of a command).
501 	 */
502 	if (opcode == SPINOR_OP_WREN) {
503 		u16 preop;
504 
505 		if (!ispi->swseq_reg)
506 			return 0;
507 
508 		preop = readw(ispi->sregs + PREOP_OPTYPE);
509 		if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
510 			if (ispi->locked)
511 				return -EINVAL;
512 			writel(opcode, ispi->sregs + PREOP_OPTYPE);
513 		}
514 
515 		/*
516 		 * This enables atomic sequence on next SW sycle. Will
517 		 * be cleared after next operation.
518 		 */
519 		ispi->atomic_preopcode = opcode;
520 		return 0;
521 	}
522 
523 	/*
524 	 * We hope that HW sequencer will do the right thing automatically and
525 	 * with the SW sequencer we cannot use preopcode anyway, so just ignore
526 	 * the Write Disable operation and pretend it was completed
527 	 * successfully.
528 	 */
529 	if (opcode == SPINOR_OP_WRDI)
530 		return 0;
531 
532 	writel(addr, ispi->base + FADDR);
533 
534 	/* Write the value beforehand */
535 	ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes);
536 	if (ret)
537 		return ret;
538 
539 	if (ispi->swseq_reg)
540 		return intel_spi_sw_cycle(ispi, opcode, nbytes,
541 					  OPTYPE_WRITE_NO_ADDR);
542 	return intel_spi_hw_cycle(ispi, iop, nbytes);
543 }
544 
545 static int intel_spi_read(struct intel_spi *ispi, const struct spi_mem *mem,
546 			  const struct intel_spi_mem_op *iop,
547 			  const struct spi_mem_op *op)
548 {
549 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
550 	size_t block_size, nbytes = op->data.nbytes;
551 	void *read_buf = op->data.buf.in;
552 	u32 val, status;
553 	int ret;
554 
555 	/*
556 	 * Atomic sequence is not expected with HW sequencer reads. Make
557 	 * sure it is cleared regardless.
558 	 */
559 	if (WARN_ON_ONCE(ispi->atomic_preopcode))
560 		ispi->atomic_preopcode = 0;
561 
562 	while (nbytes > 0) {
563 		block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
564 
565 		/* Read cannot cross 4K boundary */
566 		block_size = min_t(loff_t, addr + block_size,
567 				   round_up(addr + 1, SZ_4K)) - addr;
568 
569 		writel(addr, ispi->base + FADDR);
570 
571 		val = readl(ispi->base + HSFSTS_CTL);
572 		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
573 		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
574 		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
575 		val |= HSFSTS_CTL_FCYCLE_READ;
576 		val |= HSFSTS_CTL_FGO;
577 		writel(val, ispi->base + HSFSTS_CTL);
578 
579 		ret = intel_spi_wait_hw_busy(ispi);
580 		if (ret)
581 			return ret;
582 
583 		status = readl(ispi->base + HSFSTS_CTL);
584 		if (status & HSFSTS_CTL_FCERR)
585 			ret = -EIO;
586 		else if (status & HSFSTS_CTL_AEL)
587 			ret = -EACCES;
588 
589 		if (ret < 0) {
590 			dev_err(ispi->dev, "read error: %x: %#x\n", addr, status);
591 			return ret;
592 		}
593 
594 		ret = intel_spi_read_block(ispi, read_buf, block_size);
595 		if (ret)
596 			return ret;
597 
598 		nbytes -= block_size;
599 		addr += block_size;
600 		read_buf += block_size;
601 	}
602 
603 	return 0;
604 }
605 
606 static int intel_spi_write(struct intel_spi *ispi, const struct spi_mem *mem,
607 			   const struct intel_spi_mem_op *iop,
608 			   const struct spi_mem_op *op)
609 {
610 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
611 	size_t block_size, nbytes = op->data.nbytes;
612 	const void *write_buf = op->data.buf.out;
613 	u32 val, status;
614 	int ret;
615 
616 	/* Not needed with HW sequencer write, make sure it is cleared */
617 	ispi->atomic_preopcode = 0;
618 
619 	while (nbytes > 0) {
620 		block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ);
621 
622 		/* Write cannot cross 4K boundary */
623 		block_size = min_t(loff_t, addr + block_size,
624 				   round_up(addr + 1, SZ_4K)) - addr;
625 
626 		writel(addr, ispi->base + FADDR);
627 
628 		val = readl(ispi->base + HSFSTS_CTL);
629 		val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
630 		val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
631 		val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
632 		val |= HSFSTS_CTL_FCYCLE_WRITE;
633 
634 		ret = intel_spi_write_block(ispi, write_buf, block_size);
635 		if (ret) {
636 			dev_err(ispi->dev, "failed to write block\n");
637 			return ret;
638 		}
639 
640 		/* Start the write now */
641 		val |= HSFSTS_CTL_FGO;
642 		writel(val, ispi->base + HSFSTS_CTL);
643 
644 		ret = intel_spi_wait_hw_busy(ispi);
645 		if (ret) {
646 			dev_err(ispi->dev, "timeout\n");
647 			return ret;
648 		}
649 
650 		status = readl(ispi->base + HSFSTS_CTL);
651 		if (status & HSFSTS_CTL_FCERR)
652 			ret = -EIO;
653 		else if (status & HSFSTS_CTL_AEL)
654 			ret = -EACCES;
655 
656 		if (ret < 0) {
657 			dev_err(ispi->dev, "write error: %x: %#x\n", addr, status);
658 			return ret;
659 		}
660 
661 		nbytes -= block_size;
662 		addr += block_size;
663 		write_buf += block_size;
664 	}
665 
666 	return 0;
667 }
668 
669 static int intel_spi_erase(struct intel_spi *ispi, const struct spi_mem *mem,
670 			   const struct intel_spi_mem_op *iop,
671 			   const struct spi_mem_op *op)
672 {
673 	u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val;
674 	u8 opcode = op->cmd.opcode;
675 	u32 val, status;
676 	int ret;
677 
678 	writel(addr, ispi->base + FADDR);
679 
680 	if (ispi->swseq_erase)
681 		return intel_spi_sw_cycle(ispi, opcode, 0,
682 					  OPTYPE_WRITE_WITH_ADDR);
683 
684 	/* Not needed with HW sequencer erase, make sure it is cleared */
685 	ispi->atomic_preopcode = 0;
686 
687 	val = readl(ispi->base + HSFSTS_CTL);
688 	val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
689 	val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
690 	val |= HSFSTS_CTL_FGO;
691 	val |= iop->replacement_op;
692 	writel(val, ispi->base + HSFSTS_CTL);
693 
694 	ret = intel_spi_wait_hw_busy(ispi);
695 	if (ret)
696 		return ret;
697 
698 	status = readl(ispi->base + HSFSTS_CTL);
699 	if (status & HSFSTS_CTL_FCERR)
700 		return -EIO;
701 	if (status & HSFSTS_CTL_AEL)
702 		return -EACCES;
703 
704 	return 0;
705 }
706 
707 static int intel_spi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
708 {
709 	op->data.nbytes = clamp_val(op->data.nbytes, 0, INTEL_SPI_FIFO_SZ);
710 	return 0;
711 }
712 
713 static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop,
714 				 const struct spi_mem_op *op)
715 {
716 	if (iop->mem_op.cmd.nbytes != op->cmd.nbytes ||
717 	    iop->mem_op.cmd.buswidth != op->cmd.buswidth ||
718 	    iop->mem_op.cmd.dtr != op->cmd.dtr)
719 		return false;
720 
721 	if (iop->mem_op.addr.nbytes != op->addr.nbytes ||
722 	    iop->mem_op.addr.dtr != op->addr.dtr)
723 		return false;
724 
725 	if (iop->mem_op.data.dir != op->data.dir ||
726 	    iop->mem_op.data.dtr != op->data.dtr)
727 		return false;
728 
729 	if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) {
730 		if (iop->mem_op.data.buswidth != op->data.buswidth)
731 			return false;
732 	}
733 
734 	return true;
735 }
736 
737 static const struct intel_spi_mem_op *
738 intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op)
739 {
740 	const struct intel_spi_mem_op *iop;
741 
742 	for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) {
743 		if (iop->mem_op.cmd.opcode == op->cmd.opcode &&
744 		    intel_spi_cmp_mem_op(iop, op))
745 			return iop;
746 	}
747 
748 	return NULL;
749 }
750 
751 static bool intel_spi_supports_mem_op(struct spi_mem *mem,
752 				      const struct spi_mem_op *op)
753 {
754 	struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller);
755 	const struct intel_spi_mem_op *iop;
756 
757 	iop = intel_spi_match_mem_op(ispi, op);
758 	if (!iop) {
759 		dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
760 		return false;
761 	}
762 
763 	/*
764 	 * For software sequencer check that the opcode is actually
765 	 * present in the opmenu if it is locked.
766 	 */
767 	if (ispi->swseq_reg && ispi->locked) {
768 		int i;
769 
770 		/* Check if it is in the locked opcodes list */
771 		for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) {
772 			if (ispi->opcodes[i] == op->cmd.opcode)
773 				return true;
774 		}
775 
776 		dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode);
777 		return false;
778 	}
779 
780 	return true;
781 }
782 
783 static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
784 {
785 	struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller);
786 	const struct intel_spi_mem_op *iop;
787 
788 	iop = intel_spi_match_mem_op(ispi, op);
789 	if (!iop)
790 		return -EOPNOTSUPP;
791 
792 	return iop->exec_op(ispi, mem, iop, op);
793 }
794 
795 static const char *intel_spi_get_name(struct spi_mem *mem)
796 {
797 	const struct intel_spi *ispi = spi_controller_get_devdata(mem->spi->controller);
798 
799 	/*
800 	 * Return name of the flash controller device to be compatible
801 	 * with the MTD version.
802 	 */
803 	return dev_name(ispi->dev);
804 }
805 
806 static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
807 {
808 	struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller);
809 	const struct intel_spi_mem_op *iop;
810 
811 	iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl);
812 	if (!iop)
813 		return -EOPNOTSUPP;
814 
815 	desc->priv = (void *)iop;
816 	return 0;
817 }
818 
819 static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs,
820 				     size_t len, void *buf)
821 {
822 	struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller);
823 	const struct intel_spi_mem_op *iop = desc->priv;
824 	struct spi_mem_op op = desc->info.op_tmpl;
825 	int ret;
826 
827 	/* Fill in the gaps */
828 	op.addr.val = offs;
829 	op.data.nbytes = len;
830 	op.data.buf.in = buf;
831 
832 	ret = iop->exec_op(ispi, desc->mem, iop, &op);
833 	return ret ? ret : len;
834 }
835 
836 static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs,
837 				      size_t len, const void *buf)
838 {
839 	struct intel_spi *ispi = spi_controller_get_devdata(desc->mem->spi->controller);
840 	const struct intel_spi_mem_op *iop = desc->priv;
841 	struct spi_mem_op op = desc->info.op_tmpl;
842 	int ret;
843 
844 	op.addr.val = offs;
845 	op.data.nbytes = len;
846 	op.data.buf.out = buf;
847 
848 	ret = iop->exec_op(ispi, desc->mem, iop, &op);
849 	return ret ? ret : len;
850 }
851 
852 static const struct spi_controller_mem_ops intel_spi_mem_ops = {
853 	.adjust_op_size = intel_spi_adjust_op_size,
854 	.supports_op = intel_spi_supports_mem_op,
855 	.exec_op = intel_spi_exec_mem_op,
856 	.get_name = intel_spi_get_name,
857 	.dirmap_create = intel_spi_dirmap_create,
858 	.dirmap_read = intel_spi_dirmap_read,
859 	.dirmap_write = intel_spi_dirmap_write,
860 };
861 
862 #define INTEL_SPI_OP_ADDR(__nbytes)					\
863 	{								\
864 		.nbytes = __nbytes,					\
865 	}
866 
867 #define INTEL_SPI_OP_NO_DATA						\
868 	{								\
869 		.dir = SPI_MEM_NO_DATA,					\
870 	}
871 
872 #define INTEL_SPI_OP_DATA_IN(__buswidth)				\
873 	{								\
874 		.dir = SPI_MEM_DATA_IN,					\
875 		.buswidth = __buswidth,					\
876 	}
877 
878 #define INTEL_SPI_OP_DATA_OUT(__buswidth)				\
879 	{								\
880 		.dir = SPI_MEM_DATA_OUT,				\
881 		.buswidth = __buswidth,					\
882 	}
883 
884 #define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op)		\
885 	{								\
886 		.mem_op = {						\
887 			.cmd = __cmd,					\
888 			.addr = __addr,					\
889 			.data = __data,					\
890 		},							\
891 		.exec_op = __exec_op,					\
892 	}
893 
894 #define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl)	\
895 	{								\
896 		.mem_op = {						\
897 			.cmd = __cmd,					\
898 			.addr = __addr,					\
899 			.data = __data,					\
900 		},							\
901 		.exec_op = __exec_op,					\
902 		.replacement_op = __repl,				\
903 	}
904 
905 /*
906  * The controller handles pretty much everything internally based on the
907  * SFDP data but we want to make sure we only support the operations
908  * actually possible. Only check buswidth and transfer direction, the
909  * core validates data.
910  */
911 #define INTEL_SPI_GENERIC_OPS						\
912 	/* Status register operations */				\
913 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),	\
914 			      SPI_MEM_OP_NO_ADDR,			\
915 			      INTEL_SPI_OP_DATA_IN(1),			\
916 			      intel_spi_read_reg,			\
917 			      HSFSTS_CTL_FCYCLE_RDID),			\
918 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),	\
919 			      SPI_MEM_OP_NO_ADDR,			\
920 			      INTEL_SPI_OP_DATA_IN(1),			\
921 			      intel_spi_read_reg,			\
922 			      HSFSTS_CTL_FCYCLE_RDSR),			\
923 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),	\
924 			      SPI_MEM_OP_NO_ADDR,			\
925 			      INTEL_SPI_OP_DATA_OUT(1),			\
926 			      intel_spi_write_reg,			\
927 			      HSFSTS_CTL_FCYCLE_WRSR),			\
928 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_RDSFDP, 1),	\
929 			      INTEL_SPI_OP_ADDR(3),			\
930 			      INTEL_SPI_OP_DATA_IN(1),			\
931 			      intel_spi_read_reg,			\
932 			      HSFSTS_CTL_FCYCLE_RDSFDP),		\
933 	/* Normal read */						\
934 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
935 			 INTEL_SPI_OP_ADDR(3),				\
936 			 INTEL_SPI_OP_DATA_IN(1),			\
937 			 intel_spi_read),				\
938 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
939 			 INTEL_SPI_OP_ADDR(3),				\
940 			 INTEL_SPI_OP_DATA_IN(2),			\
941 			 intel_spi_read),				\
942 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
943 			 INTEL_SPI_OP_ADDR(3),				\
944 			 INTEL_SPI_OP_DATA_IN(4),			\
945 			 intel_spi_read),				\
946 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
947 			 INTEL_SPI_OP_ADDR(4),				\
948 			 INTEL_SPI_OP_DATA_IN(1),			\
949 			 intel_spi_read),				\
950 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
951 			 INTEL_SPI_OP_ADDR(4),				\
952 			 INTEL_SPI_OP_DATA_IN(2),			\
953 			 intel_spi_read),				\
954 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1),		\
955 			 INTEL_SPI_OP_ADDR(4),				\
956 			 INTEL_SPI_OP_DATA_IN(4),			\
957 			 intel_spi_read),				\
958 	/* Fast read */							\
959 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
960 			 INTEL_SPI_OP_ADDR(3),				\
961 			 INTEL_SPI_OP_DATA_IN(1),			\
962 			 intel_spi_read),				\
963 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
964 			 INTEL_SPI_OP_ADDR(3),				\
965 			 INTEL_SPI_OP_DATA_IN(2),			\
966 			 intel_spi_read),				\
967 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
968 			 INTEL_SPI_OP_ADDR(3),				\
969 			 INTEL_SPI_OP_DATA_IN(4),			\
970 			 intel_spi_read),				\
971 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
972 			 INTEL_SPI_OP_ADDR(4),				\
973 			 INTEL_SPI_OP_DATA_IN(1),			\
974 			 intel_spi_read),				\
975 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
976 			 INTEL_SPI_OP_ADDR(4),				\
977 			 INTEL_SPI_OP_DATA_IN(2),			\
978 			 intel_spi_read),				\
979 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1),	\
980 			 INTEL_SPI_OP_ADDR(4),				\
981 			 INTEL_SPI_OP_DATA_IN(4),			\
982 			 intel_spi_read),				\
983 	/* Read with 4-byte address opcode */				\
984 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
985 			 INTEL_SPI_OP_ADDR(4),				\
986 			 INTEL_SPI_OP_DATA_IN(1),			\
987 			 intel_spi_read),				\
988 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
989 			 INTEL_SPI_OP_ADDR(4),				\
990 			 INTEL_SPI_OP_DATA_IN(2),			\
991 			 intel_spi_read),				\
992 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1),		\
993 			 INTEL_SPI_OP_ADDR(4),				\
994 			 INTEL_SPI_OP_DATA_IN(4),			\
995 			 intel_spi_read),				\
996 	/* Fast read with 4-byte address opcode */			\
997 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
998 			 INTEL_SPI_OP_ADDR(4),				\
999 			 INTEL_SPI_OP_DATA_IN(1),			\
1000 			 intel_spi_read),				\
1001 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
1002 			 INTEL_SPI_OP_ADDR(4),				\
1003 			 INTEL_SPI_OP_DATA_IN(2),			\
1004 			 intel_spi_read),				\
1005 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1),	\
1006 			 INTEL_SPI_OP_ADDR(4),				\
1007 			 INTEL_SPI_OP_DATA_IN(4),			\
1008 			 intel_spi_read),				\
1009 	/* Write operations */						\
1010 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1),		\
1011 			 INTEL_SPI_OP_ADDR(3),				\
1012 			 INTEL_SPI_OP_DATA_OUT(1),			\
1013 			 intel_spi_write),				\
1014 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1),		\
1015 			 INTEL_SPI_OP_ADDR(4),				\
1016 			 INTEL_SPI_OP_DATA_OUT(1),			\
1017 			 intel_spi_write),				\
1018 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1),		\
1019 			 INTEL_SPI_OP_ADDR(4),				\
1020 			 INTEL_SPI_OP_DATA_OUT(1),			\
1021 			 intel_spi_write),				\
1022 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),		\
1023 			 SPI_MEM_OP_NO_ADDR,				\
1024 			 SPI_MEM_OP_NO_DATA,				\
1025 			 intel_spi_write_reg),				\
1026 	INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),		\
1027 			 SPI_MEM_OP_NO_ADDR,				\
1028 			 SPI_MEM_OP_NO_DATA,				\
1029 			 intel_spi_write_reg),				\
1030 	/* Erase operations */						\
1031 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1),	\
1032 			      INTEL_SPI_OP_ADDR(3),			\
1033 			      SPI_MEM_OP_NO_DATA,			\
1034 			      intel_spi_erase,				\
1035 			      HSFSTS_CTL_FCYCLE_ERASE),			\
1036 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1),	\
1037 			      INTEL_SPI_OP_ADDR(4),			\
1038 			      SPI_MEM_OP_NO_DATA,			\
1039 			      intel_spi_erase,				\
1040 			      HSFSTS_CTL_FCYCLE_ERASE),			\
1041 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1),	\
1042 			      INTEL_SPI_OP_ADDR(4),			\
1043 			      SPI_MEM_OP_NO_DATA,			\
1044 			      intel_spi_erase,				\
1045 			      HSFSTS_CTL_FCYCLE_ERASE)			\
1046 
1047 static const struct intel_spi_mem_op generic_mem_ops[] = {
1048 	INTEL_SPI_GENERIC_OPS,
1049 	{ },
1050 };
1051 
1052 static const struct intel_spi_mem_op erase_64k_mem_ops[] = {
1053 	INTEL_SPI_GENERIC_OPS,
1054 	/* 64k sector erase operations */
1055 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1056 			      INTEL_SPI_OP_ADDR(3),
1057 			      SPI_MEM_OP_NO_DATA,
1058 			      intel_spi_erase,
1059 			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1060 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1),
1061 			      INTEL_SPI_OP_ADDR(4),
1062 			      SPI_MEM_OP_NO_DATA,
1063 			      intel_spi_erase,
1064 			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1065 	INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1),
1066 			      INTEL_SPI_OP_ADDR(4),
1067 			      SPI_MEM_OP_NO_DATA,
1068 			      intel_spi_erase,
1069 			      HSFSTS_CTL_FCYCLE_ERASE_64K),
1070 	{ },
1071 };
1072 
1073 static int intel_spi_init(struct intel_spi *ispi)
1074 {
1075 	u32 opmenu0, opmenu1, lvscc, uvscc, val;
1076 	bool erase_64k = false;
1077 	int i;
1078 
1079 	switch (ispi->info->type) {
1080 	case INTEL_SPI_BYT:
1081 		ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
1082 		ispi->pregs = ispi->base + BYT_PR;
1083 		ispi->nregions = BYT_FREG_NUM;
1084 		ispi->pr_num = BYT_PR_NUM;
1085 		ispi->swseq_reg = true;
1086 		break;
1087 
1088 	case INTEL_SPI_LPT:
1089 		ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
1090 		ispi->pregs = ispi->base + LPT_PR;
1091 		ispi->nregions = LPT_FREG_NUM;
1092 		ispi->pr_num = LPT_PR_NUM;
1093 		ispi->swseq_reg = true;
1094 		break;
1095 
1096 	case INTEL_SPI_BXT:
1097 		ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
1098 		ispi->pregs = ispi->base + BXT_PR;
1099 		ispi->nregions = BXT_FREG_NUM;
1100 		ispi->pr_num = BXT_PR_NUM;
1101 		erase_64k = true;
1102 		break;
1103 
1104 	case INTEL_SPI_CNL:
1105 		ispi->sregs = NULL;
1106 		ispi->pregs = ispi->base + CNL_PR;
1107 		ispi->nregions = CNL_FREG_NUM;
1108 		ispi->pr_num = CNL_PR_NUM;
1109 		erase_64k = true;
1110 		break;
1111 
1112 	default:
1113 		return -EINVAL;
1114 	}
1115 
1116 	ispi->bios_locked = true;
1117 	/* Try to disable BIOS write protection if user asked to do so */
1118 	if (writeable) {
1119 		if (intel_spi_set_writeable(ispi))
1120 			ispi->bios_locked = false;
1121 		else
1122 			dev_warn(ispi->dev, "can't disable chip write protection\n");
1123 	}
1124 
1125 	/* Disable #SMI generation from HW sequencer */
1126 	val = readl(ispi->base + HSFSTS_CTL);
1127 	val &= ~HSFSTS_CTL_FSMIE;
1128 	writel(val, ispi->base + HSFSTS_CTL);
1129 
1130 	/*
1131 	 * Determine whether erase operation should use HW or SW sequencer.
1132 	 *
1133 	 * The HW sequencer has a predefined list of opcodes, with only the
1134 	 * erase opcode being programmable in LVSCC and UVSCC registers.
1135 	 * If these registers don't contain a valid erase opcode, erase
1136 	 * cannot be done using HW sequencer.
1137 	 */
1138 	lvscc = readl(ispi->base + LVSCC);
1139 	uvscc = readl(ispi->base + UVSCC);
1140 	if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
1141 		ispi->swseq_erase = true;
1142 	/* SPI controller on Intel BXT supports 64K erase opcode */
1143 	if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
1144 		if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
1145 		    !(uvscc & ERASE_64K_OPCODE_MASK))
1146 			erase_64k = false;
1147 
1148 	if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) {
1149 		dev_err(ispi->dev, "software sequencer not supported, but required\n");
1150 		return -EINVAL;
1151 	}
1152 
1153 	/*
1154 	 * Some controllers can only do basic operations using hardware
1155 	 * sequencer. All other operations are supposed to be carried out
1156 	 * using software sequencer.
1157 	 */
1158 	if (ispi->swseq_reg) {
1159 		/* Disable #SMI generation from SW sequencer */
1160 		val = readl(ispi->sregs + SSFSTS_CTL);
1161 		val &= ~SSFSTS_CTL_FSMIE;
1162 		writel(val, ispi->sregs + SSFSTS_CTL);
1163 	}
1164 
1165 	/* Check controller's lock status */
1166 	val = readl(ispi->base + HSFSTS_CTL);
1167 	ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
1168 
1169 	if (ispi->locked && ispi->sregs) {
1170 		/*
1171 		 * BIOS programs allowed opcodes and then locks down the
1172 		 * register. So read back what opcodes it decided to support.
1173 		 * That's the set we are going to support as well.
1174 		 */
1175 		opmenu0 = readl(ispi->sregs + OPMENU0);
1176 		opmenu1 = readl(ispi->sregs + OPMENU1);
1177 
1178 		if (opmenu0 && opmenu1) {
1179 			for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
1180 				ispi->opcodes[i] = opmenu0 >> i * 8;
1181 				ispi->opcodes[i + 4] = opmenu1 >> i * 8;
1182 			}
1183 		}
1184 	}
1185 
1186 	if (erase_64k) {
1187 		dev_dbg(ispi->dev, "Using erase_64k memory operations");
1188 		ispi->mem_ops = erase_64k_mem_ops;
1189 	} else {
1190 		dev_dbg(ispi->dev, "Using generic memory operations");
1191 		ispi->mem_ops = generic_mem_ops;
1192 	}
1193 
1194 	intel_spi_dump_regs(ispi);
1195 	return 0;
1196 }
1197 
1198 static bool intel_spi_is_protected(const struct intel_spi *ispi,
1199 				   unsigned int base, unsigned int limit)
1200 {
1201 	int i;
1202 
1203 	for (i = 0; i < ispi->pr_num; i++) {
1204 		u32 pr_base, pr_limit, pr_value;
1205 
1206 		pr_value = readl(ispi->pregs + PR(i));
1207 		if (!(pr_value & (PR_WPE | PR_RPE)))
1208 			continue;
1209 
1210 		pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
1211 		pr_base = pr_value & PR_BASE_MASK;
1212 
1213 		if (pr_base >= base && pr_limit <= limit)
1214 			return true;
1215 	}
1216 
1217 	return false;
1218 }
1219 
1220 /*
1221  * There will be a single partition holding all enabled flash regions. We
1222  * call this "BIOS".
1223  */
1224 static void intel_spi_fill_partition(struct intel_spi *ispi,
1225 				     struct mtd_partition *part)
1226 {
1227 	u64 end;
1228 	int i;
1229 
1230 	memset(part, 0, sizeof(*part));
1231 
1232 	/* Start from the mandatory descriptor region */
1233 	part->size = 4096;
1234 	part->name = "BIOS";
1235 
1236 	/*
1237 	 * Now try to find where this partition ends based on the flash
1238 	 * region registers.
1239 	 */
1240 	for (i = 1; i < ispi->nregions; i++) {
1241 		u32 region, base, limit;
1242 
1243 		region = readl(ispi->base + FREG(i));
1244 		base = region & FREG_BASE_MASK;
1245 		limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
1246 
1247 		if (base >= limit || limit == 0)
1248 			continue;
1249 
1250 		/*
1251 		 * If any of the regions have protection bits set, make the
1252 		 * whole partition read-only to be on the safe side.
1253 		 *
1254 		 * Also if the user did not ask the chip to be writeable
1255 		 * mask the bit too.
1256 		 */
1257 		if (!writeable || intel_spi_is_protected(ispi, base, limit)) {
1258 			part->mask_flags |= MTD_WRITEABLE;
1259 			ispi->protected = true;
1260 		}
1261 
1262 		end = (limit << 12) + 4096;
1263 		if (end > part->size)
1264 			part->size = end;
1265 	}
1266 
1267 	/*
1268 	 * Regions can refer to the second chip too so in this case we
1269 	 * just make the BIOS partition to occupy the whole chip.
1270 	 */
1271 	if (ispi->chip0_size && part->size > ispi->chip0_size)
1272 		part->size = MTDPART_SIZ_FULL;
1273 }
1274 
1275 static int intel_spi_read_desc(struct intel_spi *ispi)
1276 {
1277 	struct spi_mem_op op =
1278 		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 0),
1279 			   SPI_MEM_OP_ADDR(3, 0, 0),
1280 			   SPI_MEM_OP_NO_DUMMY,
1281 			   SPI_MEM_OP_DATA_IN(0, NULL, 0));
1282 	u32 buf[2], nc, fcba, flcomp;
1283 	ssize_t ret;
1284 
1285 	op.addr.val = 0x10;
1286 	op.data.buf.in = buf;
1287 	op.data.nbytes = sizeof(buf);
1288 
1289 	ret = intel_spi_read(ispi, NULL, NULL, &op);
1290 	if (ret) {
1291 		dev_warn(ispi->dev, "failed to read descriptor\n");
1292 		return ret;
1293 	}
1294 
1295 	dev_dbg(ispi->dev, "FLVALSIG=0x%08x\n", buf[0]);
1296 	dev_dbg(ispi->dev, "FLMAP0=0x%08x\n", buf[1]);
1297 
1298 	if (buf[0] != FLVALSIG_MAGIC) {
1299 		dev_warn(ispi->dev, "descriptor signature not valid\n");
1300 		return -ENODEV;
1301 	}
1302 
1303 	fcba = (buf[1] & FLMAP0_FCBA_MASK) << 4;
1304 	dev_dbg(ispi->dev, "FCBA=%#x\n", fcba);
1305 
1306 	op.addr.val = fcba;
1307 	op.data.buf.in = &flcomp;
1308 	op.data.nbytes = sizeof(flcomp);
1309 
1310 	ret = intel_spi_read(ispi, NULL, NULL, &op);
1311 	if (ret) {
1312 		dev_warn(ispi->dev, "failed to read FLCOMP\n");
1313 		return -ENODEV;
1314 	}
1315 
1316 	dev_dbg(ispi->dev, "FLCOMP=0x%08x\n", flcomp);
1317 
1318 	switch (flcomp & FLCOMP_C0DEN_MASK) {
1319 	case FLCOMP_C0DEN_512K:
1320 		ispi->chip0_size = SZ_512K;
1321 		break;
1322 	case FLCOMP_C0DEN_1M:
1323 		ispi->chip0_size = SZ_1M;
1324 		break;
1325 	case FLCOMP_C0DEN_2M:
1326 		ispi->chip0_size = SZ_2M;
1327 		break;
1328 	case FLCOMP_C0DEN_4M:
1329 		ispi->chip0_size = SZ_4M;
1330 		break;
1331 	case FLCOMP_C0DEN_8M:
1332 		ispi->chip0_size = SZ_8M;
1333 		break;
1334 	case FLCOMP_C0DEN_16M:
1335 		ispi->chip0_size = SZ_16M;
1336 		break;
1337 	case FLCOMP_C0DEN_32M:
1338 		ispi->chip0_size = SZ_32M;
1339 		break;
1340 	case FLCOMP_C0DEN_64M:
1341 		ispi->chip0_size = SZ_64M;
1342 		break;
1343 	default:
1344 		return -EINVAL;
1345 	}
1346 
1347 	dev_dbg(ispi->dev, "chip0 size %zd KB\n", ispi->chip0_size / SZ_1K);
1348 
1349 	nc = (buf[1] & FLMAP0_NC_MASK) >> FLMAP0_NC_SHIFT;
1350 	if (!nc)
1351 		ispi->host->num_chipselect = 1;
1352 	else if (nc == 1)
1353 		ispi->host->num_chipselect = 2;
1354 	else
1355 		return -EINVAL;
1356 
1357 	dev_dbg(ispi->dev, "%u flash components found\n",
1358 		ispi->host->num_chipselect);
1359 	return 0;
1360 }
1361 
1362 static int intel_spi_populate_chip(struct intel_spi *ispi)
1363 {
1364 	struct flash_platform_data *pdata;
1365 	struct mtd_partition *parts;
1366 	struct spi_board_info chip;
1367 	int ret;
1368 
1369 	ret = intel_spi_read_desc(ispi);
1370 	if (ret)
1371 		return ret;
1372 
1373 	pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
1374 	if (!pdata)
1375 		return -ENOMEM;
1376 
1377 	pdata->nr_parts = 1;
1378 	pdata->parts = devm_kcalloc(ispi->dev, pdata->nr_parts,
1379 				    sizeof(*pdata->parts), GFP_KERNEL);
1380 	if (!pdata->parts)
1381 		return -ENOMEM;
1382 
1383 	intel_spi_fill_partition(ispi, pdata->parts);
1384 
1385 	memset(&chip, 0, sizeof(chip));
1386 	snprintf(chip.modalias, 8, "spi-nor");
1387 	chip.platform_data = pdata;
1388 
1389 	if (!spi_new_device(ispi->host, &chip))
1390 		return -ENODEV;
1391 
1392 	/* Add the second chip if present */
1393 	if (ispi->host->num_chipselect < 2)
1394 		return 0;
1395 
1396 	pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL);
1397 	if (!pdata)
1398 		return -ENOMEM;
1399 
1400 	pdata->name = devm_kasprintf(ispi->dev, GFP_KERNEL, "%s-chip1",
1401 				     dev_name(ispi->dev));
1402 	if (!pdata->name)
1403 		return -ENOMEM;
1404 
1405 	pdata->nr_parts = 1;
1406 	parts = devm_kcalloc(ispi->dev, pdata->nr_parts, sizeof(*parts),
1407 			     GFP_KERNEL);
1408 	if (!parts)
1409 		return -ENOMEM;
1410 
1411 	parts[0].size = MTDPART_SIZ_FULL;
1412 	parts[0].name = "BIOS1";
1413 	pdata->parts = parts;
1414 
1415 	chip.platform_data = pdata;
1416 	chip.chip_select = 1;
1417 
1418 	if (!spi_new_device(ispi->host, &chip))
1419 		return -ENODEV;
1420 	return 0;
1421 }
1422 
1423 static ssize_t intel_spi_protected_show(struct device *dev,
1424 					struct device_attribute *attr, char *buf)
1425 {
1426 	struct intel_spi *ispi = dev_get_drvdata(dev);
1427 
1428 	return sysfs_emit(buf, "%d\n", ispi->protected);
1429 }
1430 static DEVICE_ATTR_ADMIN_RO(intel_spi_protected);
1431 
1432 static ssize_t intel_spi_locked_show(struct device *dev,
1433 				     struct device_attribute *attr, char *buf)
1434 {
1435 	struct intel_spi *ispi = dev_get_drvdata(dev);
1436 
1437 	return sysfs_emit(buf, "%d\n", ispi->locked);
1438 }
1439 static DEVICE_ATTR_ADMIN_RO(intel_spi_locked);
1440 
1441 static ssize_t intel_spi_bios_locked_show(struct device *dev,
1442 					  struct device_attribute *attr, char *buf)
1443 {
1444 	struct intel_spi *ispi = dev_get_drvdata(dev);
1445 
1446 	return sysfs_emit(buf, "%d\n", ispi->bios_locked);
1447 }
1448 static DEVICE_ATTR_ADMIN_RO(intel_spi_bios_locked);
1449 
1450 static struct attribute *intel_spi_attrs[] = {
1451 	&dev_attr_intel_spi_protected.attr,
1452 	&dev_attr_intel_spi_locked.attr,
1453 	&dev_attr_intel_spi_bios_locked.attr,
1454 	NULL
1455 };
1456 
1457 static const struct attribute_group intel_spi_attr_group = {
1458 	.attrs = intel_spi_attrs,
1459 };
1460 
1461 const struct attribute_group *intel_spi_groups[] = {
1462 	&intel_spi_attr_group,
1463 	NULL
1464 };
1465 EXPORT_SYMBOL_GPL(intel_spi_groups);
1466 
1467 /**
1468  * intel_spi_probe() - Probe the Intel SPI flash controller
1469  * @dev: Pointer to the parent device
1470  * @mem: MMIO resource
1471  * @info: Platform specific information
1472  *
1473  * Probes Intel SPI flash controller and creates the flash chip device.
1474  * Returns %0 on success and negative errno in case of failure.
1475  */
1476 int intel_spi_probe(struct device *dev, struct resource *mem,
1477 		    const struct intel_spi_boardinfo *info)
1478 {
1479 	struct spi_controller *host;
1480 	struct intel_spi *ispi;
1481 	int ret;
1482 
1483 	host = devm_spi_alloc_host(dev, sizeof(*ispi));
1484 	if (!host)
1485 		return -ENOMEM;
1486 
1487 	host->mem_ops = &intel_spi_mem_ops;
1488 
1489 	ispi = spi_controller_get_devdata(host);
1490 
1491 	ispi->base = devm_ioremap_resource(dev, mem);
1492 	if (IS_ERR(ispi->base))
1493 		return PTR_ERR(ispi->base);
1494 
1495 	ispi->dev = dev;
1496 	ispi->host = host;
1497 	ispi->info = info;
1498 
1499 	ret = intel_spi_init(ispi);
1500 	if (ret)
1501 		return ret;
1502 
1503 	ret = devm_spi_register_controller(dev, host);
1504 	if (ret)
1505 		return ret;
1506 
1507 	dev_set_drvdata(dev, ispi);
1508 	return intel_spi_populate_chip(ispi);
1509 }
1510 EXPORT_SYMBOL_GPL(intel_spi_probe);
1511 
1512 MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
1513 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
1514 MODULE_LICENSE("GPL v2");
1515