xref: /linux/drivers/spi/spi-imx.c (revision 8b6d678fede700db6466d73f11fcbad496fa515e)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 // Copyright (C) 2008 Juergen Beisert
4 
5 #include <linux/bits.h>
6 #include <linux/clk.h>
7 #include <linux/completion.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/irq.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/slab.h>
21 #include <linux/spi/spi.h>
22 #include <linux/types.h>
23 #include <linux/of.h>
24 #include <linux/property.h>
25 
26 #include <linux/dma/imx-dma.h>
27 
28 #define DRIVER_NAME "spi_imx"
29 
30 static bool use_dma = true;
31 module_param(use_dma, bool, 0644);
32 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
33 
34 /* define polling limits */
35 static unsigned int polling_limit_us = 30;
36 module_param(polling_limit_us, uint, 0664);
37 MODULE_PARM_DESC(polling_limit_us,
38 		 "time in us to run a transfer in polling mode\n");
39 
40 #define MXC_RPM_TIMEOUT		2000 /* 2000ms */
41 
42 #define MXC_CSPIRXDATA		0x00
43 #define MXC_CSPITXDATA		0x04
44 #define MXC_CSPICTRL		0x08
45 #define MXC_CSPIINT		0x0c
46 #define MXC_RESET		0x1c
47 
48 /* generic defines to abstract from the different register layouts */
49 #define MXC_INT_RR	(1 << 0) /* Receive data ready interrupt */
50 #define MXC_INT_TE	(1 << 1) /* Transmit FIFO empty interrupt */
51 #define MXC_INT_RDR	BIT(4) /* Receive date threshold interrupt */
52 
53 /* The maximum bytes that a sdma BD can transfer. */
54 #define MAX_SDMA_BD_BYTES (1 << 15)
55 #define MX51_ECSPI_CTRL_MAX_BURST	512
56 /* The maximum bytes that IMX53_ECSPI can transfer in target mode.*/
57 #define MX53_MAX_TRANSFER_BYTES		512
58 
59 enum spi_imx_devtype {
60 	IMX1_CSPI,
61 	IMX21_CSPI,
62 	IMX27_CSPI,
63 	IMX31_CSPI,
64 	IMX35_CSPI,	/* CSPI on all i.mx except above */
65 	IMX51_ECSPI,	/* ECSPI on i.mx51 */
66 	IMX53_ECSPI,	/* ECSPI on i.mx53 and later */
67 };
68 
69 struct spi_imx_data;
70 
71 struct spi_imx_devtype_data {
72 	void (*intctrl)(struct spi_imx_data *spi_imx, int enable);
73 	int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg);
74 	int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi);
75 	void (*trigger)(struct spi_imx_data *spi_imx);
76 	int (*rx_available)(struct spi_imx_data *spi_imx);
77 	void (*reset)(struct spi_imx_data *spi_imx);
78 	void (*setup_wml)(struct spi_imx_data *spi_imx);
79 	void (*disable)(struct spi_imx_data *spi_imx);
80 	bool has_dmamode;
81 	bool has_targetmode;
82 	unsigned int fifo_size;
83 	bool dynamic_burst;
84 	/*
85 	 * ERR009165 fixed or not:
86 	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
87 	 */
88 	bool tx_glitch_fixed;
89 	enum spi_imx_devtype devtype;
90 };
91 
92 struct spi_imx_data {
93 	struct spi_controller *controller;
94 	struct device *dev;
95 
96 	struct completion xfer_done;
97 	void __iomem *base;
98 	unsigned long base_phys;
99 
100 	struct clk *clk_per;
101 	struct clk *clk_ipg;
102 	unsigned long spi_clk;
103 	unsigned int spi_bus_clk;
104 
105 	unsigned int bits_per_word;
106 	unsigned int spi_drctl;
107 
108 	unsigned int count, remainder;
109 	void (*tx)(struct spi_imx_data *spi_imx);
110 	void (*rx)(struct spi_imx_data *spi_imx);
111 	void *rx_buf;
112 	const void *tx_buf;
113 	unsigned int txfifo; /* number of words pushed in tx FIFO */
114 	unsigned int dynamic_burst;
115 	bool rx_only;
116 
117 	/* Target mode */
118 	bool target_mode;
119 	bool target_aborted;
120 	unsigned int target_burst;
121 
122 	/* DMA */
123 	bool usedma;
124 	u32 wml;
125 	struct completion dma_rx_completion;
126 	struct completion dma_tx_completion;
127 
128 	const struct spi_imx_devtype_data *devtype_data;
129 };
130 
131 static inline int is_imx27_cspi(struct spi_imx_data *d)
132 {
133 	return d->devtype_data->devtype == IMX27_CSPI;
134 }
135 
136 static inline int is_imx35_cspi(struct spi_imx_data *d)
137 {
138 	return d->devtype_data->devtype == IMX35_CSPI;
139 }
140 
141 static inline int is_imx51_ecspi(struct spi_imx_data *d)
142 {
143 	return d->devtype_data->devtype == IMX51_ECSPI;
144 }
145 
146 static inline int is_imx53_ecspi(struct spi_imx_data *d)
147 {
148 	return d->devtype_data->devtype == IMX53_ECSPI;
149 }
150 
151 #define MXC_SPI_BUF_RX(type)						\
152 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx)		\
153 {									\
154 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);	\
155 									\
156 	if (spi_imx->rx_buf) {						\
157 		*(type *)spi_imx->rx_buf = val;				\
158 		spi_imx->rx_buf += sizeof(type);			\
159 	}								\
160 									\
161 	spi_imx->remainder -= sizeof(type);				\
162 }
163 
164 #define MXC_SPI_BUF_TX(type)						\
165 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx)		\
166 {									\
167 	type val = 0;							\
168 									\
169 	if (spi_imx->tx_buf) {						\
170 		val = *(type *)spi_imx->tx_buf;				\
171 		spi_imx->tx_buf += sizeof(type);			\
172 	}								\
173 									\
174 	spi_imx->count -= sizeof(type);					\
175 									\
176 	writel(val, spi_imx->base + MXC_CSPITXDATA);			\
177 }
178 
179 MXC_SPI_BUF_RX(u8)
180 MXC_SPI_BUF_TX(u8)
181 MXC_SPI_BUF_RX(u16)
182 MXC_SPI_BUF_TX(u16)
183 MXC_SPI_BUF_RX(u32)
184 MXC_SPI_BUF_TX(u32)
185 
186 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
187  * (which is currently not the case in this driver)
188  */
189 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
190 	256, 384, 512, 768, 1024};
191 
192 /* MX21, MX27 */
193 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
194 		unsigned int fspi, unsigned int max, unsigned int *fres)
195 {
196 	int i;
197 
198 	for (i = 2; i < max; i++)
199 		if (fspi * mxc_clkdivs[i] >= fin)
200 			break;
201 
202 	*fres = fin / mxc_clkdivs[i];
203 	return i;
204 }
205 
206 /* MX1, MX31, MX35, MX51 CSPI */
207 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
208 		unsigned int fspi, unsigned int *fres)
209 {
210 	int i, div = 4;
211 
212 	for (i = 0; i < 7; i++) {
213 		if (fspi * div >= fin)
214 			goto out;
215 		div <<= 1;
216 	}
217 
218 out:
219 	*fres = fin / div;
220 	return i;
221 }
222 
223 static int spi_imx_bytes_per_word(const int bits_per_word)
224 {
225 	if (bits_per_word <= 8)
226 		return 1;
227 	else if (bits_per_word <= 16)
228 		return 2;
229 	else
230 		return 4;
231 }
232 
233 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi,
234 			 struct spi_transfer *transfer)
235 {
236 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
237 
238 	if (!use_dma || controller->fallback)
239 		return false;
240 
241 	if (!controller->dma_rx)
242 		return false;
243 
244 	if (spi_imx->target_mode)
245 		return false;
246 
247 	if (transfer->len < spi_imx->devtype_data->fifo_size)
248 		return false;
249 
250 	spi_imx->dynamic_burst = 0;
251 
252 	return true;
253 }
254 
255 /*
256  * Note the number of natively supported chip selects for MX51 is 4. Some
257  * devices may have less actual SS pins but the register map supports 4. When
258  * using gpio chip selects the cs values passed into the macros below can go
259  * outside the range 0 - 3. We therefore need to limit the cs value to avoid
260  * corrupting bits outside the allocated locations.
261  *
262  * The simplest way to do this is to just mask the cs bits to 2 bits. This
263  * still allows all 4 native chip selects to work as well as gpio chip selects
264  * (which can use any of the 4 chip select configurations).
265  */
266 
267 #define MX51_ECSPI_CTRL		0x08
268 #define MX51_ECSPI_CTRL_ENABLE		(1 <<  0)
269 #define MX51_ECSPI_CTRL_XCH		(1 <<  2)
270 #define MX51_ECSPI_CTRL_SMC		(1 << 3)
271 #define MX51_ECSPI_CTRL_MODE_MASK	(0xf << 4)
272 #define MX51_ECSPI_CTRL_DRCTL(drctl)	((drctl) << 16)
273 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET	8
274 #define MX51_ECSPI_CTRL_PREDIV_OFFSET	12
275 #define MX51_ECSPI_CTRL_CS(cs)		((cs & 3) << 18)
276 #define MX51_ECSPI_CTRL_BL_OFFSET	20
277 #define MX51_ECSPI_CTRL_BL_MASK		(0xfff << 20)
278 
279 #define MX51_ECSPI_CONFIG	0x0c
280 #define MX51_ECSPI_CONFIG_SCLKPHA(cs)	(1 << ((cs & 3) +  0))
281 #define MX51_ECSPI_CONFIG_SCLKPOL(cs)	(1 << ((cs & 3) +  4))
282 #define MX51_ECSPI_CONFIG_SBBCTRL(cs)	(1 << ((cs & 3) +  8))
283 #define MX51_ECSPI_CONFIG_SSBPOL(cs)	(1 << ((cs & 3) + 12))
284 #define MX51_ECSPI_CONFIG_DATACTL(cs)	(1 << ((cs & 3) + 16))
285 #define MX51_ECSPI_CONFIG_SCLKCTL(cs)	(1 << ((cs & 3) + 20))
286 
287 #define MX51_ECSPI_INT		0x10
288 #define MX51_ECSPI_INT_TEEN		(1 <<  0)
289 #define MX51_ECSPI_INT_RREN		(1 <<  3)
290 #define MX51_ECSPI_INT_RDREN		(1 <<  4)
291 
292 #define MX51_ECSPI_DMA		0x14
293 #define MX51_ECSPI_DMA_TX_WML(wml)	((wml) & 0x3f)
294 #define MX51_ECSPI_DMA_RX_WML(wml)	(((wml) & 0x3f) << 16)
295 #define MX51_ECSPI_DMA_RXT_WML(wml)	(((wml) & 0x3f) << 24)
296 
297 #define MX51_ECSPI_DMA_TEDEN		(1 << 7)
298 #define MX51_ECSPI_DMA_RXDEN		(1 << 23)
299 #define MX51_ECSPI_DMA_RXTDEN		(1 << 31)
300 
301 #define MX51_ECSPI_STAT		0x18
302 #define MX51_ECSPI_STAT_RR		(1 <<  3)
303 
304 #define MX51_ECSPI_TESTREG	0x20
305 #define MX51_ECSPI_TESTREG_LBC	BIT(31)
306 
307 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
308 {
309 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
310 
311 	if (spi_imx->rx_buf) {
312 #ifdef __LITTLE_ENDIAN
313 		unsigned int bytes_per_word;
314 
315 		bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
316 		if (bytes_per_word == 1)
317 			swab32s(&val);
318 		else if (bytes_per_word == 2)
319 			swahw32s(&val);
320 #endif
321 		*(u32 *)spi_imx->rx_buf = val;
322 		spi_imx->rx_buf += sizeof(u32);
323 	}
324 
325 	spi_imx->remainder -= sizeof(u32);
326 }
327 
328 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
329 {
330 	int unaligned;
331 	u32 val;
332 
333 	unaligned = spi_imx->remainder % 4;
334 
335 	if (!unaligned) {
336 		spi_imx_buf_rx_swap_u32(spi_imx);
337 		return;
338 	}
339 
340 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
341 		spi_imx_buf_rx_u16(spi_imx);
342 		return;
343 	}
344 
345 	val = readl(spi_imx->base + MXC_CSPIRXDATA);
346 
347 	while (unaligned--) {
348 		if (spi_imx->rx_buf) {
349 			*(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff;
350 			spi_imx->rx_buf++;
351 		}
352 		spi_imx->remainder--;
353 	}
354 }
355 
356 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
357 {
358 	u32 val = 0;
359 #ifdef __LITTLE_ENDIAN
360 	unsigned int bytes_per_word;
361 #endif
362 
363 	if (spi_imx->tx_buf) {
364 		val = *(u32 *)spi_imx->tx_buf;
365 		spi_imx->tx_buf += sizeof(u32);
366 	}
367 
368 	spi_imx->count -= sizeof(u32);
369 #ifdef __LITTLE_ENDIAN
370 	bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
371 
372 	if (bytes_per_word == 1)
373 		swab32s(&val);
374 	else if (bytes_per_word == 2)
375 		swahw32s(&val);
376 #endif
377 	writel(val, spi_imx->base + MXC_CSPITXDATA);
378 }
379 
380 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
381 {
382 	int unaligned;
383 	u32 val = 0;
384 
385 	unaligned = spi_imx->count % 4;
386 
387 	if (!unaligned) {
388 		spi_imx_buf_tx_swap_u32(spi_imx);
389 		return;
390 	}
391 
392 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
393 		spi_imx_buf_tx_u16(spi_imx);
394 		return;
395 	}
396 
397 	while (unaligned--) {
398 		if (spi_imx->tx_buf) {
399 			val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned);
400 			spi_imx->tx_buf++;
401 		}
402 		spi_imx->count--;
403 	}
404 
405 	writel(val, spi_imx->base + MXC_CSPITXDATA);
406 }
407 
408 static void mx53_ecspi_rx_target(struct spi_imx_data *spi_imx)
409 {
410 	u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA));
411 
412 	if (spi_imx->rx_buf) {
413 		int n_bytes = spi_imx->target_burst % sizeof(val);
414 
415 		if (!n_bytes)
416 			n_bytes = sizeof(val);
417 
418 		memcpy(spi_imx->rx_buf,
419 		       ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
420 
421 		spi_imx->rx_buf += n_bytes;
422 		spi_imx->target_burst -= n_bytes;
423 	}
424 
425 	spi_imx->remainder -= sizeof(u32);
426 }
427 
428 static void mx53_ecspi_tx_target(struct spi_imx_data *spi_imx)
429 {
430 	u32 val = 0;
431 	int n_bytes = spi_imx->count % sizeof(val);
432 
433 	if (!n_bytes)
434 		n_bytes = sizeof(val);
435 
436 	if (spi_imx->tx_buf) {
437 		memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
438 		       spi_imx->tx_buf, n_bytes);
439 		val = cpu_to_be32(val);
440 		spi_imx->tx_buf += n_bytes;
441 	}
442 
443 	spi_imx->count -= n_bytes;
444 
445 	writel(val, spi_imx->base + MXC_CSPITXDATA);
446 }
447 
448 /* MX51 eCSPI */
449 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
450 				      unsigned int fspi, unsigned int *fres)
451 {
452 	/*
453 	 * there are two 4-bit dividers, the pre-divider divides by
454 	 * $pre, the post-divider by 2^$post
455 	 */
456 	unsigned int pre, post;
457 	unsigned int fin = spi_imx->spi_clk;
458 
459 	fspi = min(fspi, fin);
460 
461 	post = fls(fin) - fls(fspi);
462 	if (fin > fspi << post)
463 		post++;
464 
465 	/* now we have: (fin <= fspi << post) with post being minimal */
466 
467 	post = max(4U, post) - 4;
468 	if (unlikely(post > 0xf)) {
469 		dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
470 				fspi, fin);
471 		return 0xff;
472 	}
473 
474 	pre = DIV_ROUND_UP(fin, fspi << post) - 1;
475 
476 	dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
477 			__func__, fin, fspi, post, pre);
478 
479 	/* Resulting frequency for the SCLK line. */
480 	*fres = (fin / (pre + 1)) >> post;
481 
482 	return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
483 		(post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
484 }
485 
486 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
487 {
488 	unsigned int val = 0;
489 
490 	if (enable & MXC_INT_TE)
491 		val |= MX51_ECSPI_INT_TEEN;
492 
493 	if (enable & MXC_INT_RR)
494 		val |= MX51_ECSPI_INT_RREN;
495 
496 	if (enable & MXC_INT_RDR)
497 		val |= MX51_ECSPI_INT_RDREN;
498 
499 	writel(val, spi_imx->base + MX51_ECSPI_INT);
500 }
501 
502 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
503 {
504 	u32 reg;
505 
506 	reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
507 	reg |= MX51_ECSPI_CTRL_XCH;
508 	writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
509 }
510 
511 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
512 {
513 	u32 ctrl;
514 
515 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
516 	ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
517 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
518 }
519 
520 static int mx51_ecspi_channel(const struct spi_device *spi)
521 {
522 	if (!spi_get_csgpiod(spi, 0))
523 		return spi_get_chipselect(spi, 0);
524 	return spi->controller->unused_native_cs;
525 }
526 
527 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
528 				      struct spi_message *msg)
529 {
530 	struct spi_device *spi = msg->spi;
531 	struct spi_transfer *xfer;
532 	u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
533 	u32 min_speed_hz = ~0U;
534 	u32 testreg, delay;
535 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
536 	u32 current_cfg = cfg;
537 	int channel = mx51_ecspi_channel(spi);
538 
539 	/* set Host or Target mode */
540 	if (spi_imx->target_mode)
541 		ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
542 	else
543 		ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
544 
545 	/*
546 	 * Enable SPI_RDY handling (falling edge/level triggered).
547 	 */
548 	if (spi->mode & SPI_READY)
549 		ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
550 
551 	/* set chip select to use */
552 	ctrl |= MX51_ECSPI_CTRL_CS(channel);
553 
554 	/*
555 	 * The ctrl register must be written first, with the EN bit set other
556 	 * registers must not be written to.
557 	 */
558 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
559 
560 	testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
561 	if (spi->mode & SPI_LOOP)
562 		testreg |= MX51_ECSPI_TESTREG_LBC;
563 	else
564 		testreg &= ~MX51_ECSPI_TESTREG_LBC;
565 	writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
566 
567 	/*
568 	 * eCSPI burst completion by Chip Select signal in Target mode
569 	 * is not functional for imx53 Soc, config SPI burst completed when
570 	 * BURST_LENGTH + 1 bits are received
571 	 */
572 	if (spi_imx->target_mode && is_imx53_ecspi(spi_imx))
573 		cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(channel);
574 	else
575 		cfg |= MX51_ECSPI_CONFIG_SBBCTRL(channel);
576 
577 	if (spi->mode & SPI_CPOL) {
578 		cfg |= MX51_ECSPI_CONFIG_SCLKPOL(channel);
579 		cfg |= MX51_ECSPI_CONFIG_SCLKCTL(channel);
580 	} else {
581 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(channel);
582 		cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(channel);
583 	}
584 
585 	if (spi->mode & SPI_MOSI_IDLE_LOW)
586 		cfg |= MX51_ECSPI_CONFIG_DATACTL(channel);
587 	else
588 		cfg &= ~MX51_ECSPI_CONFIG_DATACTL(channel);
589 
590 	if (spi->mode & SPI_CS_HIGH)
591 		cfg |= MX51_ECSPI_CONFIG_SSBPOL(channel);
592 	else
593 		cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(channel);
594 
595 	if (cfg == current_cfg)
596 		return 0;
597 
598 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
599 
600 	/*
601 	 * Wait until the changes in the configuration register CONFIGREG
602 	 * propagate into the hardware. It takes exactly one tick of the
603 	 * SCLK clock, but we will wait two SCLK clock just to be sure. The
604 	 * effect of the delay it takes for the hardware to apply changes
605 	 * is noticable if the SCLK clock run very slow. In such a case, if
606 	 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
607 	 * be asserted before the SCLK polarity changes, which would disrupt
608 	 * the SPI communication as the device on the other end would consider
609 	 * the change of SCLK polarity as a clock tick already.
610 	 *
611 	 * Because spi_imx->spi_bus_clk is only set in prepare_message
612 	 * callback, iterate over all the transfers in spi_message, find the
613 	 * one with lowest bus frequency, and use that bus frequency for the
614 	 * delay calculation. In case all transfers have speed_hz == 0, then
615 	 * min_speed_hz is ~0 and the resulting delay is zero.
616 	 */
617 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
618 		if (!xfer->speed_hz)
619 			continue;
620 		min_speed_hz = min(xfer->speed_hz, min_speed_hz);
621 	}
622 
623 	delay = (2 * 1000000) / min_speed_hz;
624 	if (likely(delay < 10))	/* SCLK is faster than 200 kHz */
625 		udelay(delay);
626 	else			/* SCLK is _very_ slow */
627 		usleep_range(delay, delay + 10);
628 
629 	return 0;
630 }
631 
632 static void mx51_configure_cpha(struct spi_imx_data *spi_imx,
633 				struct spi_device *spi)
634 {
635 	bool cpha = (spi->mode & SPI_CPHA);
636 	bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only;
637 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
638 	int channel = mx51_ecspi_channel(spi);
639 
640 	/* Flip cpha logical value iff flip_cpha */
641 	cpha ^= flip_cpha;
642 
643 	if (cpha)
644 		cfg |= MX51_ECSPI_CONFIG_SCLKPHA(channel);
645 	else
646 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(channel);
647 
648 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
649 }
650 
651 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
652 				       struct spi_device *spi)
653 {
654 	u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
655 	u32 clk;
656 
657 	/* Clear BL field and set the right value */
658 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
659 	if (spi_imx->target_mode && is_imx53_ecspi(spi_imx))
660 		ctrl |= (spi_imx->target_burst * 8 - 1)
661 			<< MX51_ECSPI_CTRL_BL_OFFSET;
662 	else {
663 		if (spi_imx->usedma) {
664 			ctrl |= (spi_imx->bits_per_word - 1)
665 				<< MX51_ECSPI_CTRL_BL_OFFSET;
666 		} else {
667 			if (spi_imx->count >= MX51_ECSPI_CTRL_MAX_BURST)
668 				ctrl |= (MX51_ECSPI_CTRL_MAX_BURST * BITS_PER_BYTE - 1)
669 						<< MX51_ECSPI_CTRL_BL_OFFSET;
670 			else
671 				ctrl |= (spi_imx->count / DIV_ROUND_UP(spi_imx->bits_per_word,
672 						BITS_PER_BYTE) * spi_imx->bits_per_word - 1)
673 						<< MX51_ECSPI_CTRL_BL_OFFSET;
674 		}
675 	}
676 
677 	/* set clock speed */
678 	ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
679 		  0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
680 	ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk);
681 	spi_imx->spi_bus_clk = clk;
682 
683 	mx51_configure_cpha(spi_imx, spi);
684 
685 	/*
686 	 * ERR009165: work in XHC mode instead of SMC as PIO on the chips
687 	 * before i.mx6ul.
688 	 */
689 	if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed)
690 		ctrl |= MX51_ECSPI_CTRL_SMC;
691 	else
692 		ctrl &= ~MX51_ECSPI_CTRL_SMC;
693 
694 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
695 
696 	return 0;
697 }
698 
699 static void mx51_setup_wml(struct spi_imx_data *spi_imx)
700 {
701 	u32 tx_wml = 0;
702 
703 	if (spi_imx->devtype_data->tx_glitch_fixed)
704 		tx_wml = spi_imx->wml;
705 	/*
706 	 * Configure the DMA register: setup the watermark
707 	 * and enable DMA request.
708 	 */
709 	writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
710 		MX51_ECSPI_DMA_TX_WML(tx_wml) |
711 		MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
712 		MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
713 		MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
714 }
715 
716 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
717 {
718 	return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
719 }
720 
721 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
722 {
723 	/* drain receive buffer */
724 	while (mx51_ecspi_rx_available(spi_imx))
725 		readl(spi_imx->base + MXC_CSPIRXDATA);
726 }
727 
728 #define MX31_INTREG_TEEN	(1 << 0)
729 #define MX31_INTREG_RREN	(1 << 3)
730 
731 #define MX31_CSPICTRL_ENABLE	(1 << 0)
732 #define MX31_CSPICTRL_HOST	(1 << 1)
733 #define MX31_CSPICTRL_XCH	(1 << 2)
734 #define MX31_CSPICTRL_SMC	(1 << 3)
735 #define MX31_CSPICTRL_POL	(1 << 4)
736 #define MX31_CSPICTRL_PHA	(1 << 5)
737 #define MX31_CSPICTRL_SSCTL	(1 << 6)
738 #define MX31_CSPICTRL_SSPOL	(1 << 7)
739 #define MX31_CSPICTRL_BC_SHIFT	8
740 #define MX35_CSPICTRL_BL_SHIFT	20
741 #define MX31_CSPICTRL_CS_SHIFT	24
742 #define MX35_CSPICTRL_CS_SHIFT	12
743 #define MX31_CSPICTRL_DR_SHIFT	16
744 
745 #define MX31_CSPI_DMAREG	0x10
746 #define MX31_DMAREG_RH_DEN	(1<<4)
747 #define MX31_DMAREG_TH_DEN	(1<<1)
748 
749 #define MX31_CSPISTATUS		0x14
750 #define MX31_STATUS_RR		(1 << 3)
751 
752 #define MX31_CSPI_TESTREG	0x1C
753 #define MX31_TEST_LBC		(1 << 14)
754 
755 /* These functions also work for the i.MX35, but be aware that
756  * the i.MX35 has a slightly different register layout for bits
757  * we do not use here.
758  */
759 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
760 {
761 	unsigned int val = 0;
762 
763 	if (enable & MXC_INT_TE)
764 		val |= MX31_INTREG_TEEN;
765 	if (enable & MXC_INT_RR)
766 		val |= MX31_INTREG_RREN;
767 
768 	writel(val, spi_imx->base + MXC_CSPIINT);
769 }
770 
771 static void mx31_trigger(struct spi_imx_data *spi_imx)
772 {
773 	unsigned int reg;
774 
775 	reg = readl(spi_imx->base + MXC_CSPICTRL);
776 	reg |= MX31_CSPICTRL_XCH;
777 	writel(reg, spi_imx->base + MXC_CSPICTRL);
778 }
779 
780 static int mx31_prepare_message(struct spi_imx_data *spi_imx,
781 				struct spi_message *msg)
782 {
783 	return 0;
784 }
785 
786 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
787 				 struct spi_device *spi)
788 {
789 	unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_HOST;
790 	unsigned int clk;
791 
792 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
793 		MX31_CSPICTRL_DR_SHIFT;
794 	spi_imx->spi_bus_clk = clk;
795 
796 	if (is_imx35_cspi(spi_imx)) {
797 		reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
798 		reg |= MX31_CSPICTRL_SSCTL;
799 	} else {
800 		reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
801 	}
802 
803 	if (spi->mode & SPI_CPHA)
804 		reg |= MX31_CSPICTRL_PHA;
805 	if (spi->mode & SPI_CPOL)
806 		reg |= MX31_CSPICTRL_POL;
807 	if (spi->mode & SPI_CS_HIGH)
808 		reg |= MX31_CSPICTRL_SSPOL;
809 	if (!spi_get_csgpiod(spi, 0))
810 		reg |= (spi_get_chipselect(spi, 0)) <<
811 			(is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
812 						  MX31_CSPICTRL_CS_SHIFT);
813 
814 	if (spi_imx->usedma)
815 		reg |= MX31_CSPICTRL_SMC;
816 
817 	writel(reg, spi_imx->base + MXC_CSPICTRL);
818 
819 	reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
820 	if (spi->mode & SPI_LOOP)
821 		reg |= MX31_TEST_LBC;
822 	else
823 		reg &= ~MX31_TEST_LBC;
824 	writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
825 
826 	if (spi_imx->usedma) {
827 		/*
828 		 * configure DMA requests when RXFIFO is half full and
829 		 * when TXFIFO is half empty
830 		 */
831 		writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
832 			spi_imx->base + MX31_CSPI_DMAREG);
833 	}
834 
835 	return 0;
836 }
837 
838 static int mx31_rx_available(struct spi_imx_data *spi_imx)
839 {
840 	return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
841 }
842 
843 static void mx31_reset(struct spi_imx_data *spi_imx)
844 {
845 	/* drain receive buffer */
846 	while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
847 		readl(spi_imx->base + MXC_CSPIRXDATA);
848 }
849 
850 #define MX21_INTREG_RR		(1 << 4)
851 #define MX21_INTREG_TEEN	(1 << 9)
852 #define MX21_INTREG_RREN	(1 << 13)
853 
854 #define MX21_CSPICTRL_POL	(1 << 5)
855 #define MX21_CSPICTRL_PHA	(1 << 6)
856 #define MX21_CSPICTRL_SSPOL	(1 << 8)
857 #define MX21_CSPICTRL_XCH	(1 << 9)
858 #define MX21_CSPICTRL_ENABLE	(1 << 10)
859 #define MX21_CSPICTRL_HOST	(1 << 11)
860 #define MX21_CSPICTRL_DR_SHIFT	14
861 #define MX21_CSPICTRL_CS_SHIFT	19
862 
863 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
864 {
865 	unsigned int val = 0;
866 
867 	if (enable & MXC_INT_TE)
868 		val |= MX21_INTREG_TEEN;
869 	if (enable & MXC_INT_RR)
870 		val |= MX21_INTREG_RREN;
871 
872 	writel(val, spi_imx->base + MXC_CSPIINT);
873 }
874 
875 static void mx21_trigger(struct spi_imx_data *spi_imx)
876 {
877 	unsigned int reg;
878 
879 	reg = readl(spi_imx->base + MXC_CSPICTRL);
880 	reg |= MX21_CSPICTRL_XCH;
881 	writel(reg, spi_imx->base + MXC_CSPICTRL);
882 }
883 
884 static int mx21_prepare_message(struct spi_imx_data *spi_imx,
885 				struct spi_message *msg)
886 {
887 	return 0;
888 }
889 
890 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
891 				 struct spi_device *spi)
892 {
893 	unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_HOST;
894 	unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
895 	unsigned int clk;
896 
897 	reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk)
898 		<< MX21_CSPICTRL_DR_SHIFT;
899 	spi_imx->spi_bus_clk = clk;
900 
901 	reg |= spi_imx->bits_per_word - 1;
902 
903 	if (spi->mode & SPI_CPHA)
904 		reg |= MX21_CSPICTRL_PHA;
905 	if (spi->mode & SPI_CPOL)
906 		reg |= MX21_CSPICTRL_POL;
907 	if (spi->mode & SPI_CS_HIGH)
908 		reg |= MX21_CSPICTRL_SSPOL;
909 	if (!spi_get_csgpiod(spi, 0))
910 		reg |= spi_get_chipselect(spi, 0) << MX21_CSPICTRL_CS_SHIFT;
911 
912 	writel(reg, spi_imx->base + MXC_CSPICTRL);
913 
914 	return 0;
915 }
916 
917 static int mx21_rx_available(struct spi_imx_data *spi_imx)
918 {
919 	return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
920 }
921 
922 static void mx21_reset(struct spi_imx_data *spi_imx)
923 {
924 	writel(1, spi_imx->base + MXC_RESET);
925 }
926 
927 #define MX1_INTREG_RR		(1 << 3)
928 #define MX1_INTREG_TEEN		(1 << 8)
929 #define MX1_INTREG_RREN		(1 << 11)
930 
931 #define MX1_CSPICTRL_POL	(1 << 4)
932 #define MX1_CSPICTRL_PHA	(1 << 5)
933 #define MX1_CSPICTRL_XCH	(1 << 8)
934 #define MX1_CSPICTRL_ENABLE	(1 << 9)
935 #define MX1_CSPICTRL_HOST	(1 << 10)
936 #define MX1_CSPICTRL_DR_SHIFT	13
937 
938 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
939 {
940 	unsigned int val = 0;
941 
942 	if (enable & MXC_INT_TE)
943 		val |= MX1_INTREG_TEEN;
944 	if (enable & MXC_INT_RR)
945 		val |= MX1_INTREG_RREN;
946 
947 	writel(val, spi_imx->base + MXC_CSPIINT);
948 }
949 
950 static void mx1_trigger(struct spi_imx_data *spi_imx)
951 {
952 	unsigned int reg;
953 
954 	reg = readl(spi_imx->base + MXC_CSPICTRL);
955 	reg |= MX1_CSPICTRL_XCH;
956 	writel(reg, spi_imx->base + MXC_CSPICTRL);
957 }
958 
959 static int mx1_prepare_message(struct spi_imx_data *spi_imx,
960 			       struct spi_message *msg)
961 {
962 	return 0;
963 }
964 
965 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
966 				struct spi_device *spi)
967 {
968 	unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_HOST;
969 	unsigned int clk;
970 
971 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
972 		MX1_CSPICTRL_DR_SHIFT;
973 	spi_imx->spi_bus_clk = clk;
974 
975 	reg |= spi_imx->bits_per_word - 1;
976 
977 	if (spi->mode & SPI_CPHA)
978 		reg |= MX1_CSPICTRL_PHA;
979 	if (spi->mode & SPI_CPOL)
980 		reg |= MX1_CSPICTRL_POL;
981 
982 	writel(reg, spi_imx->base + MXC_CSPICTRL);
983 
984 	return 0;
985 }
986 
987 static int mx1_rx_available(struct spi_imx_data *spi_imx)
988 {
989 	return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
990 }
991 
992 static void mx1_reset(struct spi_imx_data *spi_imx)
993 {
994 	writel(1, spi_imx->base + MXC_RESET);
995 }
996 
997 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
998 	.intctrl = mx1_intctrl,
999 	.prepare_message = mx1_prepare_message,
1000 	.prepare_transfer = mx1_prepare_transfer,
1001 	.trigger = mx1_trigger,
1002 	.rx_available = mx1_rx_available,
1003 	.reset = mx1_reset,
1004 	.fifo_size = 8,
1005 	.has_dmamode = false,
1006 	.dynamic_burst = false,
1007 	.has_targetmode = false,
1008 	.devtype = IMX1_CSPI,
1009 };
1010 
1011 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
1012 	.intctrl = mx21_intctrl,
1013 	.prepare_message = mx21_prepare_message,
1014 	.prepare_transfer = mx21_prepare_transfer,
1015 	.trigger = mx21_trigger,
1016 	.rx_available = mx21_rx_available,
1017 	.reset = mx21_reset,
1018 	.fifo_size = 8,
1019 	.has_dmamode = false,
1020 	.dynamic_burst = false,
1021 	.has_targetmode = false,
1022 	.devtype = IMX21_CSPI,
1023 };
1024 
1025 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
1026 	/* i.mx27 cspi shares the functions with i.mx21 one */
1027 	.intctrl = mx21_intctrl,
1028 	.prepare_message = mx21_prepare_message,
1029 	.prepare_transfer = mx21_prepare_transfer,
1030 	.trigger = mx21_trigger,
1031 	.rx_available = mx21_rx_available,
1032 	.reset = mx21_reset,
1033 	.fifo_size = 8,
1034 	.has_dmamode = false,
1035 	.dynamic_burst = false,
1036 	.has_targetmode = false,
1037 	.devtype = IMX27_CSPI,
1038 };
1039 
1040 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
1041 	.intctrl = mx31_intctrl,
1042 	.prepare_message = mx31_prepare_message,
1043 	.prepare_transfer = mx31_prepare_transfer,
1044 	.trigger = mx31_trigger,
1045 	.rx_available = mx31_rx_available,
1046 	.reset = mx31_reset,
1047 	.fifo_size = 8,
1048 	.has_dmamode = false,
1049 	.dynamic_burst = false,
1050 	.has_targetmode = false,
1051 	.devtype = IMX31_CSPI,
1052 };
1053 
1054 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
1055 	/* i.mx35 and later cspi shares the functions with i.mx31 one */
1056 	.intctrl = mx31_intctrl,
1057 	.prepare_message = mx31_prepare_message,
1058 	.prepare_transfer = mx31_prepare_transfer,
1059 	.trigger = mx31_trigger,
1060 	.rx_available = mx31_rx_available,
1061 	.reset = mx31_reset,
1062 	.fifo_size = 8,
1063 	.has_dmamode = true,
1064 	.dynamic_burst = false,
1065 	.has_targetmode = false,
1066 	.devtype = IMX35_CSPI,
1067 };
1068 
1069 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
1070 	.intctrl = mx51_ecspi_intctrl,
1071 	.prepare_message = mx51_ecspi_prepare_message,
1072 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1073 	.trigger = mx51_ecspi_trigger,
1074 	.rx_available = mx51_ecspi_rx_available,
1075 	.reset = mx51_ecspi_reset,
1076 	.setup_wml = mx51_setup_wml,
1077 	.fifo_size = 64,
1078 	.has_dmamode = true,
1079 	.dynamic_burst = true,
1080 	.has_targetmode = true,
1081 	.disable = mx51_ecspi_disable,
1082 	.devtype = IMX51_ECSPI,
1083 };
1084 
1085 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
1086 	.intctrl = mx51_ecspi_intctrl,
1087 	.prepare_message = mx51_ecspi_prepare_message,
1088 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1089 	.trigger = mx51_ecspi_trigger,
1090 	.rx_available = mx51_ecspi_rx_available,
1091 	.reset = mx51_ecspi_reset,
1092 	.fifo_size = 64,
1093 	.has_dmamode = true,
1094 	.has_targetmode = true,
1095 	.disable = mx51_ecspi_disable,
1096 	.devtype = IMX53_ECSPI,
1097 };
1098 
1099 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = {
1100 	.intctrl = mx51_ecspi_intctrl,
1101 	.prepare_message = mx51_ecspi_prepare_message,
1102 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1103 	.trigger = mx51_ecspi_trigger,
1104 	.rx_available = mx51_ecspi_rx_available,
1105 	.reset = mx51_ecspi_reset,
1106 	.setup_wml = mx51_setup_wml,
1107 	.fifo_size = 64,
1108 	.has_dmamode = true,
1109 	.dynamic_burst = true,
1110 	.has_targetmode = true,
1111 	.tx_glitch_fixed = true,
1112 	.disable = mx51_ecspi_disable,
1113 	.devtype = IMX51_ECSPI,
1114 };
1115 
1116 static const struct of_device_id spi_imx_dt_ids[] = {
1117 	{ .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
1118 	{ .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
1119 	{ .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
1120 	{ .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
1121 	{ .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
1122 	{ .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
1123 	{ .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
1124 	{ .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, },
1125 	{ /* sentinel */ }
1126 };
1127 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
1128 
1129 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
1130 {
1131 	u32 ctrl;
1132 
1133 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
1134 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
1135 	ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET);
1136 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
1137 }
1138 
1139 static void spi_imx_push(struct spi_imx_data *spi_imx)
1140 {
1141 	unsigned int burst_len;
1142 
1143 	/*
1144 	 * Reload the FIFO when the remaining bytes to be transferred in the
1145 	 * current burst is 0. This only applies when bits_per_word is a
1146 	 * multiple of 8.
1147 	 */
1148 	if (!spi_imx->remainder) {
1149 		if (spi_imx->dynamic_burst) {
1150 
1151 			/* We need to deal unaligned data first */
1152 			burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST;
1153 
1154 			if (!burst_len)
1155 				burst_len = MX51_ECSPI_CTRL_MAX_BURST;
1156 
1157 			spi_imx_set_burst_len(spi_imx, burst_len * 8);
1158 
1159 			spi_imx->remainder = burst_len;
1160 		} else {
1161 			spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word);
1162 		}
1163 	}
1164 
1165 	while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
1166 		if (!spi_imx->count)
1167 			break;
1168 		if (spi_imx->dynamic_burst &&
1169 		    spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4))
1170 			break;
1171 		spi_imx->tx(spi_imx);
1172 		spi_imx->txfifo++;
1173 	}
1174 
1175 	if (!spi_imx->target_mode)
1176 		spi_imx->devtype_data->trigger(spi_imx);
1177 }
1178 
1179 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
1180 {
1181 	struct spi_imx_data *spi_imx = dev_id;
1182 
1183 	while (spi_imx->txfifo &&
1184 	       spi_imx->devtype_data->rx_available(spi_imx)) {
1185 		spi_imx->rx(spi_imx);
1186 		spi_imx->txfifo--;
1187 	}
1188 
1189 	if (spi_imx->count) {
1190 		spi_imx_push(spi_imx);
1191 		return IRQ_HANDLED;
1192 	}
1193 
1194 	if (spi_imx->txfifo) {
1195 		/* No data left to push, but still waiting for rx data,
1196 		 * enable receive data available interrupt.
1197 		 */
1198 		spi_imx->devtype_data->intctrl(
1199 				spi_imx, MXC_INT_RR);
1200 		return IRQ_HANDLED;
1201 	}
1202 
1203 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1204 	complete(&spi_imx->xfer_done);
1205 
1206 	return IRQ_HANDLED;
1207 }
1208 
1209 static int spi_imx_dma_configure(struct spi_controller *controller)
1210 {
1211 	int ret;
1212 	enum dma_slave_buswidth buswidth;
1213 	struct dma_slave_config rx = {}, tx = {};
1214 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1215 
1216 	switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
1217 	case 4:
1218 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1219 		break;
1220 	case 2:
1221 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1222 		break;
1223 	case 1:
1224 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1225 		break;
1226 	default:
1227 		return -EINVAL;
1228 	}
1229 
1230 	tx.direction = DMA_MEM_TO_DEV;
1231 	tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
1232 	tx.dst_addr_width = buswidth;
1233 	tx.dst_maxburst = spi_imx->wml;
1234 	ret = dmaengine_slave_config(controller->dma_tx, &tx);
1235 	if (ret) {
1236 		dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
1237 		return ret;
1238 	}
1239 
1240 	rx.direction = DMA_DEV_TO_MEM;
1241 	rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
1242 	rx.src_addr_width = buswidth;
1243 	rx.src_maxburst = spi_imx->wml;
1244 	ret = dmaengine_slave_config(controller->dma_rx, &rx);
1245 	if (ret) {
1246 		dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
1247 		return ret;
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 static int spi_imx_setupxfer(struct spi_device *spi,
1254 				 struct spi_transfer *t)
1255 {
1256 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1257 
1258 	if (!t)
1259 		return 0;
1260 
1261 	if (!t->speed_hz) {
1262 		if (!spi->max_speed_hz) {
1263 			dev_err(&spi->dev, "no speed_hz provided!\n");
1264 			return -EINVAL;
1265 		}
1266 		dev_dbg(&spi->dev, "using spi->max_speed_hz!\n");
1267 		spi_imx->spi_bus_clk = spi->max_speed_hz;
1268 	} else
1269 		spi_imx->spi_bus_clk = t->speed_hz;
1270 
1271 	spi_imx->bits_per_word = t->bits_per_word;
1272 	spi_imx->count = t->len;
1273 
1274 	/*
1275 	 * Initialize the functions for transfer. To transfer non byte-aligned
1276 	 * words, we have to use multiple word-size bursts, we can't use
1277 	 * dynamic_burst in that case.
1278 	 */
1279 	if (spi_imx->devtype_data->dynamic_burst && !spi_imx->target_mode &&
1280 	    !(spi->mode & SPI_CS_WORD) &&
1281 	    (spi_imx->bits_per_word == 8 ||
1282 	    spi_imx->bits_per_word == 16 ||
1283 	    spi_imx->bits_per_word == 32)) {
1284 
1285 		spi_imx->rx = spi_imx_buf_rx_swap;
1286 		spi_imx->tx = spi_imx_buf_tx_swap;
1287 		spi_imx->dynamic_burst = 1;
1288 
1289 	} else {
1290 		if (spi_imx->bits_per_word <= 8) {
1291 			spi_imx->rx = spi_imx_buf_rx_u8;
1292 			spi_imx->tx = spi_imx_buf_tx_u8;
1293 		} else if (spi_imx->bits_per_word <= 16) {
1294 			spi_imx->rx = spi_imx_buf_rx_u16;
1295 			spi_imx->tx = spi_imx_buf_tx_u16;
1296 		} else {
1297 			spi_imx->rx = spi_imx_buf_rx_u32;
1298 			spi_imx->tx = spi_imx_buf_tx_u32;
1299 		}
1300 		spi_imx->dynamic_burst = 0;
1301 	}
1302 
1303 	if (spi_imx_can_dma(spi_imx->controller, spi, t))
1304 		spi_imx->usedma = true;
1305 	else
1306 		spi_imx->usedma = false;
1307 
1308 	spi_imx->rx_only = ((t->tx_buf == NULL)
1309 			|| (t->tx_buf == spi->controller->dummy_tx));
1310 
1311 	if (is_imx53_ecspi(spi_imx) && spi_imx->target_mode) {
1312 		spi_imx->rx = mx53_ecspi_rx_target;
1313 		spi_imx->tx = mx53_ecspi_tx_target;
1314 		spi_imx->target_burst = t->len;
1315 	}
1316 
1317 	spi_imx->devtype_data->prepare_transfer(spi_imx, spi);
1318 
1319 	return 0;
1320 }
1321 
1322 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
1323 {
1324 	struct spi_controller *controller = spi_imx->controller;
1325 
1326 	if (controller->dma_rx) {
1327 		dma_release_channel(controller->dma_rx);
1328 		controller->dma_rx = NULL;
1329 	}
1330 
1331 	if (controller->dma_tx) {
1332 		dma_release_channel(controller->dma_tx);
1333 		controller->dma_tx = NULL;
1334 	}
1335 }
1336 
1337 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
1338 			     struct spi_controller *controller)
1339 {
1340 	int ret;
1341 
1342 	spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
1343 
1344 	/* Prepare for TX DMA: */
1345 	controller->dma_tx = dma_request_chan(dev, "tx");
1346 	if (IS_ERR(controller->dma_tx)) {
1347 		ret = PTR_ERR(controller->dma_tx);
1348 		dev_err_probe(dev, ret, "can't get the TX DMA channel!\n");
1349 		controller->dma_tx = NULL;
1350 		goto err;
1351 	}
1352 
1353 	/* Prepare for RX : */
1354 	controller->dma_rx = dma_request_chan(dev, "rx");
1355 	if (IS_ERR(controller->dma_rx)) {
1356 		ret = PTR_ERR(controller->dma_rx);
1357 		dev_err_probe(dev, ret, "can't get the RX DMA channel!\n");
1358 		controller->dma_rx = NULL;
1359 		goto err;
1360 	}
1361 
1362 	init_completion(&spi_imx->dma_rx_completion);
1363 	init_completion(&spi_imx->dma_tx_completion);
1364 	controller->can_dma = spi_imx_can_dma;
1365 	controller->max_dma_len = MAX_SDMA_BD_BYTES;
1366 	spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX |
1367 					 SPI_CONTROLLER_MUST_TX;
1368 
1369 	return 0;
1370 err:
1371 	spi_imx_sdma_exit(spi_imx);
1372 	return ret;
1373 }
1374 
1375 static void spi_imx_dma_rx_callback(void *cookie)
1376 {
1377 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1378 
1379 	complete(&spi_imx->dma_rx_completion);
1380 }
1381 
1382 static void spi_imx_dma_tx_callback(void *cookie)
1383 {
1384 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1385 
1386 	complete(&spi_imx->dma_tx_completion);
1387 }
1388 
1389 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
1390 {
1391 	unsigned long timeout = 0;
1392 
1393 	/* Time with actual data transfer and CS change delay related to HW */
1394 	timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
1395 
1396 	/* Add extra second for scheduler related activities */
1397 	timeout += 1;
1398 
1399 	/* Double calculated timeout */
1400 	return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
1401 }
1402 
1403 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
1404 				struct spi_transfer *transfer)
1405 {
1406 	struct dma_async_tx_descriptor *desc_tx, *desc_rx;
1407 	unsigned long transfer_timeout;
1408 	unsigned long timeout;
1409 	struct spi_controller *controller = spi_imx->controller;
1410 	struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
1411 	struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents);
1412 	unsigned int bytes_per_word, i;
1413 	int ret;
1414 
1415 	/* Get the right burst length from the last sg to ensure no tail data */
1416 	bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
1417 	for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
1418 		if (!(sg_dma_len(last_sg) % (i * bytes_per_word)))
1419 			break;
1420 	}
1421 	/* Use 1 as wml in case no available burst length got */
1422 	if (i == 0)
1423 		i = 1;
1424 
1425 	spi_imx->wml =  i;
1426 
1427 	ret = spi_imx_dma_configure(controller);
1428 	if (ret)
1429 		goto dma_failure_no_start;
1430 
1431 	if (!spi_imx->devtype_data->setup_wml) {
1432 		dev_err(spi_imx->dev, "No setup_wml()?\n");
1433 		ret = -EINVAL;
1434 		goto dma_failure_no_start;
1435 	}
1436 	spi_imx->devtype_data->setup_wml(spi_imx);
1437 
1438 	/*
1439 	 * The TX DMA setup starts the transfer, so make sure RX is configured
1440 	 * before TX.
1441 	 */
1442 	desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
1443 				rx->sgl, rx->nents, DMA_DEV_TO_MEM,
1444 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1445 	if (!desc_rx) {
1446 		ret = -EINVAL;
1447 		goto dma_failure_no_start;
1448 	}
1449 
1450 	desc_rx->callback = spi_imx_dma_rx_callback;
1451 	desc_rx->callback_param = (void *)spi_imx;
1452 	dmaengine_submit(desc_rx);
1453 	reinit_completion(&spi_imx->dma_rx_completion);
1454 	dma_async_issue_pending(controller->dma_rx);
1455 
1456 	desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
1457 				tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1458 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1459 	if (!desc_tx) {
1460 		dmaengine_terminate_all(controller->dma_tx);
1461 		dmaengine_terminate_all(controller->dma_rx);
1462 		return -EINVAL;
1463 	}
1464 
1465 	desc_tx->callback = spi_imx_dma_tx_callback;
1466 	desc_tx->callback_param = (void *)spi_imx;
1467 	dmaengine_submit(desc_tx);
1468 	reinit_completion(&spi_imx->dma_tx_completion);
1469 	dma_async_issue_pending(controller->dma_tx);
1470 
1471 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1472 
1473 	/* Wait SDMA to finish the data transfer.*/
1474 	timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1475 						transfer_timeout);
1476 	if (!timeout) {
1477 		dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1478 		dmaengine_terminate_all(controller->dma_tx);
1479 		dmaengine_terminate_all(controller->dma_rx);
1480 		return -ETIMEDOUT;
1481 	}
1482 
1483 	timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1484 					      transfer_timeout);
1485 	if (!timeout) {
1486 		dev_err(&controller->dev, "I/O Error in DMA RX\n");
1487 		spi_imx->devtype_data->reset(spi_imx);
1488 		dmaengine_terminate_all(controller->dma_rx);
1489 		return -ETIMEDOUT;
1490 	}
1491 
1492 	return 0;
1493 /* fallback to pio */
1494 dma_failure_no_start:
1495 	transfer->error |= SPI_TRANS_FAIL_NO_START;
1496 	return ret;
1497 }
1498 
1499 static int spi_imx_pio_transfer(struct spi_device *spi,
1500 				struct spi_transfer *transfer)
1501 {
1502 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1503 	unsigned long transfer_timeout;
1504 	unsigned long timeout;
1505 
1506 	spi_imx->tx_buf = transfer->tx_buf;
1507 	spi_imx->rx_buf = transfer->rx_buf;
1508 	spi_imx->count = transfer->len;
1509 	spi_imx->txfifo = 0;
1510 	spi_imx->remainder = 0;
1511 
1512 	reinit_completion(&spi_imx->xfer_done);
1513 
1514 	spi_imx_push(spi_imx);
1515 
1516 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1517 
1518 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1519 
1520 	timeout = wait_for_completion_timeout(&spi_imx->xfer_done,
1521 					      transfer_timeout);
1522 	if (!timeout) {
1523 		dev_err(&spi->dev, "I/O Error in PIO\n");
1524 		spi_imx->devtype_data->reset(spi_imx);
1525 		return -ETIMEDOUT;
1526 	}
1527 
1528 	return 0;
1529 }
1530 
1531 static int spi_imx_poll_transfer(struct spi_device *spi,
1532 				 struct spi_transfer *transfer)
1533 {
1534 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1535 	unsigned long timeout;
1536 
1537 	spi_imx->tx_buf = transfer->tx_buf;
1538 	spi_imx->rx_buf = transfer->rx_buf;
1539 	spi_imx->count = transfer->len;
1540 	spi_imx->txfifo = 0;
1541 	spi_imx->remainder = 0;
1542 
1543 	/* fill in the fifo before timeout calculations if we are
1544 	 * interrupted here, then the data is getting transferred by
1545 	 * the HW while we are interrupted
1546 	 */
1547 	spi_imx_push(spi_imx);
1548 
1549 	timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies;
1550 	while (spi_imx->txfifo) {
1551 		/* RX */
1552 		while (spi_imx->txfifo &&
1553 		       spi_imx->devtype_data->rx_available(spi_imx)) {
1554 			spi_imx->rx(spi_imx);
1555 			spi_imx->txfifo--;
1556 		}
1557 
1558 		/* TX */
1559 		if (spi_imx->count) {
1560 			spi_imx_push(spi_imx);
1561 			continue;
1562 		}
1563 
1564 		if (spi_imx->txfifo &&
1565 		    time_after(jiffies, timeout)) {
1566 
1567 			dev_err_ratelimited(&spi->dev,
1568 					    "timeout period reached: jiffies: %lu- falling back to interrupt mode\n",
1569 					    jiffies - timeout);
1570 
1571 			/* fall back to interrupt mode */
1572 			return spi_imx_pio_transfer(spi, transfer);
1573 		}
1574 	}
1575 
1576 	return 0;
1577 }
1578 
1579 static int spi_imx_pio_transfer_target(struct spi_device *spi,
1580 				       struct spi_transfer *transfer)
1581 {
1582 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1583 	int ret = 0;
1584 
1585 	if (is_imx53_ecspi(spi_imx) &&
1586 	    transfer->len > MX53_MAX_TRANSFER_BYTES) {
1587 		dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
1588 			MX53_MAX_TRANSFER_BYTES);
1589 		return -EMSGSIZE;
1590 	}
1591 
1592 	spi_imx->tx_buf = transfer->tx_buf;
1593 	spi_imx->rx_buf = transfer->rx_buf;
1594 	spi_imx->count = transfer->len;
1595 	spi_imx->txfifo = 0;
1596 	spi_imx->remainder = 0;
1597 
1598 	reinit_completion(&spi_imx->xfer_done);
1599 	spi_imx->target_aborted = false;
1600 
1601 	spi_imx_push(spi_imx);
1602 
1603 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
1604 
1605 	if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
1606 	    spi_imx->target_aborted) {
1607 		dev_dbg(&spi->dev, "interrupted\n");
1608 		ret = -EINTR;
1609 	}
1610 
1611 	/* ecspi has a HW issue when works in Target mode,
1612 	 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
1613 	 * ECSPI_TXDATA keeps shift out the last word data,
1614 	 * so we have to disable ECSPI when in target mode after the
1615 	 * transfer completes
1616 	 */
1617 	if (spi_imx->devtype_data->disable)
1618 		spi_imx->devtype_data->disable(spi_imx);
1619 
1620 	return ret;
1621 }
1622 
1623 static int spi_imx_transfer_one(struct spi_controller *controller,
1624 				struct spi_device *spi,
1625 				struct spi_transfer *transfer)
1626 {
1627 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1628 	unsigned long hz_per_byte, byte_limit;
1629 
1630 	spi_imx_setupxfer(spi, transfer);
1631 	transfer->effective_speed_hz = spi_imx->spi_bus_clk;
1632 
1633 	/* flush rxfifo before transfer */
1634 	while (spi_imx->devtype_data->rx_available(spi_imx))
1635 		readl(spi_imx->base + MXC_CSPIRXDATA);
1636 
1637 	if (spi_imx->target_mode)
1638 		return spi_imx_pio_transfer_target(spi, transfer);
1639 
1640 	/*
1641 	 * If we decided in spi_imx_can_dma() that we want to do a DMA
1642 	 * transfer, the SPI transfer has already been mapped, so we
1643 	 * have to do the DMA transfer here.
1644 	 */
1645 	if (spi_imx->usedma)
1646 		return spi_imx_dma_transfer(spi_imx, transfer);
1647 	/*
1648 	 * Calculate the estimated time in us the transfer runs. Find
1649 	 * the number of Hz per byte per polling limit.
1650 	 */
1651 	hz_per_byte = polling_limit_us ? ((8 + 4) * USEC_PER_SEC) / polling_limit_us : 0;
1652 	byte_limit = hz_per_byte ? transfer->effective_speed_hz / hz_per_byte : 1;
1653 
1654 	/* run in polling mode for short transfers */
1655 	if (transfer->len < byte_limit)
1656 		return spi_imx_poll_transfer(spi, transfer);
1657 
1658 	return spi_imx_pio_transfer(spi, transfer);
1659 }
1660 
1661 static int spi_imx_setup(struct spi_device *spi)
1662 {
1663 	dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1664 		 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1665 
1666 	return 0;
1667 }
1668 
1669 static void spi_imx_cleanup(struct spi_device *spi)
1670 {
1671 }
1672 
1673 static int
1674 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg)
1675 {
1676 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1677 	int ret;
1678 
1679 	ret = pm_runtime_resume_and_get(spi_imx->dev);
1680 	if (ret < 0) {
1681 		dev_err(spi_imx->dev, "failed to enable clock\n");
1682 		return ret;
1683 	}
1684 
1685 	ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
1686 	if (ret) {
1687 		pm_runtime_mark_last_busy(spi_imx->dev);
1688 		pm_runtime_put_autosuspend(spi_imx->dev);
1689 	}
1690 
1691 	return ret;
1692 }
1693 
1694 static int
1695 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg)
1696 {
1697 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1698 
1699 	pm_runtime_mark_last_busy(spi_imx->dev);
1700 	pm_runtime_put_autosuspend(spi_imx->dev);
1701 	return 0;
1702 }
1703 
1704 static int spi_imx_target_abort(struct spi_controller *controller)
1705 {
1706 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1707 
1708 	spi_imx->target_aborted = true;
1709 	complete(&spi_imx->xfer_done);
1710 
1711 	return 0;
1712 }
1713 
1714 static int spi_imx_probe(struct platform_device *pdev)
1715 {
1716 	struct device_node *np = pdev->dev.of_node;
1717 	struct spi_controller *controller;
1718 	struct spi_imx_data *spi_imx;
1719 	struct resource *res;
1720 	int ret, irq, spi_drctl;
1721 	const struct spi_imx_devtype_data *devtype_data =
1722 			of_device_get_match_data(&pdev->dev);
1723 	bool target_mode;
1724 	u32 val;
1725 
1726 	target_mode = devtype_data->has_targetmode &&
1727 		      of_property_read_bool(np, "spi-slave");
1728 	if (target_mode)
1729 		controller = spi_alloc_target(&pdev->dev,
1730 					      sizeof(struct spi_imx_data));
1731 	else
1732 		controller = spi_alloc_host(&pdev->dev,
1733 					    sizeof(struct spi_imx_data));
1734 	if (!controller)
1735 		return -ENOMEM;
1736 
1737 	ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
1738 	if ((ret < 0) || (spi_drctl >= 0x3)) {
1739 		/* '11' is reserved */
1740 		spi_drctl = 0;
1741 	}
1742 
1743 	platform_set_drvdata(pdev, controller);
1744 
1745 	controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1746 	controller->bus_num = np ? -1 : pdev->id;
1747 	controller->use_gpio_descriptors = true;
1748 
1749 	spi_imx = spi_controller_get_devdata(controller);
1750 	spi_imx->controller = controller;
1751 	spi_imx->dev = &pdev->dev;
1752 	spi_imx->target_mode = target_mode;
1753 
1754 	spi_imx->devtype_data = devtype_data;
1755 
1756 	/*
1757 	 * Get number of chip selects from device properties. This can be
1758 	 * coming from device tree or boardfiles, if it is not defined,
1759 	 * a default value of 3 chip selects will be used, as all the legacy
1760 	 * board files have <= 3 chip selects.
1761 	 */
1762 	if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
1763 		controller->num_chipselect = val;
1764 	else
1765 		controller->num_chipselect = 3;
1766 
1767 	controller->transfer_one = spi_imx_transfer_one;
1768 	controller->setup = spi_imx_setup;
1769 	controller->cleanup = spi_imx_cleanup;
1770 	controller->prepare_message = spi_imx_prepare_message;
1771 	controller->unprepare_message = spi_imx_unprepare_message;
1772 	controller->target_abort = spi_imx_target_abort;
1773 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS |
1774 				SPI_MOSI_IDLE_LOW;
1775 
1776 	if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
1777 	    is_imx53_ecspi(spi_imx))
1778 		controller->mode_bits |= SPI_LOOP | SPI_READY;
1779 
1780 	if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx))
1781 		controller->mode_bits |= SPI_RX_CPHA_FLIP;
1782 
1783 	if (is_imx51_ecspi(spi_imx) &&
1784 	    device_property_read_u32(&pdev->dev, "cs-gpios", NULL))
1785 		/*
1786 		 * When using HW-CS implementing SPI_CS_WORD can be done by just
1787 		 * setting the burst length to the word size. This is
1788 		 * considerably faster than manually controlling the CS.
1789 		 */
1790 		controller->mode_bits |= SPI_CS_WORD;
1791 
1792 	if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) {
1793 		controller->max_native_cs = 4;
1794 		controller->flags |= SPI_CONTROLLER_GPIO_SS;
1795 	}
1796 
1797 	spi_imx->spi_drctl = spi_drctl;
1798 
1799 	init_completion(&spi_imx->xfer_done);
1800 
1801 	spi_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1802 	if (IS_ERR(spi_imx->base)) {
1803 		ret = PTR_ERR(spi_imx->base);
1804 		goto out_controller_put;
1805 	}
1806 	spi_imx->base_phys = res->start;
1807 
1808 	irq = platform_get_irq(pdev, 0);
1809 	if (irq < 0) {
1810 		ret = irq;
1811 		goto out_controller_put;
1812 	}
1813 
1814 	ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1815 			       dev_name(&pdev->dev), spi_imx);
1816 	if (ret) {
1817 		dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1818 		goto out_controller_put;
1819 	}
1820 
1821 	spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1822 	if (IS_ERR(spi_imx->clk_ipg)) {
1823 		ret = PTR_ERR(spi_imx->clk_ipg);
1824 		goto out_controller_put;
1825 	}
1826 
1827 	spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1828 	if (IS_ERR(spi_imx->clk_per)) {
1829 		ret = PTR_ERR(spi_imx->clk_per);
1830 		goto out_controller_put;
1831 	}
1832 
1833 	ret = clk_prepare_enable(spi_imx->clk_per);
1834 	if (ret)
1835 		goto out_controller_put;
1836 
1837 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1838 	if (ret)
1839 		goto out_put_per;
1840 
1841 	pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
1842 	pm_runtime_use_autosuspend(spi_imx->dev);
1843 	pm_runtime_get_noresume(spi_imx->dev);
1844 	pm_runtime_set_active(spi_imx->dev);
1845 	pm_runtime_enable(spi_imx->dev);
1846 
1847 	spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1848 	/*
1849 	 * Only validated on i.mx35 and i.mx6 now, can remove the constraint
1850 	 * if validated on other chips.
1851 	 */
1852 	if (spi_imx->devtype_data->has_dmamode) {
1853 		ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller);
1854 		if (ret == -EPROBE_DEFER)
1855 			goto out_runtime_pm_put;
1856 
1857 		if (ret < 0)
1858 			dev_dbg(&pdev->dev, "dma setup error %d, use pio\n",
1859 				ret);
1860 	}
1861 
1862 	spi_imx->devtype_data->reset(spi_imx);
1863 
1864 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1865 
1866 	controller->dev.of_node = pdev->dev.of_node;
1867 	ret = spi_register_controller(controller);
1868 	if (ret) {
1869 		dev_err_probe(&pdev->dev, ret, "register controller failed\n");
1870 		goto out_register_controller;
1871 	}
1872 
1873 	pm_runtime_mark_last_busy(spi_imx->dev);
1874 	pm_runtime_put_autosuspend(spi_imx->dev);
1875 
1876 	return ret;
1877 
1878 out_register_controller:
1879 	if (spi_imx->devtype_data->has_dmamode)
1880 		spi_imx_sdma_exit(spi_imx);
1881 out_runtime_pm_put:
1882 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1883 	pm_runtime_set_suspended(&pdev->dev);
1884 	pm_runtime_disable(spi_imx->dev);
1885 
1886 	clk_disable_unprepare(spi_imx->clk_ipg);
1887 out_put_per:
1888 	clk_disable_unprepare(spi_imx->clk_per);
1889 out_controller_put:
1890 	spi_controller_put(controller);
1891 
1892 	return ret;
1893 }
1894 
1895 static void spi_imx_remove(struct platform_device *pdev)
1896 {
1897 	struct spi_controller *controller = platform_get_drvdata(pdev);
1898 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1899 	int ret;
1900 
1901 	spi_unregister_controller(controller);
1902 
1903 	ret = pm_runtime_get_sync(spi_imx->dev);
1904 	if (ret >= 0)
1905 		writel(0, spi_imx->base + MXC_CSPICTRL);
1906 	else
1907 		dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n");
1908 
1909 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1910 	pm_runtime_put_sync(spi_imx->dev);
1911 	pm_runtime_disable(spi_imx->dev);
1912 
1913 	spi_imx_sdma_exit(spi_imx);
1914 }
1915 
1916 static int __maybe_unused spi_imx_runtime_resume(struct device *dev)
1917 {
1918 	struct spi_controller *controller = dev_get_drvdata(dev);
1919 	struct spi_imx_data *spi_imx;
1920 	int ret;
1921 
1922 	spi_imx = spi_controller_get_devdata(controller);
1923 
1924 	ret = clk_prepare_enable(spi_imx->clk_per);
1925 	if (ret)
1926 		return ret;
1927 
1928 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1929 	if (ret) {
1930 		clk_disable_unprepare(spi_imx->clk_per);
1931 		return ret;
1932 	}
1933 
1934 	return 0;
1935 }
1936 
1937 static int __maybe_unused spi_imx_runtime_suspend(struct device *dev)
1938 {
1939 	struct spi_controller *controller = dev_get_drvdata(dev);
1940 	struct spi_imx_data *spi_imx;
1941 
1942 	spi_imx = spi_controller_get_devdata(controller);
1943 
1944 	clk_disable_unprepare(spi_imx->clk_per);
1945 	clk_disable_unprepare(spi_imx->clk_ipg);
1946 
1947 	return 0;
1948 }
1949 
1950 static int __maybe_unused spi_imx_suspend(struct device *dev)
1951 {
1952 	pinctrl_pm_select_sleep_state(dev);
1953 	return 0;
1954 }
1955 
1956 static int __maybe_unused spi_imx_resume(struct device *dev)
1957 {
1958 	pinctrl_pm_select_default_state(dev);
1959 	return 0;
1960 }
1961 
1962 static const struct dev_pm_ops imx_spi_pm = {
1963 	SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend,
1964 				spi_imx_runtime_resume, NULL)
1965 	SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
1966 };
1967 
1968 static struct platform_driver spi_imx_driver = {
1969 	.driver = {
1970 		   .name = DRIVER_NAME,
1971 		   .of_match_table = spi_imx_dt_ids,
1972 		   .pm = &imx_spi_pm,
1973 	},
1974 	.probe = spi_imx_probe,
1975 	.remove_new = spi_imx_remove,
1976 };
1977 module_platform_driver(spi_imx_driver);
1978 
1979 MODULE_DESCRIPTION("i.MX SPI Controller driver");
1980 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
1981 MODULE_LICENSE("GPL");
1982 MODULE_ALIAS("platform:" DRIVER_NAME);
1983