xref: /linux/drivers/spi/spi-imx.c (revision 9facce84f4062f782ebde18daa7006a23d40b607)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 // Copyright (C) 2008 Juergen Beisert
4 
5 #include <linux/bits.h>
6 #include <linux/bitfield.h>
7 #include <linux/clk.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/irq.h>
16 #include <linux/kernel.h>
17 #include <linux/math.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/overflow.h>
21 #include <linux/pinctrl/consumer.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/spi/spi.h>
26 #include <linux/types.h>
27 #include <linux/of.h>
28 #include <linux/property.h>
29 
30 #include <linux/dma/imx-dma.h>
31 
32 #define DRIVER_NAME "spi_imx"
33 
34 static bool use_dma = true;
35 module_param(use_dma, bool, 0644);
36 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
37 
38 /* define polling limits */
39 static unsigned int polling_limit_us = 30;
40 module_param(polling_limit_us, uint, 0664);
41 MODULE_PARM_DESC(polling_limit_us,
42 		 "time in us to run a transfer in polling mode\n");
43 
44 #define MXC_RPM_TIMEOUT		2000 /* 2000ms */
45 
46 #define MXC_CSPIRXDATA		0x00
47 #define MXC_CSPITXDATA		0x04
48 #define MXC_CSPICTRL		0x08
49 #define MXC_CSPIINT		0x0c
50 #define MXC_RESET		0x1c
51 
52 /* generic defines to abstract from the different register layouts */
53 #define MXC_INT_RR	(1 << 0) /* Receive data ready interrupt */
54 #define MXC_INT_TE	(1 << 1) /* Transmit FIFO empty interrupt */
55 #define MXC_INT_RDR	BIT(4) /* Receive date threshold interrupt */
56 
57 /* The maximum bytes that a sdma BD can transfer. */
58 #define MAX_SDMA_BD_BYTES (1 << 15)
59 #define MX51_ECSPI_CTRL_MAX_BURST	512
60 /* The maximum bytes that IMX53_ECSPI can transfer in target mode.*/
61 #define MX53_MAX_TRANSFER_BYTES		512
62 
63 enum spi_imx_devtype {
64 	IMX1_CSPI,
65 	IMX21_CSPI,
66 	IMX27_CSPI,
67 	IMX31_CSPI,
68 	IMX35_CSPI,	/* CSPI on all i.mx except above */
69 	IMX51_ECSPI,	/* ECSPI on i.mx51 */
70 	IMX53_ECSPI,	/* ECSPI on i.mx53 and later */
71 };
72 
73 struct spi_imx_data;
74 
75 struct spi_imx_devtype_data {
76 	void (*intctrl)(struct spi_imx_data *spi_imx, int enable);
77 	int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg);
78 	int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi,
79 				struct spi_transfer *t);
80 	void (*trigger)(struct spi_imx_data *spi_imx);
81 	int (*rx_available)(struct spi_imx_data *spi_imx);
82 	void (*reset)(struct spi_imx_data *spi_imx);
83 	void (*setup_wml)(struct spi_imx_data *spi_imx);
84 	void (*disable)(struct spi_imx_data *spi_imx);
85 	bool has_dmamode;
86 	bool has_targetmode;
87 	unsigned int fifo_size;
88 	bool dynamic_burst;
89 	/*
90 	 * ERR009165 fixed or not:
91 	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
92 	 */
93 	bool tx_glitch_fixed;
94 	enum spi_imx_devtype devtype;
95 };
96 
97 struct spi_imx_data {
98 	struct spi_controller *controller;
99 	struct device *dev;
100 
101 	struct completion xfer_done;
102 	void __iomem *base;
103 	unsigned long base_phys;
104 
105 	struct clk *clk_per;
106 	struct clk *clk_ipg;
107 	unsigned long spi_clk;
108 	unsigned int spi_bus_clk;
109 
110 	unsigned int bits_per_word;
111 	unsigned int spi_drctl;
112 
113 	unsigned int count, remainder;
114 	void (*tx)(struct spi_imx_data *spi_imx);
115 	void (*rx)(struct spi_imx_data *spi_imx);
116 	void *rx_buf;
117 	const void *tx_buf;
118 	unsigned int txfifo; /* number of words pushed in tx FIFO */
119 	unsigned int dynamic_burst;
120 	bool rx_only;
121 
122 	/* Target mode */
123 	bool target_mode;
124 	bool target_aborted;
125 	unsigned int target_burst;
126 
127 	/* DMA */
128 	bool usedma;
129 	u32 wml;
130 	struct completion dma_rx_completion;
131 	struct completion dma_tx_completion;
132 
133 	const struct spi_imx_devtype_data *devtype_data;
134 };
135 
136 static inline int is_imx27_cspi(struct spi_imx_data *d)
137 {
138 	return d->devtype_data->devtype == IMX27_CSPI;
139 }
140 
141 static inline int is_imx35_cspi(struct spi_imx_data *d)
142 {
143 	return d->devtype_data->devtype == IMX35_CSPI;
144 }
145 
146 static inline int is_imx51_ecspi(struct spi_imx_data *d)
147 {
148 	return d->devtype_data->devtype == IMX51_ECSPI;
149 }
150 
151 static inline int is_imx53_ecspi(struct spi_imx_data *d)
152 {
153 	return d->devtype_data->devtype == IMX53_ECSPI;
154 }
155 
156 #define MXC_SPI_BUF_RX(type)						\
157 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx)		\
158 {									\
159 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);	\
160 									\
161 	if (spi_imx->rx_buf) {						\
162 		*(type *)spi_imx->rx_buf = val;				\
163 		spi_imx->rx_buf += sizeof(type);			\
164 	}								\
165 									\
166 	spi_imx->remainder -= sizeof(type);				\
167 }
168 
169 #define MXC_SPI_BUF_TX(type)						\
170 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx)		\
171 {									\
172 	type val = 0;							\
173 									\
174 	if (spi_imx->tx_buf) {						\
175 		val = *(type *)spi_imx->tx_buf;				\
176 		spi_imx->tx_buf += sizeof(type);			\
177 	}								\
178 									\
179 	spi_imx->count -= sizeof(type);					\
180 									\
181 	writel(val, spi_imx->base + MXC_CSPITXDATA);			\
182 }
183 
184 MXC_SPI_BUF_RX(u8)
185 MXC_SPI_BUF_TX(u8)
186 MXC_SPI_BUF_RX(u16)
187 MXC_SPI_BUF_TX(u16)
188 MXC_SPI_BUF_RX(u32)
189 MXC_SPI_BUF_TX(u32)
190 
191 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
192  * (which is currently not the case in this driver)
193  */
194 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
195 	256, 384, 512, 768, 1024};
196 
197 /* MX21, MX27 */
198 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
199 		unsigned int fspi, unsigned int max, unsigned int *fres)
200 {
201 	int i;
202 
203 	for (i = 2; i < max; i++)
204 		if (fspi * mxc_clkdivs[i] >= fin)
205 			break;
206 
207 	*fres = fin / mxc_clkdivs[i];
208 	return i;
209 }
210 
211 /* MX1, MX31, MX35, MX51 CSPI */
212 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
213 		unsigned int fspi, unsigned int *fres)
214 {
215 	int i, div = 4;
216 
217 	for (i = 0; i < 7; i++) {
218 		if (fspi * div >= fin)
219 			goto out;
220 		div <<= 1;
221 	}
222 
223 out:
224 	*fres = fin / div;
225 	return i;
226 }
227 
228 static int spi_imx_bytes_per_word(const int bits_per_word)
229 {
230 	if (bits_per_word <= 8)
231 		return 1;
232 	else if (bits_per_word <= 16)
233 		return 2;
234 	else
235 		return 4;
236 }
237 
238 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi,
239 			 struct spi_transfer *transfer)
240 {
241 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
242 
243 	if (!use_dma || controller->fallback)
244 		return false;
245 
246 	if (!controller->dma_rx)
247 		return false;
248 
249 	if (spi_imx->target_mode)
250 		return false;
251 
252 	if (transfer->len < spi_imx->devtype_data->fifo_size)
253 		return false;
254 
255 	spi_imx->dynamic_burst = 0;
256 
257 	return true;
258 }
259 
260 /*
261  * Note the number of natively supported chip selects for MX51 is 4. Some
262  * devices may have less actual SS pins but the register map supports 4. When
263  * using gpio chip selects the cs values passed into the macros below can go
264  * outside the range 0 - 3. We therefore need to limit the cs value to avoid
265  * corrupting bits outside the allocated locations.
266  *
267  * The simplest way to do this is to just mask the cs bits to 2 bits. This
268  * still allows all 4 native chip selects to work as well as gpio chip selects
269  * (which can use any of the 4 chip select configurations).
270  */
271 
272 #define MX51_ECSPI_CTRL		0x08
273 #define MX51_ECSPI_CTRL_ENABLE		(1 <<  0)
274 #define MX51_ECSPI_CTRL_XCH		(1 <<  2)
275 #define MX51_ECSPI_CTRL_SMC		(1 << 3)
276 #define MX51_ECSPI_CTRL_MODE_MASK	(0xf << 4)
277 #define MX51_ECSPI_CTRL_DRCTL(drctl)	((drctl) << 16)
278 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET	8
279 #define MX51_ECSPI_CTRL_PREDIV_OFFSET	12
280 #define MX51_ECSPI_CTRL_CS(cs)		((cs & 3) << 18)
281 #define MX51_ECSPI_CTRL_BL_OFFSET	20
282 #define MX51_ECSPI_CTRL_BL_MASK		(0xfff << 20)
283 
284 #define MX51_ECSPI_CONFIG	0x0c
285 #define MX51_ECSPI_CONFIG_SCLKPHA(cs)	(1 << ((cs & 3) +  0))
286 #define MX51_ECSPI_CONFIG_SCLKPOL(cs)	(1 << ((cs & 3) +  4))
287 #define MX51_ECSPI_CONFIG_SBBCTRL(cs)	(1 << ((cs & 3) +  8))
288 #define MX51_ECSPI_CONFIG_SSBPOL(cs)	(1 << ((cs & 3) + 12))
289 #define MX51_ECSPI_CONFIG_DATACTL(cs)	(1 << ((cs & 3) + 16))
290 #define MX51_ECSPI_CONFIG_SCLKCTL(cs)	(1 << ((cs & 3) + 20))
291 
292 #define MX51_ECSPI_INT		0x10
293 #define MX51_ECSPI_INT_TEEN		(1 <<  0)
294 #define MX51_ECSPI_INT_RREN		(1 <<  3)
295 #define MX51_ECSPI_INT_RDREN		(1 <<  4)
296 
297 #define MX51_ECSPI_DMA		0x14
298 #define MX51_ECSPI_DMA_TX_WML(wml)	((wml) & 0x3f)
299 #define MX51_ECSPI_DMA_RX_WML(wml)	(((wml) & 0x3f) << 16)
300 #define MX51_ECSPI_DMA_RXT_WML(wml)	(((wml) & 0x3f) << 24)
301 
302 #define MX51_ECSPI_DMA_TEDEN		(1 << 7)
303 #define MX51_ECSPI_DMA_RXDEN		(1 << 23)
304 #define MX51_ECSPI_DMA_RXTDEN		(1 << 31)
305 
306 #define MX51_ECSPI_STAT		0x18
307 #define MX51_ECSPI_STAT_RR		(1 <<  3)
308 
309 #define MX51_ECSPI_PERIOD	0x1c
310 #define MX51_ECSPI_PERIOD_MASK		0x7fff
311 /*
312  * As measured on the i.MX6, the SPI host controller inserts a 4 SPI-Clock
313  * (SCLK) delay after each burst if the PERIOD reg is 0x0. This value will be
314  * called MX51_ECSPI_PERIOD_MIN_DELAY_SCK.
315  *
316  * If the PERIOD register is != 0, the controller inserts a delay of
317  * MX51_ECSPI_PERIOD_MIN_DELAY_SCK + register value + 1 SCLK after each burst.
318  */
319 #define MX51_ECSPI_PERIOD_MIN_DELAY_SCK 4
320 
321 #define MX51_ECSPI_TESTREG	0x20
322 #define MX51_ECSPI_TESTREG_LBC	BIT(31)
323 
324 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
325 {
326 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
327 
328 	if (spi_imx->rx_buf) {
329 #ifdef __LITTLE_ENDIAN
330 		unsigned int bytes_per_word;
331 
332 		bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
333 		if (bytes_per_word == 1)
334 			swab32s(&val);
335 		else if (bytes_per_word == 2)
336 			swahw32s(&val);
337 #endif
338 		*(u32 *)spi_imx->rx_buf = val;
339 		spi_imx->rx_buf += sizeof(u32);
340 	}
341 
342 	spi_imx->remainder -= sizeof(u32);
343 }
344 
345 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
346 {
347 	int unaligned;
348 	u32 val;
349 
350 	unaligned = spi_imx->remainder % 4;
351 
352 	if (!unaligned) {
353 		spi_imx_buf_rx_swap_u32(spi_imx);
354 		return;
355 	}
356 
357 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
358 		spi_imx_buf_rx_u16(spi_imx);
359 		return;
360 	}
361 
362 	val = readl(spi_imx->base + MXC_CSPIRXDATA);
363 
364 	while (unaligned--) {
365 		if (spi_imx->rx_buf) {
366 			*(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff;
367 			spi_imx->rx_buf++;
368 		}
369 		spi_imx->remainder--;
370 	}
371 }
372 
373 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
374 {
375 	u32 val = 0;
376 #ifdef __LITTLE_ENDIAN
377 	unsigned int bytes_per_word;
378 #endif
379 
380 	if (spi_imx->tx_buf) {
381 		val = *(u32 *)spi_imx->tx_buf;
382 		spi_imx->tx_buf += sizeof(u32);
383 	}
384 
385 	spi_imx->count -= sizeof(u32);
386 #ifdef __LITTLE_ENDIAN
387 	bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
388 
389 	if (bytes_per_word == 1)
390 		swab32s(&val);
391 	else if (bytes_per_word == 2)
392 		swahw32s(&val);
393 #endif
394 	writel(val, spi_imx->base + MXC_CSPITXDATA);
395 }
396 
397 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
398 {
399 	int unaligned;
400 	u32 val = 0;
401 
402 	unaligned = spi_imx->count % 4;
403 
404 	if (!unaligned) {
405 		spi_imx_buf_tx_swap_u32(spi_imx);
406 		return;
407 	}
408 
409 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
410 		spi_imx_buf_tx_u16(spi_imx);
411 		return;
412 	}
413 
414 	while (unaligned--) {
415 		if (spi_imx->tx_buf) {
416 			val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned);
417 			spi_imx->tx_buf++;
418 		}
419 		spi_imx->count--;
420 	}
421 
422 	writel(val, spi_imx->base + MXC_CSPITXDATA);
423 }
424 
425 static void mx53_ecspi_rx_target(struct spi_imx_data *spi_imx)
426 {
427 	u32 val = ioread32be(spi_imx->base + MXC_CSPIRXDATA);
428 
429 	if (spi_imx->rx_buf) {
430 		int n_bytes = spi_imx->target_burst % sizeof(val);
431 
432 		if (!n_bytes)
433 			n_bytes = sizeof(val);
434 
435 		memcpy(spi_imx->rx_buf,
436 		       ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
437 
438 		spi_imx->rx_buf += n_bytes;
439 		spi_imx->target_burst -= n_bytes;
440 	}
441 
442 	spi_imx->remainder -= sizeof(u32);
443 }
444 
445 static void mx53_ecspi_tx_target(struct spi_imx_data *spi_imx)
446 {
447 	u32 val = 0;
448 	int n_bytes = spi_imx->count % sizeof(val);
449 
450 	if (!n_bytes)
451 		n_bytes = sizeof(val);
452 
453 	if (spi_imx->tx_buf) {
454 		memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
455 		       spi_imx->tx_buf, n_bytes);
456 		spi_imx->tx_buf += n_bytes;
457 	}
458 
459 	spi_imx->count -= n_bytes;
460 
461 	iowrite32be(val, spi_imx->base + MXC_CSPITXDATA);
462 }
463 
464 /* MX51 eCSPI */
465 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
466 				      unsigned int fspi, unsigned int *fres)
467 {
468 	/*
469 	 * there are two 4-bit dividers, the pre-divider divides by
470 	 * $pre, the post-divider by 2^$post
471 	 */
472 	unsigned int pre, post;
473 	unsigned int fin = spi_imx->spi_clk;
474 
475 	fspi = min(fspi, fin);
476 
477 	post = fls(fin) - fls(fspi);
478 	if (fin > fspi << post)
479 		post++;
480 
481 	/* now we have: (fin <= fspi << post) with post being minimal */
482 
483 	post = max(4U, post) - 4;
484 	if (unlikely(post > 0xf)) {
485 		dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
486 				fspi, fin);
487 		return 0xff;
488 	}
489 
490 	pre = DIV_ROUND_UP(fin, fspi << post) - 1;
491 
492 	dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
493 			__func__, fin, fspi, post, pre);
494 
495 	/* Resulting frequency for the SCLK line. */
496 	*fres = (fin / (pre + 1)) >> post;
497 
498 	return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
499 		(post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
500 }
501 
502 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
503 {
504 	unsigned int val = 0;
505 
506 	if (enable & MXC_INT_TE)
507 		val |= MX51_ECSPI_INT_TEEN;
508 
509 	if (enable & MXC_INT_RR)
510 		val |= MX51_ECSPI_INT_RREN;
511 
512 	if (enable & MXC_INT_RDR)
513 		val |= MX51_ECSPI_INT_RDREN;
514 
515 	writel(val, spi_imx->base + MX51_ECSPI_INT);
516 }
517 
518 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
519 {
520 	u32 reg;
521 
522 	reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
523 	reg |= MX51_ECSPI_CTRL_XCH;
524 	writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
525 }
526 
527 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
528 {
529 	u32 ctrl;
530 
531 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
532 	ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
533 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
534 }
535 
536 static int mx51_ecspi_channel(const struct spi_device *spi)
537 {
538 	if (!spi_get_csgpiod(spi, 0))
539 		return spi_get_chipselect(spi, 0);
540 	return spi->controller->unused_native_cs;
541 }
542 
543 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
544 				      struct spi_message *msg)
545 {
546 	struct spi_device *spi = msg->spi;
547 	struct spi_transfer *xfer;
548 	u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
549 	u32 min_speed_hz = ~0U;
550 	u32 testreg, delay;
551 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
552 	u32 current_cfg = cfg;
553 	int channel = mx51_ecspi_channel(spi);
554 
555 	/* set Host or Target mode */
556 	if (spi_imx->target_mode)
557 		ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
558 	else
559 		ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
560 
561 	/*
562 	 * Enable SPI_RDY handling (falling edge/level triggered).
563 	 */
564 	if (spi->mode & SPI_READY)
565 		ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
566 
567 	/* set chip select to use */
568 	ctrl |= MX51_ECSPI_CTRL_CS(channel);
569 
570 	/*
571 	 * The ctrl register must be written first, with the EN bit set other
572 	 * registers must not be written to.
573 	 */
574 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
575 
576 	testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
577 	if (spi->mode & SPI_LOOP)
578 		testreg |= MX51_ECSPI_TESTREG_LBC;
579 	else
580 		testreg &= ~MX51_ECSPI_TESTREG_LBC;
581 	writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
582 
583 	/*
584 	 * eCSPI burst completion by Chip Select signal in Target mode
585 	 * is not functional for imx53 Soc, config SPI burst completed when
586 	 * BURST_LENGTH + 1 bits are received
587 	 */
588 	if (spi_imx->target_mode && is_imx53_ecspi(spi_imx))
589 		cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(channel);
590 	else
591 		cfg |= MX51_ECSPI_CONFIG_SBBCTRL(channel);
592 
593 	if (spi->mode & SPI_CPOL) {
594 		cfg |= MX51_ECSPI_CONFIG_SCLKPOL(channel);
595 		cfg |= MX51_ECSPI_CONFIG_SCLKCTL(channel);
596 	} else {
597 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(channel);
598 		cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(channel);
599 	}
600 
601 	if (spi->mode & SPI_MOSI_IDLE_LOW)
602 		cfg |= MX51_ECSPI_CONFIG_DATACTL(channel);
603 	else
604 		cfg &= ~MX51_ECSPI_CONFIG_DATACTL(channel);
605 
606 	if (spi->mode & SPI_CS_HIGH)
607 		cfg |= MX51_ECSPI_CONFIG_SSBPOL(channel);
608 	else
609 		cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(channel);
610 
611 	if (cfg == current_cfg)
612 		return 0;
613 
614 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
615 
616 	/*
617 	 * Wait until the changes in the configuration register CONFIGREG
618 	 * propagate into the hardware. It takes exactly one tick of the
619 	 * SCLK clock, but we will wait two SCLK clock just to be sure. The
620 	 * effect of the delay it takes for the hardware to apply changes
621 	 * is noticable if the SCLK clock run very slow. In such a case, if
622 	 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
623 	 * be asserted before the SCLK polarity changes, which would disrupt
624 	 * the SPI communication as the device on the other end would consider
625 	 * the change of SCLK polarity as a clock tick already.
626 	 *
627 	 * Because spi_imx->spi_bus_clk is only set in prepare_message
628 	 * callback, iterate over all the transfers in spi_message, find the
629 	 * one with lowest bus frequency, and use that bus frequency for the
630 	 * delay calculation. In case all transfers have speed_hz == 0, then
631 	 * min_speed_hz is ~0 and the resulting delay is zero.
632 	 */
633 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
634 		if (!xfer->speed_hz)
635 			continue;
636 		min_speed_hz = min(xfer->speed_hz, min_speed_hz);
637 	}
638 
639 	delay = (2 * 1000000) / min_speed_hz;
640 	if (likely(delay < 10))	/* SCLK is faster than 200 kHz */
641 		udelay(delay);
642 	else			/* SCLK is _very_ slow */
643 		usleep_range(delay, delay + 10);
644 
645 	return 0;
646 }
647 
648 static void mx51_configure_cpha(struct spi_imx_data *spi_imx,
649 				struct spi_device *spi)
650 {
651 	bool cpha = (spi->mode & SPI_CPHA);
652 	bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only;
653 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
654 	int channel = mx51_ecspi_channel(spi);
655 
656 	/* Flip cpha logical value iff flip_cpha */
657 	cpha ^= flip_cpha;
658 
659 	if (cpha)
660 		cfg |= MX51_ECSPI_CONFIG_SCLKPHA(channel);
661 	else
662 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(channel);
663 
664 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
665 }
666 
667 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
668 				       struct spi_device *spi, struct spi_transfer *t)
669 {
670 	u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
671 	u64 word_delay_sck;
672 	u32 clk;
673 
674 	/* Clear BL field and set the right value */
675 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
676 	if (spi_imx->target_mode && is_imx53_ecspi(spi_imx))
677 		ctrl |= (spi_imx->target_burst * 8 - 1)
678 			<< MX51_ECSPI_CTRL_BL_OFFSET;
679 	else {
680 		ctrl |= (spi_imx->bits_per_word - 1)
681 			<< MX51_ECSPI_CTRL_BL_OFFSET;
682 	}
683 
684 	/* set clock speed */
685 	ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
686 		  0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
687 	ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk);
688 	spi_imx->spi_bus_clk = clk;
689 
690 	mx51_configure_cpha(spi_imx, spi);
691 
692 	/*
693 	 * ERR009165: work in XHC mode instead of SMC as PIO on the chips
694 	 * before i.mx6ul.
695 	 */
696 	if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed)
697 		ctrl |= MX51_ECSPI_CTRL_SMC;
698 	else
699 		ctrl &= ~MX51_ECSPI_CTRL_SMC;
700 
701 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
702 
703 	/* calculate word delay in SPI Clock (SCLK) cycles */
704 	if (t->word_delay.value == 0) {
705 		word_delay_sck = 0;
706 	} else if (t->word_delay.unit == SPI_DELAY_UNIT_SCK) {
707 		word_delay_sck = t->word_delay.value;
708 
709 		if (word_delay_sck <= MX51_ECSPI_PERIOD_MIN_DELAY_SCK)
710 			word_delay_sck = 0;
711 		else if (word_delay_sck <= MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1)
712 			word_delay_sck = 1;
713 		else
714 			word_delay_sck -= MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1;
715 	} else {
716 		int word_delay_ns;
717 
718 		word_delay_ns = spi_delay_to_ns(&t->word_delay, t);
719 		if (word_delay_ns < 0)
720 			return word_delay_ns;
721 
722 		if (word_delay_ns <= mul_u64_u32_div(NSEC_PER_SEC,
723 						     MX51_ECSPI_PERIOD_MIN_DELAY_SCK,
724 						     spi_imx->spi_bus_clk)) {
725 			word_delay_sck = 0;
726 		} else if (word_delay_ns <= mul_u64_u32_div(NSEC_PER_SEC,
727 							    MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1,
728 							    spi_imx->spi_bus_clk)) {
729 			word_delay_sck = 1;
730 		} else {
731 			word_delay_ns -= mul_u64_u32_div(NSEC_PER_SEC,
732 							 MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1,
733 							 spi_imx->spi_bus_clk);
734 
735 			word_delay_sck = DIV_U64_ROUND_UP((u64)word_delay_ns * spi_imx->spi_bus_clk,
736 							  NSEC_PER_SEC);
737 		}
738 	}
739 
740 	if (!FIELD_FIT(MX51_ECSPI_PERIOD_MASK, word_delay_sck))
741 		return -EINVAL;
742 
743 	writel(FIELD_PREP(MX51_ECSPI_PERIOD_MASK, word_delay_sck),
744 	       spi_imx->base + MX51_ECSPI_PERIOD);
745 
746 	return 0;
747 }
748 
749 static void mx51_setup_wml(struct spi_imx_data *spi_imx)
750 {
751 	u32 tx_wml = 0;
752 
753 	if (spi_imx->devtype_data->tx_glitch_fixed)
754 		tx_wml = spi_imx->wml;
755 	/*
756 	 * Configure the DMA register: setup the watermark
757 	 * and enable DMA request.
758 	 */
759 	writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
760 		MX51_ECSPI_DMA_TX_WML(tx_wml) |
761 		MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
762 		MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
763 		MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
764 }
765 
766 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
767 {
768 	return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
769 }
770 
771 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
772 {
773 	/* drain receive buffer */
774 	while (mx51_ecspi_rx_available(spi_imx))
775 		readl(spi_imx->base + MXC_CSPIRXDATA);
776 }
777 
778 #define MX31_INTREG_TEEN	(1 << 0)
779 #define MX31_INTREG_RREN	(1 << 3)
780 
781 #define MX31_CSPICTRL_ENABLE	(1 << 0)
782 #define MX31_CSPICTRL_HOST	(1 << 1)
783 #define MX31_CSPICTRL_XCH	(1 << 2)
784 #define MX31_CSPICTRL_SMC	(1 << 3)
785 #define MX31_CSPICTRL_POL	(1 << 4)
786 #define MX31_CSPICTRL_PHA	(1 << 5)
787 #define MX31_CSPICTRL_SSCTL	(1 << 6)
788 #define MX31_CSPICTRL_SSPOL	(1 << 7)
789 #define MX31_CSPICTRL_BC_SHIFT	8
790 #define MX35_CSPICTRL_BL_SHIFT	20
791 #define MX31_CSPICTRL_CS_SHIFT	24
792 #define MX35_CSPICTRL_CS_SHIFT	12
793 #define MX31_CSPICTRL_DR_SHIFT	16
794 
795 #define MX31_CSPI_DMAREG	0x10
796 #define MX31_DMAREG_RH_DEN	(1<<4)
797 #define MX31_DMAREG_TH_DEN	(1<<1)
798 
799 #define MX31_CSPISTATUS		0x14
800 #define MX31_STATUS_RR		(1 << 3)
801 
802 #define MX31_CSPI_TESTREG	0x1C
803 #define MX31_TEST_LBC		(1 << 14)
804 
805 /* These functions also work for the i.MX35, but be aware that
806  * the i.MX35 has a slightly different register layout for bits
807  * we do not use here.
808  */
809 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
810 {
811 	unsigned int val = 0;
812 
813 	if (enable & MXC_INT_TE)
814 		val |= MX31_INTREG_TEEN;
815 	if (enable & MXC_INT_RR)
816 		val |= MX31_INTREG_RREN;
817 
818 	writel(val, spi_imx->base + MXC_CSPIINT);
819 }
820 
821 static void mx31_trigger(struct spi_imx_data *spi_imx)
822 {
823 	unsigned int reg;
824 
825 	reg = readl(spi_imx->base + MXC_CSPICTRL);
826 	reg |= MX31_CSPICTRL_XCH;
827 	writel(reg, spi_imx->base + MXC_CSPICTRL);
828 }
829 
830 static int mx31_prepare_message(struct spi_imx_data *spi_imx,
831 				struct spi_message *msg)
832 {
833 	return 0;
834 }
835 
836 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
837 				 struct spi_device *spi, struct spi_transfer *t)
838 {
839 	unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_HOST;
840 	unsigned int clk;
841 
842 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
843 		MX31_CSPICTRL_DR_SHIFT;
844 	spi_imx->spi_bus_clk = clk;
845 
846 	if (is_imx35_cspi(spi_imx)) {
847 		reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
848 		reg |= MX31_CSPICTRL_SSCTL;
849 	} else {
850 		reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
851 	}
852 
853 	if (spi->mode & SPI_CPHA)
854 		reg |= MX31_CSPICTRL_PHA;
855 	if (spi->mode & SPI_CPOL)
856 		reg |= MX31_CSPICTRL_POL;
857 	if (spi->mode & SPI_CS_HIGH)
858 		reg |= MX31_CSPICTRL_SSPOL;
859 	if (!spi_get_csgpiod(spi, 0))
860 		reg |= (spi_get_chipselect(spi, 0)) <<
861 			(is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
862 						  MX31_CSPICTRL_CS_SHIFT);
863 
864 	if (spi_imx->usedma)
865 		reg |= MX31_CSPICTRL_SMC;
866 
867 	writel(reg, spi_imx->base + MXC_CSPICTRL);
868 
869 	reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
870 	if (spi->mode & SPI_LOOP)
871 		reg |= MX31_TEST_LBC;
872 	else
873 		reg &= ~MX31_TEST_LBC;
874 	writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
875 
876 	if (spi_imx->usedma) {
877 		/*
878 		 * configure DMA requests when RXFIFO is half full and
879 		 * when TXFIFO is half empty
880 		 */
881 		writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
882 			spi_imx->base + MX31_CSPI_DMAREG);
883 	}
884 
885 	return 0;
886 }
887 
888 static int mx31_rx_available(struct spi_imx_data *spi_imx)
889 {
890 	return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
891 }
892 
893 static void mx31_reset(struct spi_imx_data *spi_imx)
894 {
895 	/* drain receive buffer */
896 	while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
897 		readl(spi_imx->base + MXC_CSPIRXDATA);
898 }
899 
900 #define MX21_INTREG_RR		(1 << 4)
901 #define MX21_INTREG_TEEN	(1 << 9)
902 #define MX21_INTREG_RREN	(1 << 13)
903 
904 #define MX21_CSPICTRL_POL	(1 << 5)
905 #define MX21_CSPICTRL_PHA	(1 << 6)
906 #define MX21_CSPICTRL_SSPOL	(1 << 8)
907 #define MX21_CSPICTRL_XCH	(1 << 9)
908 #define MX21_CSPICTRL_ENABLE	(1 << 10)
909 #define MX21_CSPICTRL_HOST	(1 << 11)
910 #define MX21_CSPICTRL_DR_SHIFT	14
911 #define MX21_CSPICTRL_CS_SHIFT	19
912 
913 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
914 {
915 	unsigned int val = 0;
916 
917 	if (enable & MXC_INT_TE)
918 		val |= MX21_INTREG_TEEN;
919 	if (enable & MXC_INT_RR)
920 		val |= MX21_INTREG_RREN;
921 
922 	writel(val, spi_imx->base + MXC_CSPIINT);
923 }
924 
925 static void mx21_trigger(struct spi_imx_data *spi_imx)
926 {
927 	unsigned int reg;
928 
929 	reg = readl(spi_imx->base + MXC_CSPICTRL);
930 	reg |= MX21_CSPICTRL_XCH;
931 	writel(reg, spi_imx->base + MXC_CSPICTRL);
932 }
933 
934 static int mx21_prepare_message(struct spi_imx_data *spi_imx,
935 				struct spi_message *msg)
936 {
937 	return 0;
938 }
939 
940 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
941 				 struct spi_device *spi, struct spi_transfer *t)
942 {
943 	unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_HOST;
944 	unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
945 	unsigned int clk;
946 
947 	reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk)
948 		<< MX21_CSPICTRL_DR_SHIFT;
949 	spi_imx->spi_bus_clk = clk;
950 
951 	reg |= spi_imx->bits_per_word - 1;
952 
953 	if (spi->mode & SPI_CPHA)
954 		reg |= MX21_CSPICTRL_PHA;
955 	if (spi->mode & SPI_CPOL)
956 		reg |= MX21_CSPICTRL_POL;
957 	if (spi->mode & SPI_CS_HIGH)
958 		reg |= MX21_CSPICTRL_SSPOL;
959 	if (!spi_get_csgpiod(spi, 0))
960 		reg |= spi_get_chipselect(spi, 0) << MX21_CSPICTRL_CS_SHIFT;
961 
962 	writel(reg, spi_imx->base + MXC_CSPICTRL);
963 
964 	return 0;
965 }
966 
967 static int mx21_rx_available(struct spi_imx_data *spi_imx)
968 {
969 	return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
970 }
971 
972 static void mx21_reset(struct spi_imx_data *spi_imx)
973 {
974 	writel(1, spi_imx->base + MXC_RESET);
975 }
976 
977 #define MX1_INTREG_RR		(1 << 3)
978 #define MX1_INTREG_TEEN		(1 << 8)
979 #define MX1_INTREG_RREN		(1 << 11)
980 
981 #define MX1_CSPICTRL_POL	(1 << 4)
982 #define MX1_CSPICTRL_PHA	(1 << 5)
983 #define MX1_CSPICTRL_XCH	(1 << 8)
984 #define MX1_CSPICTRL_ENABLE	(1 << 9)
985 #define MX1_CSPICTRL_HOST	(1 << 10)
986 #define MX1_CSPICTRL_DR_SHIFT	13
987 
988 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
989 {
990 	unsigned int val = 0;
991 
992 	if (enable & MXC_INT_TE)
993 		val |= MX1_INTREG_TEEN;
994 	if (enable & MXC_INT_RR)
995 		val |= MX1_INTREG_RREN;
996 
997 	writel(val, spi_imx->base + MXC_CSPIINT);
998 }
999 
1000 static void mx1_trigger(struct spi_imx_data *spi_imx)
1001 {
1002 	unsigned int reg;
1003 
1004 	reg = readl(spi_imx->base + MXC_CSPICTRL);
1005 	reg |= MX1_CSPICTRL_XCH;
1006 	writel(reg, spi_imx->base + MXC_CSPICTRL);
1007 }
1008 
1009 static int mx1_prepare_message(struct spi_imx_data *spi_imx,
1010 			       struct spi_message *msg)
1011 {
1012 	return 0;
1013 }
1014 
1015 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
1016 				struct spi_device *spi, struct spi_transfer *t)
1017 {
1018 	unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_HOST;
1019 	unsigned int clk;
1020 
1021 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
1022 		MX1_CSPICTRL_DR_SHIFT;
1023 	spi_imx->spi_bus_clk = clk;
1024 
1025 	reg |= spi_imx->bits_per_word - 1;
1026 
1027 	if (spi->mode & SPI_CPHA)
1028 		reg |= MX1_CSPICTRL_PHA;
1029 	if (spi->mode & SPI_CPOL)
1030 		reg |= MX1_CSPICTRL_POL;
1031 
1032 	writel(reg, spi_imx->base + MXC_CSPICTRL);
1033 
1034 	return 0;
1035 }
1036 
1037 static int mx1_rx_available(struct spi_imx_data *spi_imx)
1038 {
1039 	return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
1040 }
1041 
1042 static void mx1_reset(struct spi_imx_data *spi_imx)
1043 {
1044 	writel(1, spi_imx->base + MXC_RESET);
1045 }
1046 
1047 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
1048 	.intctrl = mx1_intctrl,
1049 	.prepare_message = mx1_prepare_message,
1050 	.prepare_transfer = mx1_prepare_transfer,
1051 	.trigger = mx1_trigger,
1052 	.rx_available = mx1_rx_available,
1053 	.reset = mx1_reset,
1054 	.fifo_size = 8,
1055 	.has_dmamode = false,
1056 	.dynamic_burst = false,
1057 	.has_targetmode = false,
1058 	.devtype = IMX1_CSPI,
1059 };
1060 
1061 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
1062 	.intctrl = mx21_intctrl,
1063 	.prepare_message = mx21_prepare_message,
1064 	.prepare_transfer = mx21_prepare_transfer,
1065 	.trigger = mx21_trigger,
1066 	.rx_available = mx21_rx_available,
1067 	.reset = mx21_reset,
1068 	.fifo_size = 8,
1069 	.has_dmamode = false,
1070 	.dynamic_burst = false,
1071 	.has_targetmode = false,
1072 	.devtype = IMX21_CSPI,
1073 };
1074 
1075 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
1076 	/* i.mx27 cspi shares the functions with i.mx21 one */
1077 	.intctrl = mx21_intctrl,
1078 	.prepare_message = mx21_prepare_message,
1079 	.prepare_transfer = mx21_prepare_transfer,
1080 	.trigger = mx21_trigger,
1081 	.rx_available = mx21_rx_available,
1082 	.reset = mx21_reset,
1083 	.fifo_size = 8,
1084 	.has_dmamode = false,
1085 	.dynamic_burst = false,
1086 	.has_targetmode = false,
1087 	.devtype = IMX27_CSPI,
1088 };
1089 
1090 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
1091 	.intctrl = mx31_intctrl,
1092 	.prepare_message = mx31_prepare_message,
1093 	.prepare_transfer = mx31_prepare_transfer,
1094 	.trigger = mx31_trigger,
1095 	.rx_available = mx31_rx_available,
1096 	.reset = mx31_reset,
1097 	.fifo_size = 8,
1098 	.has_dmamode = false,
1099 	.dynamic_burst = false,
1100 	.has_targetmode = false,
1101 	.devtype = IMX31_CSPI,
1102 };
1103 
1104 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
1105 	/* i.mx35 and later cspi shares the functions with i.mx31 one */
1106 	.intctrl = mx31_intctrl,
1107 	.prepare_message = mx31_prepare_message,
1108 	.prepare_transfer = mx31_prepare_transfer,
1109 	.trigger = mx31_trigger,
1110 	.rx_available = mx31_rx_available,
1111 	.reset = mx31_reset,
1112 	.fifo_size = 8,
1113 	.has_dmamode = false,
1114 	.dynamic_burst = false,
1115 	.has_targetmode = false,
1116 	.devtype = IMX35_CSPI,
1117 };
1118 
1119 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
1120 	.intctrl = mx51_ecspi_intctrl,
1121 	.prepare_message = mx51_ecspi_prepare_message,
1122 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1123 	.trigger = mx51_ecspi_trigger,
1124 	.rx_available = mx51_ecspi_rx_available,
1125 	.reset = mx51_ecspi_reset,
1126 	.setup_wml = mx51_setup_wml,
1127 	.fifo_size = 64,
1128 	.has_dmamode = true,
1129 	.dynamic_burst = true,
1130 	.has_targetmode = true,
1131 	.disable = mx51_ecspi_disable,
1132 	.devtype = IMX51_ECSPI,
1133 };
1134 
1135 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
1136 	.intctrl = mx51_ecspi_intctrl,
1137 	.prepare_message = mx51_ecspi_prepare_message,
1138 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1139 	.trigger = mx51_ecspi_trigger,
1140 	.rx_available = mx51_ecspi_rx_available,
1141 	.reset = mx51_ecspi_reset,
1142 	.fifo_size = 64,
1143 	.has_dmamode = true,
1144 	.has_targetmode = true,
1145 	.disable = mx51_ecspi_disable,
1146 	.devtype = IMX53_ECSPI,
1147 };
1148 
1149 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = {
1150 	.intctrl = mx51_ecspi_intctrl,
1151 	.prepare_message = mx51_ecspi_prepare_message,
1152 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1153 	.trigger = mx51_ecspi_trigger,
1154 	.rx_available = mx51_ecspi_rx_available,
1155 	.reset = mx51_ecspi_reset,
1156 	.setup_wml = mx51_setup_wml,
1157 	.fifo_size = 64,
1158 	.has_dmamode = true,
1159 	.dynamic_burst = true,
1160 	.has_targetmode = true,
1161 	.tx_glitch_fixed = true,
1162 	.disable = mx51_ecspi_disable,
1163 	.devtype = IMX51_ECSPI,
1164 };
1165 
1166 static const struct of_device_id spi_imx_dt_ids[] = {
1167 	{ .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
1168 	{ .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
1169 	{ .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
1170 	{ .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
1171 	{ .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
1172 	{ .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
1173 	{ .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
1174 	{ .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, },
1175 	{ /* sentinel */ }
1176 };
1177 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
1178 
1179 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
1180 {
1181 	u32 ctrl;
1182 
1183 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
1184 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
1185 	ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET);
1186 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
1187 }
1188 
1189 static void spi_imx_push(struct spi_imx_data *spi_imx)
1190 {
1191 	unsigned int burst_len;
1192 
1193 	/*
1194 	 * Reload the FIFO when the remaining bytes to be transferred in the
1195 	 * current burst is 0. This only applies when bits_per_word is a
1196 	 * multiple of 8.
1197 	 */
1198 	if (!spi_imx->remainder) {
1199 		if (spi_imx->dynamic_burst) {
1200 
1201 			/* We need to deal unaligned data first */
1202 			burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST;
1203 
1204 			if (!burst_len)
1205 				burst_len = MX51_ECSPI_CTRL_MAX_BURST;
1206 
1207 			spi_imx_set_burst_len(spi_imx, burst_len * 8);
1208 
1209 			spi_imx->remainder = burst_len;
1210 		} else {
1211 			spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word);
1212 		}
1213 	}
1214 
1215 	while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
1216 		if (!spi_imx->count)
1217 			break;
1218 		if (spi_imx->dynamic_burst &&
1219 		    spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4))
1220 			break;
1221 		spi_imx->tx(spi_imx);
1222 		spi_imx->txfifo++;
1223 	}
1224 
1225 	if (!spi_imx->target_mode)
1226 		spi_imx->devtype_data->trigger(spi_imx);
1227 }
1228 
1229 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
1230 {
1231 	struct spi_imx_data *spi_imx = dev_id;
1232 
1233 	while (spi_imx->txfifo &&
1234 	       spi_imx->devtype_data->rx_available(spi_imx)) {
1235 		spi_imx->rx(spi_imx);
1236 		spi_imx->txfifo--;
1237 	}
1238 
1239 	if (spi_imx->count) {
1240 		spi_imx_push(spi_imx);
1241 		return IRQ_HANDLED;
1242 	}
1243 
1244 	if (spi_imx->txfifo) {
1245 		/* No data left to push, but still waiting for rx data,
1246 		 * enable receive data available interrupt.
1247 		 */
1248 		spi_imx->devtype_data->intctrl(
1249 				spi_imx, MXC_INT_RR);
1250 		return IRQ_HANDLED;
1251 	}
1252 
1253 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1254 	complete(&spi_imx->xfer_done);
1255 
1256 	return IRQ_HANDLED;
1257 }
1258 
1259 static int spi_imx_dma_configure(struct spi_controller *controller)
1260 {
1261 	int ret;
1262 	enum dma_slave_buswidth buswidth;
1263 	struct dma_slave_config rx = {}, tx = {};
1264 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1265 
1266 	switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
1267 	case 4:
1268 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1269 		break;
1270 	case 2:
1271 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1272 		break;
1273 	case 1:
1274 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1275 		break;
1276 	default:
1277 		return -EINVAL;
1278 	}
1279 
1280 	tx.direction = DMA_MEM_TO_DEV;
1281 	tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
1282 	tx.dst_addr_width = buswidth;
1283 	tx.dst_maxburst = spi_imx->wml;
1284 	ret = dmaengine_slave_config(controller->dma_tx, &tx);
1285 	if (ret) {
1286 		dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
1287 		return ret;
1288 	}
1289 
1290 	rx.direction = DMA_DEV_TO_MEM;
1291 	rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
1292 	rx.src_addr_width = buswidth;
1293 	rx.src_maxburst = spi_imx->wml;
1294 	ret = dmaengine_slave_config(controller->dma_rx, &rx);
1295 	if (ret) {
1296 		dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
1297 		return ret;
1298 	}
1299 
1300 	return 0;
1301 }
1302 
1303 static int spi_imx_setupxfer(struct spi_device *spi,
1304 				 struct spi_transfer *t)
1305 {
1306 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1307 
1308 	if (!t)
1309 		return 0;
1310 
1311 	if (!t->speed_hz) {
1312 		if (!spi->max_speed_hz) {
1313 			dev_err(&spi->dev, "no speed_hz provided!\n");
1314 			return -EINVAL;
1315 		}
1316 		dev_dbg(&spi->dev, "using spi->max_speed_hz!\n");
1317 		spi_imx->spi_bus_clk = spi->max_speed_hz;
1318 	} else
1319 		spi_imx->spi_bus_clk = t->speed_hz;
1320 
1321 	spi_imx->bits_per_word = t->bits_per_word;
1322 	spi_imx->count = t->len;
1323 
1324 	/*
1325 	 * Initialize the functions for transfer. To transfer non byte-aligned
1326 	 * words, we have to use multiple word-size bursts. To insert word
1327 	 * delay, the burst size has to equal the word size. We can't use
1328 	 * dynamic_burst in these cases.
1329 	 */
1330 	if (spi_imx->devtype_data->dynamic_burst && !spi_imx->target_mode &&
1331 	    !(spi->mode & SPI_CS_WORD) &&
1332 	    !(t->word_delay.value) &&
1333 	    (spi_imx->bits_per_word == 8 ||
1334 	    spi_imx->bits_per_word == 16 ||
1335 	    spi_imx->bits_per_word == 32)) {
1336 
1337 		spi_imx->rx = spi_imx_buf_rx_swap;
1338 		spi_imx->tx = spi_imx_buf_tx_swap;
1339 		spi_imx->dynamic_burst = 1;
1340 
1341 	} else {
1342 		if (spi_imx->bits_per_word <= 8) {
1343 			spi_imx->rx = spi_imx_buf_rx_u8;
1344 			spi_imx->tx = spi_imx_buf_tx_u8;
1345 		} else if (spi_imx->bits_per_word <= 16) {
1346 			spi_imx->rx = spi_imx_buf_rx_u16;
1347 			spi_imx->tx = spi_imx_buf_tx_u16;
1348 		} else {
1349 			spi_imx->rx = spi_imx_buf_rx_u32;
1350 			spi_imx->tx = spi_imx_buf_tx_u32;
1351 		}
1352 		spi_imx->dynamic_burst = 0;
1353 	}
1354 
1355 	if (spi_imx_can_dma(spi_imx->controller, spi, t))
1356 		spi_imx->usedma = true;
1357 	else
1358 		spi_imx->usedma = false;
1359 
1360 	spi_imx->rx_only = ((t->tx_buf == NULL)
1361 			|| (t->tx_buf == spi->controller->dummy_tx));
1362 
1363 	if (is_imx53_ecspi(spi_imx) && spi_imx->target_mode) {
1364 		spi_imx->rx = mx53_ecspi_rx_target;
1365 		spi_imx->tx = mx53_ecspi_tx_target;
1366 		spi_imx->target_burst = t->len;
1367 	}
1368 
1369 	spi_imx->devtype_data->prepare_transfer(spi_imx, spi, t);
1370 
1371 	return 0;
1372 }
1373 
1374 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
1375 {
1376 	struct spi_controller *controller = spi_imx->controller;
1377 
1378 	if (controller->dma_rx) {
1379 		dma_release_channel(controller->dma_rx);
1380 		controller->dma_rx = NULL;
1381 	}
1382 
1383 	if (controller->dma_tx) {
1384 		dma_release_channel(controller->dma_tx);
1385 		controller->dma_tx = NULL;
1386 	}
1387 }
1388 
1389 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
1390 			     struct spi_controller *controller)
1391 {
1392 	int ret;
1393 
1394 	spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
1395 
1396 	/* Prepare for TX DMA: */
1397 	controller->dma_tx = dma_request_chan(dev, "tx");
1398 	if (IS_ERR(controller->dma_tx)) {
1399 		ret = PTR_ERR(controller->dma_tx);
1400 		dev_err_probe(dev, ret, "can't get the TX DMA channel!\n");
1401 		controller->dma_tx = NULL;
1402 		goto err;
1403 	}
1404 
1405 	/* Prepare for RX : */
1406 	controller->dma_rx = dma_request_chan(dev, "rx");
1407 	if (IS_ERR(controller->dma_rx)) {
1408 		ret = PTR_ERR(controller->dma_rx);
1409 		dev_err_probe(dev, ret, "can't get the RX DMA channel!\n");
1410 		controller->dma_rx = NULL;
1411 		goto err;
1412 	}
1413 
1414 	init_completion(&spi_imx->dma_rx_completion);
1415 	init_completion(&spi_imx->dma_tx_completion);
1416 	controller->can_dma = spi_imx_can_dma;
1417 	controller->max_dma_len = MAX_SDMA_BD_BYTES;
1418 	spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX |
1419 					 SPI_CONTROLLER_MUST_TX;
1420 
1421 	return 0;
1422 err:
1423 	spi_imx_sdma_exit(spi_imx);
1424 	return ret;
1425 }
1426 
1427 static void spi_imx_dma_rx_callback(void *cookie)
1428 {
1429 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1430 
1431 	complete(&spi_imx->dma_rx_completion);
1432 }
1433 
1434 static void spi_imx_dma_tx_callback(void *cookie)
1435 {
1436 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1437 
1438 	complete(&spi_imx->dma_tx_completion);
1439 }
1440 
1441 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
1442 {
1443 	unsigned long timeout = 0;
1444 
1445 	/* Time with actual data transfer and CS change delay related to HW */
1446 	timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
1447 
1448 	/* Add extra second for scheduler related activities */
1449 	timeout += 1;
1450 
1451 	/* Double calculated timeout */
1452 	return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
1453 }
1454 
1455 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
1456 				struct spi_transfer *transfer)
1457 {
1458 	struct dma_async_tx_descriptor *desc_tx, *desc_rx;
1459 	unsigned long transfer_timeout;
1460 	unsigned long time_left;
1461 	struct spi_controller *controller = spi_imx->controller;
1462 	struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
1463 	struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents);
1464 	unsigned int bytes_per_word, i;
1465 	int ret;
1466 
1467 	/* Get the right burst length from the last sg to ensure no tail data */
1468 	bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
1469 	for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
1470 		if (!(sg_dma_len(last_sg) % (i * bytes_per_word)))
1471 			break;
1472 	}
1473 	/* Use 1 as wml in case no available burst length got */
1474 	if (i == 0)
1475 		i = 1;
1476 
1477 	spi_imx->wml =  i;
1478 
1479 	ret = spi_imx_dma_configure(controller);
1480 	if (ret)
1481 		goto dma_failure_no_start;
1482 
1483 	if (!spi_imx->devtype_data->setup_wml) {
1484 		dev_err(spi_imx->dev, "No setup_wml()?\n");
1485 		ret = -EINVAL;
1486 		goto dma_failure_no_start;
1487 	}
1488 	spi_imx->devtype_data->setup_wml(spi_imx);
1489 
1490 	/*
1491 	 * The TX DMA setup starts the transfer, so make sure RX is configured
1492 	 * before TX.
1493 	 */
1494 	desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
1495 				rx->sgl, rx->nents, DMA_DEV_TO_MEM,
1496 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1497 	if (!desc_rx) {
1498 		ret = -EINVAL;
1499 		goto dma_failure_no_start;
1500 	}
1501 
1502 	desc_rx->callback = spi_imx_dma_rx_callback;
1503 	desc_rx->callback_param = (void *)spi_imx;
1504 	dmaengine_submit(desc_rx);
1505 	reinit_completion(&spi_imx->dma_rx_completion);
1506 	dma_async_issue_pending(controller->dma_rx);
1507 
1508 	desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
1509 				tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1510 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1511 	if (!desc_tx) {
1512 		dmaengine_terminate_all(controller->dma_tx);
1513 		dmaengine_terminate_all(controller->dma_rx);
1514 		return -EINVAL;
1515 	}
1516 
1517 	desc_tx->callback = spi_imx_dma_tx_callback;
1518 	desc_tx->callback_param = (void *)spi_imx;
1519 	dmaengine_submit(desc_tx);
1520 	reinit_completion(&spi_imx->dma_tx_completion);
1521 	dma_async_issue_pending(controller->dma_tx);
1522 
1523 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1524 
1525 	/* Wait SDMA to finish the data transfer.*/
1526 	time_left = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1527 						transfer_timeout);
1528 	if (!time_left) {
1529 		dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1530 		dmaengine_terminate_all(controller->dma_tx);
1531 		dmaengine_terminate_all(controller->dma_rx);
1532 		return -ETIMEDOUT;
1533 	}
1534 
1535 	time_left = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1536 						transfer_timeout);
1537 	if (!time_left) {
1538 		dev_err(&controller->dev, "I/O Error in DMA RX\n");
1539 		spi_imx->devtype_data->reset(spi_imx);
1540 		dmaengine_terminate_all(controller->dma_rx);
1541 		return -ETIMEDOUT;
1542 	}
1543 
1544 	return 0;
1545 /* fallback to pio */
1546 dma_failure_no_start:
1547 	transfer->error |= SPI_TRANS_FAIL_NO_START;
1548 	return ret;
1549 }
1550 
1551 static int spi_imx_pio_transfer(struct spi_device *spi,
1552 				struct spi_transfer *transfer)
1553 {
1554 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1555 	unsigned long transfer_timeout;
1556 	unsigned long time_left;
1557 
1558 	spi_imx->tx_buf = transfer->tx_buf;
1559 	spi_imx->rx_buf = transfer->rx_buf;
1560 	spi_imx->count = transfer->len;
1561 	spi_imx->txfifo = 0;
1562 	spi_imx->remainder = 0;
1563 
1564 	reinit_completion(&spi_imx->xfer_done);
1565 
1566 	spi_imx_push(spi_imx);
1567 
1568 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1569 
1570 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1571 
1572 	time_left = wait_for_completion_timeout(&spi_imx->xfer_done,
1573 						transfer_timeout);
1574 	if (!time_left) {
1575 		dev_err(&spi->dev, "I/O Error in PIO\n");
1576 		spi_imx->devtype_data->reset(spi_imx);
1577 		return -ETIMEDOUT;
1578 	}
1579 
1580 	return 0;
1581 }
1582 
1583 static int spi_imx_poll_transfer(struct spi_device *spi,
1584 				 struct spi_transfer *transfer)
1585 {
1586 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1587 	unsigned long timeout;
1588 
1589 	spi_imx->tx_buf = transfer->tx_buf;
1590 	spi_imx->rx_buf = transfer->rx_buf;
1591 	spi_imx->count = transfer->len;
1592 	spi_imx->txfifo = 0;
1593 	spi_imx->remainder = 0;
1594 
1595 	/* fill in the fifo before timeout calculations if we are
1596 	 * interrupted here, then the data is getting transferred by
1597 	 * the HW while we are interrupted
1598 	 */
1599 	spi_imx_push(spi_imx);
1600 
1601 	timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies;
1602 	while (spi_imx->txfifo) {
1603 		/* RX */
1604 		while (spi_imx->txfifo &&
1605 		       spi_imx->devtype_data->rx_available(spi_imx)) {
1606 			spi_imx->rx(spi_imx);
1607 			spi_imx->txfifo--;
1608 		}
1609 
1610 		/* TX */
1611 		if (spi_imx->count) {
1612 			spi_imx_push(spi_imx);
1613 			continue;
1614 		}
1615 
1616 		if (spi_imx->txfifo &&
1617 		    time_after(jiffies, timeout)) {
1618 
1619 			dev_err_ratelimited(&spi->dev,
1620 					    "timeout period reached: jiffies: %lu- falling back to interrupt mode\n",
1621 					    jiffies - timeout);
1622 
1623 			/* fall back to interrupt mode */
1624 			return spi_imx_pio_transfer(spi, transfer);
1625 		}
1626 	}
1627 
1628 	return 0;
1629 }
1630 
1631 static int spi_imx_pio_transfer_target(struct spi_device *spi,
1632 				       struct spi_transfer *transfer)
1633 {
1634 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1635 	int ret = 0;
1636 
1637 	if (is_imx53_ecspi(spi_imx) &&
1638 	    transfer->len > MX53_MAX_TRANSFER_BYTES) {
1639 		dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
1640 			MX53_MAX_TRANSFER_BYTES);
1641 		return -EMSGSIZE;
1642 	}
1643 
1644 	spi_imx->tx_buf = transfer->tx_buf;
1645 	spi_imx->rx_buf = transfer->rx_buf;
1646 	spi_imx->count = transfer->len;
1647 	spi_imx->txfifo = 0;
1648 	spi_imx->remainder = 0;
1649 
1650 	reinit_completion(&spi_imx->xfer_done);
1651 	spi_imx->target_aborted = false;
1652 
1653 	spi_imx_push(spi_imx);
1654 
1655 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
1656 
1657 	if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
1658 	    spi_imx->target_aborted) {
1659 		dev_dbg(&spi->dev, "interrupted\n");
1660 		ret = -EINTR;
1661 	}
1662 
1663 	/* ecspi has a HW issue when works in Target mode,
1664 	 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
1665 	 * ECSPI_TXDATA keeps shift out the last word data,
1666 	 * so we have to disable ECSPI when in target mode after the
1667 	 * transfer completes
1668 	 */
1669 	if (spi_imx->devtype_data->disable)
1670 		spi_imx->devtype_data->disable(spi_imx);
1671 
1672 	return ret;
1673 }
1674 
1675 static unsigned int spi_imx_transfer_estimate_time_us(struct spi_transfer *transfer)
1676 {
1677 	u64 result;
1678 
1679 	result = DIV_U64_ROUND_CLOSEST((u64)USEC_PER_SEC * transfer->len * BITS_PER_BYTE,
1680 				       transfer->effective_speed_hz);
1681 	if (transfer->word_delay.value) {
1682 		unsigned int word_delay_us;
1683 		unsigned int words;
1684 
1685 		words = DIV_ROUND_UP(transfer->len * BITS_PER_BYTE, transfer->bits_per_word);
1686 		word_delay_us = DIV_ROUND_CLOSEST(spi_delay_to_ns(&transfer->word_delay, transfer),
1687 						  NSEC_PER_USEC);
1688 		result += (u64)words * word_delay_us;
1689 	}
1690 
1691 	return min(result, U32_MAX);
1692 }
1693 
1694 static int spi_imx_transfer_one(struct spi_controller *controller,
1695 				struct spi_device *spi,
1696 				struct spi_transfer *transfer)
1697 {
1698 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1699 
1700 	spi_imx_setupxfer(spi, transfer);
1701 	transfer->effective_speed_hz = spi_imx->spi_bus_clk;
1702 
1703 	/* flush rxfifo before transfer */
1704 	while (spi_imx->devtype_data->rx_available(spi_imx))
1705 		readl(spi_imx->base + MXC_CSPIRXDATA);
1706 
1707 	if (spi_imx->target_mode)
1708 		return spi_imx_pio_transfer_target(spi, transfer);
1709 
1710 	/*
1711 	 * If we decided in spi_imx_can_dma() that we want to do a DMA
1712 	 * transfer, the SPI transfer has already been mapped, so we
1713 	 * have to do the DMA transfer here.
1714 	 */
1715 	if (spi_imx->usedma)
1716 		return spi_imx_dma_transfer(spi_imx, transfer);
1717 
1718 	/* run in polling mode for short transfers */
1719 	if (transfer->len == 1 || (polling_limit_us &&
1720 				   spi_imx_transfer_estimate_time_us(transfer) < polling_limit_us))
1721 		return spi_imx_poll_transfer(spi, transfer);
1722 
1723 	return spi_imx_pio_transfer(spi, transfer);
1724 }
1725 
1726 static int spi_imx_setup(struct spi_device *spi)
1727 {
1728 	dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1729 		 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1730 
1731 	return 0;
1732 }
1733 
1734 static int
1735 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg)
1736 {
1737 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1738 	int ret;
1739 
1740 	ret = pm_runtime_resume_and_get(spi_imx->dev);
1741 	if (ret < 0) {
1742 		dev_err(spi_imx->dev, "failed to enable clock\n");
1743 		return ret;
1744 	}
1745 
1746 	ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
1747 	if (ret) {
1748 		pm_runtime_mark_last_busy(spi_imx->dev);
1749 		pm_runtime_put_autosuspend(spi_imx->dev);
1750 	}
1751 
1752 	return ret;
1753 }
1754 
1755 static int
1756 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg)
1757 {
1758 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1759 
1760 	pm_runtime_mark_last_busy(spi_imx->dev);
1761 	pm_runtime_put_autosuspend(spi_imx->dev);
1762 	return 0;
1763 }
1764 
1765 static int spi_imx_target_abort(struct spi_controller *controller)
1766 {
1767 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1768 
1769 	spi_imx->target_aborted = true;
1770 	complete(&spi_imx->xfer_done);
1771 
1772 	return 0;
1773 }
1774 
1775 static int spi_imx_probe(struct platform_device *pdev)
1776 {
1777 	struct device_node *np = pdev->dev.of_node;
1778 	struct spi_controller *controller;
1779 	struct spi_imx_data *spi_imx;
1780 	struct resource *res;
1781 	int ret, irq, spi_drctl;
1782 	const struct spi_imx_devtype_data *devtype_data =
1783 			of_device_get_match_data(&pdev->dev);
1784 	bool target_mode;
1785 	u32 val;
1786 
1787 	target_mode = devtype_data->has_targetmode &&
1788 		      of_property_read_bool(np, "spi-slave");
1789 	if (target_mode)
1790 		controller = spi_alloc_target(&pdev->dev,
1791 					      sizeof(struct spi_imx_data));
1792 	else
1793 		controller = spi_alloc_host(&pdev->dev,
1794 					    sizeof(struct spi_imx_data));
1795 	if (!controller)
1796 		return -ENOMEM;
1797 
1798 	ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
1799 	if ((ret < 0) || (spi_drctl >= 0x3)) {
1800 		/* '11' is reserved */
1801 		spi_drctl = 0;
1802 	}
1803 
1804 	platform_set_drvdata(pdev, controller);
1805 
1806 	controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1807 	controller->bus_num = np ? -1 : pdev->id;
1808 	controller->use_gpio_descriptors = true;
1809 
1810 	spi_imx = spi_controller_get_devdata(controller);
1811 	spi_imx->controller = controller;
1812 	spi_imx->dev = &pdev->dev;
1813 	spi_imx->target_mode = target_mode;
1814 
1815 	spi_imx->devtype_data = devtype_data;
1816 
1817 	/*
1818 	 * Get number of chip selects from device properties. This can be
1819 	 * coming from device tree or boardfiles, if it is not defined,
1820 	 * a default value of 3 chip selects will be used, as all the legacy
1821 	 * board files have <= 3 chip selects.
1822 	 */
1823 	if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
1824 		controller->num_chipselect = val;
1825 	else
1826 		controller->num_chipselect = 3;
1827 
1828 	controller->transfer_one = spi_imx_transfer_one;
1829 	controller->setup = spi_imx_setup;
1830 	controller->prepare_message = spi_imx_prepare_message;
1831 	controller->unprepare_message = spi_imx_unprepare_message;
1832 	controller->target_abort = spi_imx_target_abort;
1833 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS |
1834 				SPI_MOSI_IDLE_LOW;
1835 
1836 	if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
1837 	    is_imx53_ecspi(spi_imx))
1838 		controller->mode_bits |= SPI_LOOP | SPI_READY;
1839 
1840 	if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx))
1841 		controller->mode_bits |= SPI_RX_CPHA_FLIP;
1842 
1843 	if (is_imx51_ecspi(spi_imx) &&
1844 	    device_property_read_u32(&pdev->dev, "cs-gpios", NULL))
1845 		/*
1846 		 * When using HW-CS implementing SPI_CS_WORD can be done by just
1847 		 * setting the burst length to the word size. This is
1848 		 * considerably faster than manually controlling the CS.
1849 		 */
1850 		controller->mode_bits |= SPI_CS_WORD;
1851 
1852 	if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) {
1853 		controller->max_native_cs = 4;
1854 		controller->flags |= SPI_CONTROLLER_GPIO_SS;
1855 	}
1856 
1857 	spi_imx->spi_drctl = spi_drctl;
1858 
1859 	init_completion(&spi_imx->xfer_done);
1860 
1861 	spi_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1862 	if (IS_ERR(spi_imx->base)) {
1863 		ret = PTR_ERR(spi_imx->base);
1864 		goto out_controller_put;
1865 	}
1866 	spi_imx->base_phys = res->start;
1867 
1868 	irq = platform_get_irq(pdev, 0);
1869 	if (irq < 0) {
1870 		ret = irq;
1871 		goto out_controller_put;
1872 	}
1873 
1874 	ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1875 			       dev_name(&pdev->dev), spi_imx);
1876 	if (ret) {
1877 		dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1878 		goto out_controller_put;
1879 	}
1880 
1881 	spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1882 	if (IS_ERR(spi_imx->clk_ipg)) {
1883 		ret = PTR_ERR(spi_imx->clk_ipg);
1884 		goto out_controller_put;
1885 	}
1886 
1887 	spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1888 	if (IS_ERR(spi_imx->clk_per)) {
1889 		ret = PTR_ERR(spi_imx->clk_per);
1890 		goto out_controller_put;
1891 	}
1892 
1893 	ret = clk_prepare_enable(spi_imx->clk_per);
1894 	if (ret)
1895 		goto out_controller_put;
1896 
1897 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1898 	if (ret)
1899 		goto out_put_per;
1900 
1901 	pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
1902 	pm_runtime_use_autosuspend(spi_imx->dev);
1903 	pm_runtime_get_noresume(spi_imx->dev);
1904 	pm_runtime_set_active(spi_imx->dev);
1905 	pm_runtime_enable(spi_imx->dev);
1906 
1907 	spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1908 	/*
1909 	 * Only validated on i.mx35 and i.mx6 now, can remove the constraint
1910 	 * if validated on other chips.
1911 	 */
1912 	if (spi_imx->devtype_data->has_dmamode) {
1913 		ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller);
1914 		if (ret == -EPROBE_DEFER)
1915 			goto out_runtime_pm_put;
1916 
1917 		if (ret < 0)
1918 			dev_dbg(&pdev->dev, "dma setup error %d, use pio\n",
1919 				ret);
1920 	}
1921 
1922 	spi_imx->devtype_data->reset(spi_imx);
1923 
1924 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1925 
1926 	controller->dev.of_node = pdev->dev.of_node;
1927 	ret = spi_register_controller(controller);
1928 	if (ret) {
1929 		dev_err_probe(&pdev->dev, ret, "register controller failed\n");
1930 		goto out_register_controller;
1931 	}
1932 
1933 	pm_runtime_mark_last_busy(spi_imx->dev);
1934 	pm_runtime_put_autosuspend(spi_imx->dev);
1935 
1936 	return ret;
1937 
1938 out_register_controller:
1939 	if (spi_imx->devtype_data->has_dmamode)
1940 		spi_imx_sdma_exit(spi_imx);
1941 out_runtime_pm_put:
1942 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1943 	pm_runtime_disable(spi_imx->dev);
1944 	pm_runtime_set_suspended(&pdev->dev);
1945 
1946 	clk_disable_unprepare(spi_imx->clk_ipg);
1947 out_put_per:
1948 	clk_disable_unprepare(spi_imx->clk_per);
1949 out_controller_put:
1950 	spi_controller_put(controller);
1951 
1952 	return ret;
1953 }
1954 
1955 static void spi_imx_remove(struct platform_device *pdev)
1956 {
1957 	struct spi_controller *controller = platform_get_drvdata(pdev);
1958 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1959 	int ret;
1960 
1961 	spi_unregister_controller(controller);
1962 
1963 	ret = pm_runtime_get_sync(spi_imx->dev);
1964 	if (ret >= 0)
1965 		writel(0, spi_imx->base + MXC_CSPICTRL);
1966 	else
1967 		dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n");
1968 
1969 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1970 	pm_runtime_put_sync(spi_imx->dev);
1971 	pm_runtime_disable(spi_imx->dev);
1972 
1973 	spi_imx_sdma_exit(spi_imx);
1974 }
1975 
1976 static int spi_imx_runtime_resume(struct device *dev)
1977 {
1978 	struct spi_controller *controller = dev_get_drvdata(dev);
1979 	struct spi_imx_data *spi_imx;
1980 	int ret;
1981 
1982 	spi_imx = spi_controller_get_devdata(controller);
1983 
1984 	ret = clk_prepare_enable(spi_imx->clk_per);
1985 	if (ret)
1986 		return ret;
1987 
1988 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1989 	if (ret) {
1990 		clk_disable_unprepare(spi_imx->clk_per);
1991 		return ret;
1992 	}
1993 
1994 	return 0;
1995 }
1996 
1997 static int spi_imx_runtime_suspend(struct device *dev)
1998 {
1999 	struct spi_controller *controller = dev_get_drvdata(dev);
2000 	struct spi_imx_data *spi_imx;
2001 
2002 	spi_imx = spi_controller_get_devdata(controller);
2003 
2004 	clk_disable_unprepare(spi_imx->clk_per);
2005 	clk_disable_unprepare(spi_imx->clk_ipg);
2006 
2007 	return 0;
2008 }
2009 
2010 static int spi_imx_suspend(struct device *dev)
2011 {
2012 	pinctrl_pm_select_sleep_state(dev);
2013 	return 0;
2014 }
2015 
2016 static int spi_imx_resume(struct device *dev)
2017 {
2018 	pinctrl_pm_select_default_state(dev);
2019 	return 0;
2020 }
2021 
2022 static const struct dev_pm_ops imx_spi_pm = {
2023 	RUNTIME_PM_OPS(spi_imx_runtime_suspend,	spi_imx_runtime_resume, NULL)
2024 	SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
2025 };
2026 
2027 static struct platform_driver spi_imx_driver = {
2028 	.driver = {
2029 		   .name = DRIVER_NAME,
2030 		   .of_match_table = spi_imx_dt_ids,
2031 		   .pm = pm_ptr(&imx_spi_pm),
2032 	},
2033 	.probe = spi_imx_probe,
2034 	.remove = spi_imx_remove,
2035 };
2036 module_platform_driver(spi_imx_driver);
2037 
2038 MODULE_DESCRIPTION("i.MX SPI Controller driver");
2039 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
2040 MODULE_LICENSE("GPL");
2041 MODULE_ALIAS("platform:" DRIVER_NAME);
2042