1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. 3 // Copyright (C) 2008 Juergen Beisert 4 5 #include <linux/bits.h> 6 #include <linux/bitfield.h> 7 #include <linux/clk.h> 8 #include <linux/completion.h> 9 #include <linux/delay.h> 10 #include <linux/dmaengine.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/err.h> 13 #include <linux/interrupt.h> 14 #include <linux/io.h> 15 #include <linux/irq.h> 16 #include <linux/kernel.h> 17 #include <linux/math.h> 18 #include <linux/math64.h> 19 #include <linux/module.h> 20 #include <linux/overflow.h> 21 #include <linux/pinctrl/consumer.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/slab.h> 25 #include <linux/spi/spi.h> 26 #include <linux/types.h> 27 #include <linux/of.h> 28 #include <linux/property.h> 29 30 #include <linux/dma/imx-dma.h> 31 32 #define DRIVER_NAME "spi_imx" 33 34 static bool use_dma = true; 35 module_param(use_dma, bool, 0644); 36 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)"); 37 38 /* define polling limits */ 39 static unsigned int polling_limit_us = 30; 40 module_param(polling_limit_us, uint, 0664); 41 MODULE_PARM_DESC(polling_limit_us, 42 "time in us to run a transfer in polling mode\n"); 43 44 #define MXC_RPM_TIMEOUT 2000 /* 2000ms */ 45 46 #define MXC_CSPIRXDATA 0x00 47 #define MXC_CSPITXDATA 0x04 48 #define MXC_CSPICTRL 0x08 49 #define MXC_CSPIINT 0x0c 50 #define MXC_RESET 0x1c 51 52 /* generic defines to abstract from the different register layouts */ 53 #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */ 54 #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */ 55 #define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */ 56 57 /* The maximum bytes that a sdma BD can transfer. */ 58 #define MAX_SDMA_BD_BYTES (1 << 15) 59 #define MX51_ECSPI_CTRL_MAX_BURST 512 60 /* The maximum bytes that IMX53_ECSPI can transfer in target mode.*/ 61 #define MX53_MAX_TRANSFER_BYTES 512 62 63 enum spi_imx_devtype { 64 IMX1_CSPI, 65 IMX21_CSPI, 66 IMX27_CSPI, 67 IMX31_CSPI, 68 IMX35_CSPI, /* CSPI on all i.mx except above */ 69 IMX51_ECSPI, /* ECSPI on i.mx51 */ 70 IMX53_ECSPI, /* ECSPI on i.mx53 and later */ 71 }; 72 73 struct spi_imx_data; 74 75 struct spi_imx_devtype_data { 76 void (*intctrl)(struct spi_imx_data *spi_imx, int enable); 77 int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg); 78 int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi, 79 struct spi_transfer *t); 80 void (*trigger)(struct spi_imx_data *spi_imx); 81 int (*rx_available)(struct spi_imx_data *spi_imx); 82 void (*reset)(struct spi_imx_data *spi_imx); 83 void (*setup_wml)(struct spi_imx_data *spi_imx); 84 void (*disable)(struct spi_imx_data *spi_imx); 85 bool has_dmamode; 86 bool has_targetmode; 87 unsigned int fifo_size; 88 bool dynamic_burst; 89 /* 90 * ERR009165 fixed or not: 91 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf 92 */ 93 bool tx_glitch_fixed; 94 enum spi_imx_devtype devtype; 95 }; 96 97 struct spi_imx_data { 98 struct spi_controller *controller; 99 struct device *dev; 100 101 struct completion xfer_done; 102 void __iomem *base; 103 unsigned long base_phys; 104 105 struct clk *clk_per; 106 struct clk *clk_ipg; 107 unsigned long spi_clk; 108 unsigned int spi_bus_clk; 109 110 unsigned int bits_per_word; 111 unsigned int spi_drctl; 112 113 unsigned int count, remainder; 114 void (*tx)(struct spi_imx_data *spi_imx); 115 void (*rx)(struct spi_imx_data *spi_imx); 116 void *rx_buf; 117 const void *tx_buf; 118 unsigned int txfifo; /* number of words pushed in tx FIFO */ 119 unsigned int dynamic_burst; 120 bool rx_only; 121 122 /* Target mode */ 123 bool target_mode; 124 bool target_aborted; 125 unsigned int target_burst; 126 127 /* DMA */ 128 bool usedma; 129 u32 wml; 130 struct completion dma_rx_completion; 131 struct completion dma_tx_completion; 132 133 const struct spi_imx_devtype_data *devtype_data; 134 }; 135 136 static inline int is_imx27_cspi(struct spi_imx_data *d) 137 { 138 return d->devtype_data->devtype == IMX27_CSPI; 139 } 140 141 static inline int is_imx35_cspi(struct spi_imx_data *d) 142 { 143 return d->devtype_data->devtype == IMX35_CSPI; 144 } 145 146 static inline int is_imx51_ecspi(struct spi_imx_data *d) 147 { 148 return d->devtype_data->devtype == IMX51_ECSPI; 149 } 150 151 static inline int is_imx53_ecspi(struct spi_imx_data *d) 152 { 153 return d->devtype_data->devtype == IMX53_ECSPI; 154 } 155 156 #define MXC_SPI_BUF_RX(type) \ 157 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \ 158 { \ 159 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \ 160 \ 161 if (spi_imx->rx_buf) { \ 162 *(type *)spi_imx->rx_buf = val; \ 163 spi_imx->rx_buf += sizeof(type); \ 164 } \ 165 \ 166 spi_imx->remainder -= sizeof(type); \ 167 } 168 169 #define MXC_SPI_BUF_TX(type) \ 170 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \ 171 { \ 172 type val = 0; \ 173 \ 174 if (spi_imx->tx_buf) { \ 175 val = *(type *)spi_imx->tx_buf; \ 176 spi_imx->tx_buf += sizeof(type); \ 177 } \ 178 \ 179 spi_imx->count -= sizeof(type); \ 180 \ 181 writel(val, spi_imx->base + MXC_CSPITXDATA); \ 182 } 183 184 MXC_SPI_BUF_RX(u8) 185 MXC_SPI_BUF_TX(u8) 186 MXC_SPI_BUF_RX(u16) 187 MXC_SPI_BUF_TX(u16) 188 MXC_SPI_BUF_RX(u32) 189 MXC_SPI_BUF_TX(u32) 190 191 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set 192 * (which is currently not the case in this driver) 193 */ 194 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 195 256, 384, 512, 768, 1024}; 196 197 /* MX21, MX27 */ 198 static unsigned int spi_imx_clkdiv_1(unsigned int fin, 199 unsigned int fspi, unsigned int max, unsigned int *fres) 200 { 201 int i; 202 203 for (i = 2; i < max; i++) 204 if (fspi * mxc_clkdivs[i] >= fin) 205 break; 206 207 *fres = fin / mxc_clkdivs[i]; 208 return i; 209 } 210 211 /* MX1, MX31, MX35, MX51 CSPI */ 212 static unsigned int spi_imx_clkdiv_2(unsigned int fin, 213 unsigned int fspi, unsigned int *fres) 214 { 215 int i, div = 4; 216 217 for (i = 0; i < 7; i++) { 218 if (fspi * div >= fin) 219 goto out; 220 div <<= 1; 221 } 222 223 out: 224 *fres = fin / div; 225 return i; 226 } 227 228 static int spi_imx_bytes_per_word(const int bits_per_word) 229 { 230 if (bits_per_word <= 8) 231 return 1; 232 else if (bits_per_word <= 16) 233 return 2; 234 else 235 return 4; 236 } 237 238 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi, 239 struct spi_transfer *transfer) 240 { 241 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 242 243 if (!use_dma || controller->fallback) 244 return false; 245 246 if (!controller->dma_rx) 247 return false; 248 249 if (spi_imx->target_mode) 250 return false; 251 252 if (transfer->len < spi_imx->devtype_data->fifo_size) 253 return false; 254 255 spi_imx->dynamic_burst = 0; 256 257 return true; 258 } 259 260 /* 261 * Note the number of natively supported chip selects for MX51 is 4. Some 262 * devices may have less actual SS pins but the register map supports 4. When 263 * using gpio chip selects the cs values passed into the macros below can go 264 * outside the range 0 - 3. We therefore need to limit the cs value to avoid 265 * corrupting bits outside the allocated locations. 266 * 267 * The simplest way to do this is to just mask the cs bits to 2 bits. This 268 * still allows all 4 native chip selects to work as well as gpio chip selects 269 * (which can use any of the 4 chip select configurations). 270 */ 271 272 #define MX51_ECSPI_CTRL 0x08 273 #define MX51_ECSPI_CTRL_ENABLE (1 << 0) 274 #define MX51_ECSPI_CTRL_XCH (1 << 2) 275 #define MX51_ECSPI_CTRL_SMC (1 << 3) 276 #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4) 277 #define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16) 278 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8 279 #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12 280 #define MX51_ECSPI_CTRL_CS(cs) ((cs & 3) << 18) 281 #define MX51_ECSPI_CTRL_BL_OFFSET 20 282 #define MX51_ECSPI_CTRL_BL_MASK (0xfff << 20) 283 284 #define MX51_ECSPI_CONFIG 0x0c 285 #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs & 3) + 0)) 286 #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs & 3) + 4)) 287 #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs & 3) + 8)) 288 #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs & 3) + 12)) 289 #define MX51_ECSPI_CONFIG_DATACTL(cs) (1 << ((cs & 3) + 16)) 290 #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs & 3) + 20)) 291 292 #define MX51_ECSPI_INT 0x10 293 #define MX51_ECSPI_INT_TEEN (1 << 0) 294 #define MX51_ECSPI_INT_RREN (1 << 3) 295 #define MX51_ECSPI_INT_RDREN (1 << 4) 296 297 #define MX51_ECSPI_DMA 0x14 298 #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f) 299 #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16) 300 #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24) 301 302 #define MX51_ECSPI_DMA_TEDEN (1 << 7) 303 #define MX51_ECSPI_DMA_RXDEN (1 << 23) 304 #define MX51_ECSPI_DMA_RXTDEN (1 << 31) 305 306 #define MX51_ECSPI_STAT 0x18 307 #define MX51_ECSPI_STAT_RR (1 << 3) 308 309 #define MX51_ECSPI_PERIOD 0x1c 310 #define MX51_ECSPI_PERIOD_MASK 0x7fff 311 /* 312 * As measured on the i.MX6, the SPI host controller inserts a 4 SPI-Clock 313 * (SCLK) delay after each burst if the PERIOD reg is 0x0. This value will be 314 * called MX51_ECSPI_PERIOD_MIN_DELAY_SCK. 315 * 316 * If the PERIOD register is != 0, the controller inserts a delay of 317 * MX51_ECSPI_PERIOD_MIN_DELAY_SCK + register value + 1 SCLK after each burst. 318 */ 319 #define MX51_ECSPI_PERIOD_MIN_DELAY_SCK 4 320 321 #define MX51_ECSPI_TESTREG 0x20 322 #define MX51_ECSPI_TESTREG_LBC BIT(31) 323 324 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx) 325 { 326 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); 327 328 if (spi_imx->rx_buf) { 329 #ifdef __LITTLE_ENDIAN 330 unsigned int bytes_per_word; 331 332 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word); 333 if (bytes_per_word == 1) 334 swab32s(&val); 335 else if (bytes_per_word == 2) 336 swahw32s(&val); 337 #endif 338 *(u32 *)spi_imx->rx_buf = val; 339 spi_imx->rx_buf += sizeof(u32); 340 } 341 342 spi_imx->remainder -= sizeof(u32); 343 } 344 345 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx) 346 { 347 int unaligned; 348 u32 val; 349 350 unaligned = spi_imx->remainder % 4; 351 352 if (!unaligned) { 353 spi_imx_buf_rx_swap_u32(spi_imx); 354 return; 355 } 356 357 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) { 358 spi_imx_buf_rx_u16(spi_imx); 359 return; 360 } 361 362 val = readl(spi_imx->base + MXC_CSPIRXDATA); 363 364 while (unaligned--) { 365 if (spi_imx->rx_buf) { 366 *(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff; 367 spi_imx->rx_buf++; 368 } 369 spi_imx->remainder--; 370 } 371 } 372 373 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx) 374 { 375 u32 val = 0; 376 #ifdef __LITTLE_ENDIAN 377 unsigned int bytes_per_word; 378 #endif 379 380 if (spi_imx->tx_buf) { 381 val = *(u32 *)spi_imx->tx_buf; 382 spi_imx->tx_buf += sizeof(u32); 383 } 384 385 spi_imx->count -= sizeof(u32); 386 #ifdef __LITTLE_ENDIAN 387 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word); 388 389 if (bytes_per_word == 1) 390 swab32s(&val); 391 else if (bytes_per_word == 2) 392 swahw32s(&val); 393 #endif 394 writel(val, spi_imx->base + MXC_CSPITXDATA); 395 } 396 397 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx) 398 { 399 int unaligned; 400 u32 val = 0; 401 402 unaligned = spi_imx->count % 4; 403 404 if (!unaligned) { 405 spi_imx_buf_tx_swap_u32(spi_imx); 406 return; 407 } 408 409 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) { 410 spi_imx_buf_tx_u16(spi_imx); 411 return; 412 } 413 414 while (unaligned--) { 415 if (spi_imx->tx_buf) { 416 val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned); 417 spi_imx->tx_buf++; 418 } 419 spi_imx->count--; 420 } 421 422 writel(val, spi_imx->base + MXC_CSPITXDATA); 423 } 424 425 static void mx53_ecspi_rx_target(struct spi_imx_data *spi_imx) 426 { 427 u32 val = ioread32be(spi_imx->base + MXC_CSPIRXDATA); 428 429 if (spi_imx->rx_buf) { 430 int n_bytes = spi_imx->target_burst % sizeof(val); 431 432 if (!n_bytes) 433 n_bytes = sizeof(val); 434 435 memcpy(spi_imx->rx_buf, 436 ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes); 437 438 spi_imx->rx_buf += n_bytes; 439 spi_imx->target_burst -= n_bytes; 440 } 441 442 spi_imx->remainder -= sizeof(u32); 443 } 444 445 static void mx53_ecspi_tx_target(struct spi_imx_data *spi_imx) 446 { 447 u32 val = 0; 448 int n_bytes = spi_imx->count % sizeof(val); 449 450 if (!n_bytes) 451 n_bytes = sizeof(val); 452 453 if (spi_imx->tx_buf) { 454 memcpy(((u8 *)&val) + sizeof(val) - n_bytes, 455 spi_imx->tx_buf, n_bytes); 456 spi_imx->tx_buf += n_bytes; 457 } 458 459 spi_imx->count -= n_bytes; 460 461 iowrite32be(val, spi_imx->base + MXC_CSPITXDATA); 462 } 463 464 /* MX51 eCSPI */ 465 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx, 466 unsigned int fspi, unsigned int *fres) 467 { 468 /* 469 * there are two 4-bit dividers, the pre-divider divides by 470 * $pre, the post-divider by 2^$post 471 */ 472 unsigned int pre, post; 473 unsigned int fin = spi_imx->spi_clk; 474 475 fspi = min(fspi, fin); 476 477 post = fls(fin) - fls(fspi); 478 if (fin > fspi << post) 479 post++; 480 481 /* now we have: (fin <= fspi << post) with post being minimal */ 482 483 post = max(4U, post) - 4; 484 if (unlikely(post > 0xf)) { 485 dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n", 486 fspi, fin); 487 return 0xff; 488 } 489 490 pre = DIV_ROUND_UP(fin, fspi << post) - 1; 491 492 dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n", 493 __func__, fin, fspi, post, pre); 494 495 /* Resulting frequency for the SCLK line. */ 496 *fres = (fin / (pre + 1)) >> post; 497 498 return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) | 499 (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET); 500 } 501 502 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable) 503 { 504 unsigned int val = 0; 505 506 if (enable & MXC_INT_TE) 507 val |= MX51_ECSPI_INT_TEEN; 508 509 if (enable & MXC_INT_RR) 510 val |= MX51_ECSPI_INT_RREN; 511 512 if (enable & MXC_INT_RDR) 513 val |= MX51_ECSPI_INT_RDREN; 514 515 writel(val, spi_imx->base + MX51_ECSPI_INT); 516 } 517 518 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx) 519 { 520 u32 reg; 521 522 reg = readl(spi_imx->base + MX51_ECSPI_CTRL); 523 reg |= MX51_ECSPI_CTRL_XCH; 524 writel(reg, spi_imx->base + MX51_ECSPI_CTRL); 525 } 526 527 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx) 528 { 529 u32 ctrl; 530 531 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 532 ctrl &= ~MX51_ECSPI_CTRL_ENABLE; 533 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 534 } 535 536 static int mx51_ecspi_channel(const struct spi_device *spi) 537 { 538 if (!spi_get_csgpiod(spi, 0)) 539 return spi_get_chipselect(spi, 0); 540 return spi->controller->unused_native_cs; 541 } 542 543 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx, 544 struct spi_message *msg) 545 { 546 struct spi_device *spi = msg->spi; 547 struct spi_transfer *xfer; 548 u32 ctrl = MX51_ECSPI_CTRL_ENABLE; 549 u32 min_speed_hz = ~0U; 550 u32 testreg, delay; 551 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG); 552 u32 current_cfg = cfg; 553 int channel = mx51_ecspi_channel(spi); 554 555 /* set Host or Target mode */ 556 if (spi_imx->target_mode) 557 ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK; 558 else 559 ctrl |= MX51_ECSPI_CTRL_MODE_MASK; 560 561 /* 562 * Enable SPI_RDY handling (falling edge/level triggered). 563 */ 564 if (spi->mode & SPI_READY) 565 ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl); 566 567 /* set chip select to use */ 568 ctrl |= MX51_ECSPI_CTRL_CS(channel); 569 570 /* 571 * The ctrl register must be written first, with the EN bit set other 572 * registers must not be written to. 573 */ 574 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 575 576 testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG); 577 if (spi->mode & SPI_LOOP) 578 testreg |= MX51_ECSPI_TESTREG_LBC; 579 else 580 testreg &= ~MX51_ECSPI_TESTREG_LBC; 581 writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG); 582 583 /* 584 * eCSPI burst completion by Chip Select signal in Target mode 585 * is not functional for imx53 Soc, config SPI burst completed when 586 * BURST_LENGTH + 1 bits are received 587 */ 588 if (spi_imx->target_mode && is_imx53_ecspi(spi_imx)) 589 cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(channel); 590 else 591 cfg |= MX51_ECSPI_CONFIG_SBBCTRL(channel); 592 593 if (spi->mode & SPI_CPOL) { 594 cfg |= MX51_ECSPI_CONFIG_SCLKPOL(channel); 595 cfg |= MX51_ECSPI_CONFIG_SCLKCTL(channel); 596 } else { 597 cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(channel); 598 cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(channel); 599 } 600 601 if (spi->mode & SPI_MOSI_IDLE_LOW) 602 cfg |= MX51_ECSPI_CONFIG_DATACTL(channel); 603 else 604 cfg &= ~MX51_ECSPI_CONFIG_DATACTL(channel); 605 606 if (spi->mode & SPI_CS_HIGH) 607 cfg |= MX51_ECSPI_CONFIG_SSBPOL(channel); 608 else 609 cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(channel); 610 611 if (cfg == current_cfg) 612 return 0; 613 614 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG); 615 616 /* 617 * Wait until the changes in the configuration register CONFIGREG 618 * propagate into the hardware. It takes exactly one tick of the 619 * SCLK clock, but we will wait two SCLK clock just to be sure. The 620 * effect of the delay it takes for the hardware to apply changes 621 * is noticable if the SCLK clock run very slow. In such a case, if 622 * the polarity of SCLK should be inverted, the GPIO ChipSelect might 623 * be asserted before the SCLK polarity changes, which would disrupt 624 * the SPI communication as the device on the other end would consider 625 * the change of SCLK polarity as a clock tick already. 626 * 627 * Because spi_imx->spi_bus_clk is only set in prepare_message 628 * callback, iterate over all the transfers in spi_message, find the 629 * one with lowest bus frequency, and use that bus frequency for the 630 * delay calculation. In case all transfers have speed_hz == 0, then 631 * min_speed_hz is ~0 and the resulting delay is zero. 632 */ 633 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 634 if (!xfer->speed_hz) 635 continue; 636 min_speed_hz = min(xfer->speed_hz, min_speed_hz); 637 } 638 639 delay = (2 * 1000000) / min_speed_hz; 640 if (likely(delay < 10)) /* SCLK is faster than 200 kHz */ 641 udelay(delay); 642 else /* SCLK is _very_ slow */ 643 usleep_range(delay, delay + 10); 644 645 return 0; 646 } 647 648 static void mx51_configure_cpha(struct spi_imx_data *spi_imx, 649 struct spi_device *spi) 650 { 651 bool cpha = (spi->mode & SPI_CPHA); 652 bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only; 653 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG); 654 int channel = mx51_ecspi_channel(spi); 655 656 /* Flip cpha logical value iff flip_cpha */ 657 cpha ^= flip_cpha; 658 659 if (cpha) 660 cfg |= MX51_ECSPI_CONFIG_SCLKPHA(channel); 661 else 662 cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(channel); 663 664 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG); 665 } 666 667 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx, 668 struct spi_device *spi, struct spi_transfer *t) 669 { 670 u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 671 u64 word_delay_sck; 672 u32 clk; 673 674 /* Clear BL field and set the right value */ 675 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK; 676 if (spi_imx->target_mode && is_imx53_ecspi(spi_imx)) 677 ctrl |= (spi_imx->target_burst * 8 - 1) 678 << MX51_ECSPI_CTRL_BL_OFFSET; 679 else { 680 ctrl |= (spi_imx->bits_per_word - 1) 681 << MX51_ECSPI_CTRL_BL_OFFSET; 682 } 683 684 /* set clock speed */ 685 ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET | 686 0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET); 687 ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk); 688 spi_imx->spi_bus_clk = clk; 689 690 mx51_configure_cpha(spi_imx, spi); 691 692 /* 693 * ERR009165: work in XHC mode instead of SMC as PIO on the chips 694 * before i.mx6ul. 695 */ 696 if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed) 697 ctrl |= MX51_ECSPI_CTRL_SMC; 698 else 699 ctrl &= ~MX51_ECSPI_CTRL_SMC; 700 701 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 702 703 /* calculate word delay in SPI Clock (SCLK) cycles */ 704 if (t->word_delay.value == 0) { 705 word_delay_sck = 0; 706 } else if (t->word_delay.unit == SPI_DELAY_UNIT_SCK) { 707 word_delay_sck = t->word_delay.value; 708 709 if (word_delay_sck <= MX51_ECSPI_PERIOD_MIN_DELAY_SCK) 710 word_delay_sck = 0; 711 else if (word_delay_sck <= MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1) 712 word_delay_sck = 1; 713 else 714 word_delay_sck -= MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1; 715 } else { 716 int word_delay_ns; 717 718 word_delay_ns = spi_delay_to_ns(&t->word_delay, t); 719 if (word_delay_ns < 0) 720 return word_delay_ns; 721 722 if (word_delay_ns <= mul_u64_u32_div(NSEC_PER_SEC, 723 MX51_ECSPI_PERIOD_MIN_DELAY_SCK, 724 spi_imx->spi_bus_clk)) { 725 word_delay_sck = 0; 726 } else if (word_delay_ns <= mul_u64_u32_div(NSEC_PER_SEC, 727 MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1, 728 spi_imx->spi_bus_clk)) { 729 word_delay_sck = 1; 730 } else { 731 word_delay_ns -= mul_u64_u32_div(NSEC_PER_SEC, 732 MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1, 733 spi_imx->spi_bus_clk); 734 735 word_delay_sck = DIV_U64_ROUND_UP((u64)word_delay_ns * spi_imx->spi_bus_clk, 736 NSEC_PER_SEC); 737 } 738 } 739 740 if (!FIELD_FIT(MX51_ECSPI_PERIOD_MASK, word_delay_sck)) 741 return -EINVAL; 742 743 writel(FIELD_PREP(MX51_ECSPI_PERIOD_MASK, word_delay_sck), 744 spi_imx->base + MX51_ECSPI_PERIOD); 745 746 return 0; 747 } 748 749 static void mx51_setup_wml(struct spi_imx_data *spi_imx) 750 { 751 u32 tx_wml = 0; 752 753 if (spi_imx->devtype_data->tx_glitch_fixed) 754 tx_wml = spi_imx->wml; 755 /* 756 * Configure the DMA register: setup the watermark 757 * and enable DMA request. 758 */ 759 writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) | 760 MX51_ECSPI_DMA_TX_WML(tx_wml) | 761 MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) | 762 MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN | 763 MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA); 764 } 765 766 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx) 767 { 768 return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR; 769 } 770 771 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx) 772 { 773 /* drain receive buffer */ 774 while (mx51_ecspi_rx_available(spi_imx)) 775 readl(spi_imx->base + MXC_CSPIRXDATA); 776 } 777 778 #define MX31_INTREG_TEEN (1 << 0) 779 #define MX31_INTREG_RREN (1 << 3) 780 781 #define MX31_CSPICTRL_ENABLE (1 << 0) 782 #define MX31_CSPICTRL_HOST (1 << 1) 783 #define MX31_CSPICTRL_XCH (1 << 2) 784 #define MX31_CSPICTRL_SMC (1 << 3) 785 #define MX31_CSPICTRL_POL (1 << 4) 786 #define MX31_CSPICTRL_PHA (1 << 5) 787 #define MX31_CSPICTRL_SSCTL (1 << 6) 788 #define MX31_CSPICTRL_SSPOL (1 << 7) 789 #define MX31_CSPICTRL_BC_SHIFT 8 790 #define MX35_CSPICTRL_BL_SHIFT 20 791 #define MX31_CSPICTRL_CS_SHIFT 24 792 #define MX35_CSPICTRL_CS_SHIFT 12 793 #define MX31_CSPICTRL_DR_SHIFT 16 794 795 #define MX31_CSPI_DMAREG 0x10 796 #define MX31_DMAREG_RH_DEN (1<<4) 797 #define MX31_DMAREG_TH_DEN (1<<1) 798 799 #define MX31_CSPISTATUS 0x14 800 #define MX31_STATUS_RR (1 << 3) 801 802 #define MX31_CSPI_TESTREG 0x1C 803 #define MX31_TEST_LBC (1 << 14) 804 805 /* These functions also work for the i.MX35, but be aware that 806 * the i.MX35 has a slightly different register layout for bits 807 * we do not use here. 808 */ 809 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable) 810 { 811 unsigned int val = 0; 812 813 if (enable & MXC_INT_TE) 814 val |= MX31_INTREG_TEEN; 815 if (enable & MXC_INT_RR) 816 val |= MX31_INTREG_RREN; 817 818 writel(val, spi_imx->base + MXC_CSPIINT); 819 } 820 821 static void mx31_trigger(struct spi_imx_data *spi_imx) 822 { 823 unsigned int reg; 824 825 reg = readl(spi_imx->base + MXC_CSPICTRL); 826 reg |= MX31_CSPICTRL_XCH; 827 writel(reg, spi_imx->base + MXC_CSPICTRL); 828 } 829 830 static int mx31_prepare_message(struct spi_imx_data *spi_imx, 831 struct spi_message *msg) 832 { 833 return 0; 834 } 835 836 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx, 837 struct spi_device *spi, struct spi_transfer *t) 838 { 839 unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_HOST; 840 unsigned int clk; 841 842 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) << 843 MX31_CSPICTRL_DR_SHIFT; 844 spi_imx->spi_bus_clk = clk; 845 846 if (is_imx35_cspi(spi_imx)) { 847 reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT; 848 reg |= MX31_CSPICTRL_SSCTL; 849 } else { 850 reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT; 851 } 852 853 if (spi->mode & SPI_CPHA) 854 reg |= MX31_CSPICTRL_PHA; 855 if (spi->mode & SPI_CPOL) 856 reg |= MX31_CSPICTRL_POL; 857 if (spi->mode & SPI_CS_HIGH) 858 reg |= MX31_CSPICTRL_SSPOL; 859 if (!spi_get_csgpiod(spi, 0)) 860 reg |= (spi_get_chipselect(spi, 0)) << 861 (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT : 862 MX31_CSPICTRL_CS_SHIFT); 863 864 if (spi_imx->usedma) 865 reg |= MX31_CSPICTRL_SMC; 866 867 writel(reg, spi_imx->base + MXC_CSPICTRL); 868 869 reg = readl(spi_imx->base + MX31_CSPI_TESTREG); 870 if (spi->mode & SPI_LOOP) 871 reg |= MX31_TEST_LBC; 872 else 873 reg &= ~MX31_TEST_LBC; 874 writel(reg, spi_imx->base + MX31_CSPI_TESTREG); 875 876 if (spi_imx->usedma) { 877 /* 878 * configure DMA requests when RXFIFO is half full and 879 * when TXFIFO is half empty 880 */ 881 writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN, 882 spi_imx->base + MX31_CSPI_DMAREG); 883 } 884 885 return 0; 886 } 887 888 static int mx31_rx_available(struct spi_imx_data *spi_imx) 889 { 890 return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR; 891 } 892 893 static void mx31_reset(struct spi_imx_data *spi_imx) 894 { 895 /* drain receive buffer */ 896 while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR) 897 readl(spi_imx->base + MXC_CSPIRXDATA); 898 } 899 900 #define MX21_INTREG_RR (1 << 4) 901 #define MX21_INTREG_TEEN (1 << 9) 902 #define MX21_INTREG_RREN (1 << 13) 903 904 #define MX21_CSPICTRL_POL (1 << 5) 905 #define MX21_CSPICTRL_PHA (1 << 6) 906 #define MX21_CSPICTRL_SSPOL (1 << 8) 907 #define MX21_CSPICTRL_XCH (1 << 9) 908 #define MX21_CSPICTRL_ENABLE (1 << 10) 909 #define MX21_CSPICTRL_HOST (1 << 11) 910 #define MX21_CSPICTRL_DR_SHIFT 14 911 #define MX21_CSPICTRL_CS_SHIFT 19 912 913 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable) 914 { 915 unsigned int val = 0; 916 917 if (enable & MXC_INT_TE) 918 val |= MX21_INTREG_TEEN; 919 if (enable & MXC_INT_RR) 920 val |= MX21_INTREG_RREN; 921 922 writel(val, spi_imx->base + MXC_CSPIINT); 923 } 924 925 static void mx21_trigger(struct spi_imx_data *spi_imx) 926 { 927 unsigned int reg; 928 929 reg = readl(spi_imx->base + MXC_CSPICTRL); 930 reg |= MX21_CSPICTRL_XCH; 931 writel(reg, spi_imx->base + MXC_CSPICTRL); 932 } 933 934 static int mx21_prepare_message(struct spi_imx_data *spi_imx, 935 struct spi_message *msg) 936 { 937 return 0; 938 } 939 940 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx, 941 struct spi_device *spi, struct spi_transfer *t) 942 { 943 unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_HOST; 944 unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18; 945 unsigned int clk; 946 947 reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk) 948 << MX21_CSPICTRL_DR_SHIFT; 949 spi_imx->spi_bus_clk = clk; 950 951 reg |= spi_imx->bits_per_word - 1; 952 953 if (spi->mode & SPI_CPHA) 954 reg |= MX21_CSPICTRL_PHA; 955 if (spi->mode & SPI_CPOL) 956 reg |= MX21_CSPICTRL_POL; 957 if (spi->mode & SPI_CS_HIGH) 958 reg |= MX21_CSPICTRL_SSPOL; 959 if (!spi_get_csgpiod(spi, 0)) 960 reg |= spi_get_chipselect(spi, 0) << MX21_CSPICTRL_CS_SHIFT; 961 962 writel(reg, spi_imx->base + MXC_CSPICTRL); 963 964 return 0; 965 } 966 967 static int mx21_rx_available(struct spi_imx_data *spi_imx) 968 { 969 return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR; 970 } 971 972 static void mx21_reset(struct spi_imx_data *spi_imx) 973 { 974 writel(1, spi_imx->base + MXC_RESET); 975 } 976 977 #define MX1_INTREG_RR (1 << 3) 978 #define MX1_INTREG_TEEN (1 << 8) 979 #define MX1_INTREG_RREN (1 << 11) 980 981 #define MX1_CSPICTRL_POL (1 << 4) 982 #define MX1_CSPICTRL_PHA (1 << 5) 983 #define MX1_CSPICTRL_XCH (1 << 8) 984 #define MX1_CSPICTRL_ENABLE (1 << 9) 985 #define MX1_CSPICTRL_HOST (1 << 10) 986 #define MX1_CSPICTRL_DR_SHIFT 13 987 988 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable) 989 { 990 unsigned int val = 0; 991 992 if (enable & MXC_INT_TE) 993 val |= MX1_INTREG_TEEN; 994 if (enable & MXC_INT_RR) 995 val |= MX1_INTREG_RREN; 996 997 writel(val, spi_imx->base + MXC_CSPIINT); 998 } 999 1000 static void mx1_trigger(struct spi_imx_data *spi_imx) 1001 { 1002 unsigned int reg; 1003 1004 reg = readl(spi_imx->base + MXC_CSPICTRL); 1005 reg |= MX1_CSPICTRL_XCH; 1006 writel(reg, spi_imx->base + MXC_CSPICTRL); 1007 } 1008 1009 static int mx1_prepare_message(struct spi_imx_data *spi_imx, 1010 struct spi_message *msg) 1011 { 1012 return 0; 1013 } 1014 1015 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx, 1016 struct spi_device *spi, struct spi_transfer *t) 1017 { 1018 unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_HOST; 1019 unsigned int clk; 1020 1021 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) << 1022 MX1_CSPICTRL_DR_SHIFT; 1023 spi_imx->spi_bus_clk = clk; 1024 1025 reg |= spi_imx->bits_per_word - 1; 1026 1027 if (spi->mode & SPI_CPHA) 1028 reg |= MX1_CSPICTRL_PHA; 1029 if (spi->mode & SPI_CPOL) 1030 reg |= MX1_CSPICTRL_POL; 1031 1032 writel(reg, spi_imx->base + MXC_CSPICTRL); 1033 1034 return 0; 1035 } 1036 1037 static int mx1_rx_available(struct spi_imx_data *spi_imx) 1038 { 1039 return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR; 1040 } 1041 1042 static void mx1_reset(struct spi_imx_data *spi_imx) 1043 { 1044 writel(1, spi_imx->base + MXC_RESET); 1045 } 1046 1047 static struct spi_imx_devtype_data imx1_cspi_devtype_data = { 1048 .intctrl = mx1_intctrl, 1049 .prepare_message = mx1_prepare_message, 1050 .prepare_transfer = mx1_prepare_transfer, 1051 .trigger = mx1_trigger, 1052 .rx_available = mx1_rx_available, 1053 .reset = mx1_reset, 1054 .fifo_size = 8, 1055 .has_dmamode = false, 1056 .dynamic_burst = false, 1057 .has_targetmode = false, 1058 .devtype = IMX1_CSPI, 1059 }; 1060 1061 static struct spi_imx_devtype_data imx21_cspi_devtype_data = { 1062 .intctrl = mx21_intctrl, 1063 .prepare_message = mx21_prepare_message, 1064 .prepare_transfer = mx21_prepare_transfer, 1065 .trigger = mx21_trigger, 1066 .rx_available = mx21_rx_available, 1067 .reset = mx21_reset, 1068 .fifo_size = 8, 1069 .has_dmamode = false, 1070 .dynamic_burst = false, 1071 .has_targetmode = false, 1072 .devtype = IMX21_CSPI, 1073 }; 1074 1075 static struct spi_imx_devtype_data imx27_cspi_devtype_data = { 1076 /* i.mx27 cspi shares the functions with i.mx21 one */ 1077 .intctrl = mx21_intctrl, 1078 .prepare_message = mx21_prepare_message, 1079 .prepare_transfer = mx21_prepare_transfer, 1080 .trigger = mx21_trigger, 1081 .rx_available = mx21_rx_available, 1082 .reset = mx21_reset, 1083 .fifo_size = 8, 1084 .has_dmamode = false, 1085 .dynamic_burst = false, 1086 .has_targetmode = false, 1087 .devtype = IMX27_CSPI, 1088 }; 1089 1090 static struct spi_imx_devtype_data imx31_cspi_devtype_data = { 1091 .intctrl = mx31_intctrl, 1092 .prepare_message = mx31_prepare_message, 1093 .prepare_transfer = mx31_prepare_transfer, 1094 .trigger = mx31_trigger, 1095 .rx_available = mx31_rx_available, 1096 .reset = mx31_reset, 1097 .fifo_size = 8, 1098 .has_dmamode = false, 1099 .dynamic_burst = false, 1100 .has_targetmode = false, 1101 .devtype = IMX31_CSPI, 1102 }; 1103 1104 static struct spi_imx_devtype_data imx35_cspi_devtype_data = { 1105 /* i.mx35 and later cspi shares the functions with i.mx31 one */ 1106 .intctrl = mx31_intctrl, 1107 .prepare_message = mx31_prepare_message, 1108 .prepare_transfer = mx31_prepare_transfer, 1109 .trigger = mx31_trigger, 1110 .rx_available = mx31_rx_available, 1111 .reset = mx31_reset, 1112 .fifo_size = 8, 1113 .has_dmamode = false, 1114 .dynamic_burst = false, 1115 .has_targetmode = false, 1116 .devtype = IMX35_CSPI, 1117 }; 1118 1119 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = { 1120 .intctrl = mx51_ecspi_intctrl, 1121 .prepare_message = mx51_ecspi_prepare_message, 1122 .prepare_transfer = mx51_ecspi_prepare_transfer, 1123 .trigger = mx51_ecspi_trigger, 1124 .rx_available = mx51_ecspi_rx_available, 1125 .reset = mx51_ecspi_reset, 1126 .setup_wml = mx51_setup_wml, 1127 .fifo_size = 64, 1128 .has_dmamode = true, 1129 .dynamic_burst = true, 1130 .has_targetmode = true, 1131 .disable = mx51_ecspi_disable, 1132 .devtype = IMX51_ECSPI, 1133 }; 1134 1135 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = { 1136 .intctrl = mx51_ecspi_intctrl, 1137 .prepare_message = mx51_ecspi_prepare_message, 1138 .prepare_transfer = mx51_ecspi_prepare_transfer, 1139 .trigger = mx51_ecspi_trigger, 1140 .rx_available = mx51_ecspi_rx_available, 1141 .reset = mx51_ecspi_reset, 1142 .fifo_size = 64, 1143 .has_dmamode = true, 1144 .has_targetmode = true, 1145 .disable = mx51_ecspi_disable, 1146 .devtype = IMX53_ECSPI, 1147 }; 1148 1149 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = { 1150 .intctrl = mx51_ecspi_intctrl, 1151 .prepare_message = mx51_ecspi_prepare_message, 1152 .prepare_transfer = mx51_ecspi_prepare_transfer, 1153 .trigger = mx51_ecspi_trigger, 1154 .rx_available = mx51_ecspi_rx_available, 1155 .reset = mx51_ecspi_reset, 1156 .setup_wml = mx51_setup_wml, 1157 .fifo_size = 64, 1158 .has_dmamode = true, 1159 .dynamic_burst = true, 1160 .has_targetmode = true, 1161 .tx_glitch_fixed = true, 1162 .disable = mx51_ecspi_disable, 1163 .devtype = IMX51_ECSPI, 1164 }; 1165 1166 static const struct of_device_id spi_imx_dt_ids[] = { 1167 { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, }, 1168 { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, }, 1169 { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, }, 1170 { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, }, 1171 { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, }, 1172 { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, }, 1173 { .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, }, 1174 { .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, }, 1175 { /* sentinel */ } 1176 }; 1177 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids); 1178 1179 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits) 1180 { 1181 u32 ctrl; 1182 1183 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 1184 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK; 1185 ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET); 1186 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 1187 } 1188 1189 static void spi_imx_push(struct spi_imx_data *spi_imx) 1190 { 1191 unsigned int burst_len; 1192 1193 /* 1194 * Reload the FIFO when the remaining bytes to be transferred in the 1195 * current burst is 0. This only applies when bits_per_word is a 1196 * multiple of 8. 1197 */ 1198 if (!spi_imx->remainder) { 1199 if (spi_imx->dynamic_burst) { 1200 1201 /* We need to deal unaligned data first */ 1202 burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST; 1203 1204 if (!burst_len) 1205 burst_len = MX51_ECSPI_CTRL_MAX_BURST; 1206 1207 spi_imx_set_burst_len(spi_imx, burst_len * 8); 1208 1209 spi_imx->remainder = burst_len; 1210 } else { 1211 spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word); 1212 } 1213 } 1214 1215 while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) { 1216 if (!spi_imx->count) 1217 break; 1218 if (spi_imx->dynamic_burst && 1219 spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4)) 1220 break; 1221 spi_imx->tx(spi_imx); 1222 spi_imx->txfifo++; 1223 } 1224 1225 if (!spi_imx->target_mode) 1226 spi_imx->devtype_data->trigger(spi_imx); 1227 } 1228 1229 static irqreturn_t spi_imx_isr(int irq, void *dev_id) 1230 { 1231 struct spi_imx_data *spi_imx = dev_id; 1232 1233 while (spi_imx->txfifo && 1234 spi_imx->devtype_data->rx_available(spi_imx)) { 1235 spi_imx->rx(spi_imx); 1236 spi_imx->txfifo--; 1237 } 1238 1239 if (spi_imx->count) { 1240 spi_imx_push(spi_imx); 1241 return IRQ_HANDLED; 1242 } 1243 1244 if (spi_imx->txfifo) { 1245 /* No data left to push, but still waiting for rx data, 1246 * enable receive data available interrupt. 1247 */ 1248 spi_imx->devtype_data->intctrl( 1249 spi_imx, MXC_INT_RR); 1250 return IRQ_HANDLED; 1251 } 1252 1253 spi_imx->devtype_data->intctrl(spi_imx, 0); 1254 complete(&spi_imx->xfer_done); 1255 1256 return IRQ_HANDLED; 1257 } 1258 1259 static int spi_imx_dma_configure(struct spi_controller *controller) 1260 { 1261 int ret; 1262 enum dma_slave_buswidth buswidth; 1263 struct dma_slave_config rx = {}, tx = {}; 1264 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1265 1266 switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) { 1267 case 4: 1268 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 1269 break; 1270 case 2: 1271 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 1272 break; 1273 case 1: 1274 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 1275 break; 1276 default: 1277 return -EINVAL; 1278 } 1279 1280 tx.direction = DMA_MEM_TO_DEV; 1281 tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA; 1282 tx.dst_addr_width = buswidth; 1283 tx.dst_maxburst = spi_imx->wml; 1284 ret = dmaengine_slave_config(controller->dma_tx, &tx); 1285 if (ret) { 1286 dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret); 1287 return ret; 1288 } 1289 1290 rx.direction = DMA_DEV_TO_MEM; 1291 rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA; 1292 rx.src_addr_width = buswidth; 1293 rx.src_maxburst = spi_imx->wml; 1294 ret = dmaengine_slave_config(controller->dma_rx, &rx); 1295 if (ret) { 1296 dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret); 1297 return ret; 1298 } 1299 1300 return 0; 1301 } 1302 1303 static int spi_imx_setupxfer(struct spi_device *spi, 1304 struct spi_transfer *t) 1305 { 1306 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1307 1308 if (!t) 1309 return 0; 1310 1311 if (!t->speed_hz) { 1312 if (!spi->max_speed_hz) { 1313 dev_err(&spi->dev, "no speed_hz provided!\n"); 1314 return -EINVAL; 1315 } 1316 dev_dbg(&spi->dev, "using spi->max_speed_hz!\n"); 1317 spi_imx->spi_bus_clk = spi->max_speed_hz; 1318 } else 1319 spi_imx->spi_bus_clk = t->speed_hz; 1320 1321 spi_imx->bits_per_word = t->bits_per_word; 1322 spi_imx->count = t->len; 1323 1324 /* 1325 * Initialize the functions for transfer. To transfer non byte-aligned 1326 * words, we have to use multiple word-size bursts. To insert word 1327 * delay, the burst size has to equal the word size. We can't use 1328 * dynamic_burst in these cases. 1329 */ 1330 if (spi_imx->devtype_data->dynamic_burst && !spi_imx->target_mode && 1331 !(spi->mode & SPI_CS_WORD) && 1332 !(t->word_delay.value) && 1333 (spi_imx->bits_per_word == 8 || 1334 spi_imx->bits_per_word == 16 || 1335 spi_imx->bits_per_word == 32)) { 1336 1337 spi_imx->rx = spi_imx_buf_rx_swap; 1338 spi_imx->tx = spi_imx_buf_tx_swap; 1339 spi_imx->dynamic_burst = 1; 1340 1341 } else { 1342 if (spi_imx->bits_per_word <= 8) { 1343 spi_imx->rx = spi_imx_buf_rx_u8; 1344 spi_imx->tx = spi_imx_buf_tx_u8; 1345 } else if (spi_imx->bits_per_word <= 16) { 1346 spi_imx->rx = spi_imx_buf_rx_u16; 1347 spi_imx->tx = spi_imx_buf_tx_u16; 1348 } else { 1349 spi_imx->rx = spi_imx_buf_rx_u32; 1350 spi_imx->tx = spi_imx_buf_tx_u32; 1351 } 1352 spi_imx->dynamic_burst = 0; 1353 } 1354 1355 if (spi_imx_can_dma(spi_imx->controller, spi, t)) 1356 spi_imx->usedma = true; 1357 else 1358 spi_imx->usedma = false; 1359 1360 spi_imx->rx_only = ((t->tx_buf == NULL) 1361 || (t->tx_buf == spi->controller->dummy_tx)); 1362 1363 if (is_imx53_ecspi(spi_imx) && spi_imx->target_mode) { 1364 spi_imx->rx = mx53_ecspi_rx_target; 1365 spi_imx->tx = mx53_ecspi_tx_target; 1366 spi_imx->target_burst = t->len; 1367 } 1368 1369 spi_imx->devtype_data->prepare_transfer(spi_imx, spi, t); 1370 1371 return 0; 1372 } 1373 1374 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx) 1375 { 1376 struct spi_controller *controller = spi_imx->controller; 1377 1378 if (controller->dma_rx) { 1379 dma_release_channel(controller->dma_rx); 1380 controller->dma_rx = NULL; 1381 } 1382 1383 if (controller->dma_tx) { 1384 dma_release_channel(controller->dma_tx); 1385 controller->dma_tx = NULL; 1386 } 1387 } 1388 1389 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx, 1390 struct spi_controller *controller) 1391 { 1392 int ret; 1393 1394 spi_imx->wml = spi_imx->devtype_data->fifo_size / 2; 1395 1396 /* Prepare for TX DMA: */ 1397 controller->dma_tx = dma_request_chan(dev, "tx"); 1398 if (IS_ERR(controller->dma_tx)) { 1399 ret = PTR_ERR(controller->dma_tx); 1400 dev_err_probe(dev, ret, "can't get the TX DMA channel!\n"); 1401 controller->dma_tx = NULL; 1402 goto err; 1403 } 1404 1405 /* Prepare for RX : */ 1406 controller->dma_rx = dma_request_chan(dev, "rx"); 1407 if (IS_ERR(controller->dma_rx)) { 1408 ret = PTR_ERR(controller->dma_rx); 1409 dev_err_probe(dev, ret, "can't get the RX DMA channel!\n"); 1410 controller->dma_rx = NULL; 1411 goto err; 1412 } 1413 1414 init_completion(&spi_imx->dma_rx_completion); 1415 init_completion(&spi_imx->dma_tx_completion); 1416 controller->can_dma = spi_imx_can_dma; 1417 controller->max_dma_len = MAX_SDMA_BD_BYTES; 1418 spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX | 1419 SPI_CONTROLLER_MUST_TX; 1420 1421 return 0; 1422 err: 1423 spi_imx_sdma_exit(spi_imx); 1424 return ret; 1425 } 1426 1427 static void spi_imx_dma_rx_callback(void *cookie) 1428 { 1429 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 1430 1431 complete(&spi_imx->dma_rx_completion); 1432 } 1433 1434 static void spi_imx_dma_tx_callback(void *cookie) 1435 { 1436 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 1437 1438 complete(&spi_imx->dma_tx_completion); 1439 } 1440 1441 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size) 1442 { 1443 unsigned long timeout = 0; 1444 1445 /* Time with actual data transfer and CS change delay related to HW */ 1446 timeout = (8 + 4) * size / spi_imx->spi_bus_clk; 1447 1448 /* Add extra second for scheduler related activities */ 1449 timeout += 1; 1450 1451 /* Double calculated timeout */ 1452 return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC); 1453 } 1454 1455 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx, 1456 struct spi_transfer *transfer) 1457 { 1458 struct dma_async_tx_descriptor *desc_tx, *desc_rx; 1459 unsigned long transfer_timeout; 1460 unsigned long time_left; 1461 struct spi_controller *controller = spi_imx->controller; 1462 struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg; 1463 struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents); 1464 unsigned int bytes_per_word, i; 1465 int ret; 1466 1467 /* Get the right burst length from the last sg to ensure no tail data */ 1468 bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word); 1469 for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) { 1470 if (!(sg_dma_len(last_sg) % (i * bytes_per_word))) 1471 break; 1472 } 1473 /* Use 1 as wml in case no available burst length got */ 1474 if (i == 0) 1475 i = 1; 1476 1477 spi_imx->wml = i; 1478 1479 ret = spi_imx_dma_configure(controller); 1480 if (ret) 1481 goto dma_failure_no_start; 1482 1483 if (!spi_imx->devtype_data->setup_wml) { 1484 dev_err(spi_imx->dev, "No setup_wml()?\n"); 1485 ret = -EINVAL; 1486 goto dma_failure_no_start; 1487 } 1488 spi_imx->devtype_data->setup_wml(spi_imx); 1489 1490 /* 1491 * The TX DMA setup starts the transfer, so make sure RX is configured 1492 * before TX. 1493 */ 1494 desc_rx = dmaengine_prep_slave_sg(controller->dma_rx, 1495 rx->sgl, rx->nents, DMA_DEV_TO_MEM, 1496 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1497 if (!desc_rx) { 1498 ret = -EINVAL; 1499 goto dma_failure_no_start; 1500 } 1501 1502 desc_rx->callback = spi_imx_dma_rx_callback; 1503 desc_rx->callback_param = (void *)spi_imx; 1504 dmaengine_submit(desc_rx); 1505 reinit_completion(&spi_imx->dma_rx_completion); 1506 dma_async_issue_pending(controller->dma_rx); 1507 1508 desc_tx = dmaengine_prep_slave_sg(controller->dma_tx, 1509 tx->sgl, tx->nents, DMA_MEM_TO_DEV, 1510 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1511 if (!desc_tx) { 1512 dmaengine_terminate_all(controller->dma_tx); 1513 dmaengine_terminate_all(controller->dma_rx); 1514 return -EINVAL; 1515 } 1516 1517 desc_tx->callback = spi_imx_dma_tx_callback; 1518 desc_tx->callback_param = (void *)spi_imx; 1519 dmaengine_submit(desc_tx); 1520 reinit_completion(&spi_imx->dma_tx_completion); 1521 dma_async_issue_pending(controller->dma_tx); 1522 1523 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1524 1525 /* Wait SDMA to finish the data transfer.*/ 1526 time_left = wait_for_completion_timeout(&spi_imx->dma_tx_completion, 1527 transfer_timeout); 1528 if (!time_left) { 1529 dev_err(spi_imx->dev, "I/O Error in DMA TX\n"); 1530 dmaengine_terminate_all(controller->dma_tx); 1531 dmaengine_terminate_all(controller->dma_rx); 1532 return -ETIMEDOUT; 1533 } 1534 1535 time_left = wait_for_completion_timeout(&spi_imx->dma_rx_completion, 1536 transfer_timeout); 1537 if (!time_left) { 1538 dev_err(&controller->dev, "I/O Error in DMA RX\n"); 1539 spi_imx->devtype_data->reset(spi_imx); 1540 dmaengine_terminate_all(controller->dma_rx); 1541 return -ETIMEDOUT; 1542 } 1543 1544 return 0; 1545 /* fallback to pio */ 1546 dma_failure_no_start: 1547 transfer->error |= SPI_TRANS_FAIL_NO_START; 1548 return ret; 1549 } 1550 1551 static int spi_imx_pio_transfer(struct spi_device *spi, 1552 struct spi_transfer *transfer) 1553 { 1554 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1555 unsigned long transfer_timeout; 1556 unsigned long time_left; 1557 1558 spi_imx->tx_buf = transfer->tx_buf; 1559 spi_imx->rx_buf = transfer->rx_buf; 1560 spi_imx->count = transfer->len; 1561 spi_imx->txfifo = 0; 1562 spi_imx->remainder = 0; 1563 1564 reinit_completion(&spi_imx->xfer_done); 1565 1566 spi_imx_push(spi_imx); 1567 1568 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE); 1569 1570 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1571 1572 time_left = wait_for_completion_timeout(&spi_imx->xfer_done, 1573 transfer_timeout); 1574 if (!time_left) { 1575 dev_err(&spi->dev, "I/O Error in PIO\n"); 1576 spi_imx->devtype_data->reset(spi_imx); 1577 return -ETIMEDOUT; 1578 } 1579 1580 return 0; 1581 } 1582 1583 static int spi_imx_poll_transfer(struct spi_device *spi, 1584 struct spi_transfer *transfer) 1585 { 1586 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1587 unsigned long timeout; 1588 1589 spi_imx->tx_buf = transfer->tx_buf; 1590 spi_imx->rx_buf = transfer->rx_buf; 1591 spi_imx->count = transfer->len; 1592 spi_imx->txfifo = 0; 1593 spi_imx->remainder = 0; 1594 1595 /* fill in the fifo before timeout calculations if we are 1596 * interrupted here, then the data is getting transferred by 1597 * the HW while we are interrupted 1598 */ 1599 spi_imx_push(spi_imx); 1600 1601 timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies; 1602 while (spi_imx->txfifo) { 1603 /* RX */ 1604 while (spi_imx->txfifo && 1605 spi_imx->devtype_data->rx_available(spi_imx)) { 1606 spi_imx->rx(spi_imx); 1607 spi_imx->txfifo--; 1608 } 1609 1610 /* TX */ 1611 if (spi_imx->count) { 1612 spi_imx_push(spi_imx); 1613 continue; 1614 } 1615 1616 if (spi_imx->txfifo && 1617 time_after(jiffies, timeout)) { 1618 1619 dev_err_ratelimited(&spi->dev, 1620 "timeout period reached: jiffies: %lu- falling back to interrupt mode\n", 1621 jiffies - timeout); 1622 1623 /* fall back to interrupt mode */ 1624 return spi_imx_pio_transfer(spi, transfer); 1625 } 1626 } 1627 1628 return 0; 1629 } 1630 1631 static int spi_imx_pio_transfer_target(struct spi_device *spi, 1632 struct spi_transfer *transfer) 1633 { 1634 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1635 int ret = 0; 1636 1637 if (is_imx53_ecspi(spi_imx) && 1638 transfer->len > MX53_MAX_TRANSFER_BYTES) { 1639 dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n", 1640 MX53_MAX_TRANSFER_BYTES); 1641 return -EMSGSIZE; 1642 } 1643 1644 spi_imx->tx_buf = transfer->tx_buf; 1645 spi_imx->rx_buf = transfer->rx_buf; 1646 spi_imx->count = transfer->len; 1647 spi_imx->txfifo = 0; 1648 spi_imx->remainder = 0; 1649 1650 reinit_completion(&spi_imx->xfer_done); 1651 spi_imx->target_aborted = false; 1652 1653 spi_imx_push(spi_imx); 1654 1655 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR); 1656 1657 if (wait_for_completion_interruptible(&spi_imx->xfer_done) || 1658 spi_imx->target_aborted) { 1659 dev_dbg(&spi->dev, "interrupted\n"); 1660 ret = -EINTR; 1661 } 1662 1663 /* ecspi has a HW issue when works in Target mode, 1664 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty, 1665 * ECSPI_TXDATA keeps shift out the last word data, 1666 * so we have to disable ECSPI when in target mode after the 1667 * transfer completes 1668 */ 1669 if (spi_imx->devtype_data->disable) 1670 spi_imx->devtype_data->disable(spi_imx); 1671 1672 return ret; 1673 } 1674 1675 static unsigned int spi_imx_transfer_estimate_time_us(struct spi_transfer *transfer) 1676 { 1677 u64 result; 1678 1679 result = DIV_U64_ROUND_CLOSEST((u64)USEC_PER_SEC * transfer->len * BITS_PER_BYTE, 1680 transfer->effective_speed_hz); 1681 if (transfer->word_delay.value) { 1682 unsigned int word_delay_us; 1683 unsigned int words; 1684 1685 words = DIV_ROUND_UP(transfer->len * BITS_PER_BYTE, transfer->bits_per_word); 1686 word_delay_us = DIV_ROUND_CLOSEST(spi_delay_to_ns(&transfer->word_delay, transfer), 1687 NSEC_PER_USEC); 1688 result += (u64)words * word_delay_us; 1689 } 1690 1691 return min(result, U32_MAX); 1692 } 1693 1694 static int spi_imx_transfer_one(struct spi_controller *controller, 1695 struct spi_device *spi, 1696 struct spi_transfer *transfer) 1697 { 1698 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1699 1700 spi_imx_setupxfer(spi, transfer); 1701 transfer->effective_speed_hz = spi_imx->spi_bus_clk; 1702 1703 /* flush rxfifo before transfer */ 1704 while (spi_imx->devtype_data->rx_available(spi_imx)) 1705 readl(spi_imx->base + MXC_CSPIRXDATA); 1706 1707 if (spi_imx->target_mode) 1708 return spi_imx_pio_transfer_target(spi, transfer); 1709 1710 /* 1711 * If we decided in spi_imx_can_dma() that we want to do a DMA 1712 * transfer, the SPI transfer has already been mapped, so we 1713 * have to do the DMA transfer here. 1714 */ 1715 if (spi_imx->usedma) 1716 return spi_imx_dma_transfer(spi_imx, transfer); 1717 1718 /* run in polling mode for short transfers */ 1719 if (transfer->len == 1 || (polling_limit_us && 1720 spi_imx_transfer_estimate_time_us(transfer) < polling_limit_us)) 1721 return spi_imx_poll_transfer(spi, transfer); 1722 1723 return spi_imx_pio_transfer(spi, transfer); 1724 } 1725 1726 static int spi_imx_setup(struct spi_device *spi) 1727 { 1728 dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__, 1729 spi->mode, spi->bits_per_word, spi->max_speed_hz); 1730 1731 return 0; 1732 } 1733 1734 static int 1735 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg) 1736 { 1737 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1738 int ret; 1739 1740 ret = pm_runtime_resume_and_get(spi_imx->dev); 1741 if (ret < 0) { 1742 dev_err(spi_imx->dev, "failed to enable clock\n"); 1743 return ret; 1744 } 1745 1746 ret = spi_imx->devtype_data->prepare_message(spi_imx, msg); 1747 if (ret) { 1748 pm_runtime_mark_last_busy(spi_imx->dev); 1749 pm_runtime_put_autosuspend(spi_imx->dev); 1750 } 1751 1752 return ret; 1753 } 1754 1755 static int 1756 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg) 1757 { 1758 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1759 1760 pm_runtime_mark_last_busy(spi_imx->dev); 1761 pm_runtime_put_autosuspend(spi_imx->dev); 1762 return 0; 1763 } 1764 1765 static int spi_imx_target_abort(struct spi_controller *controller) 1766 { 1767 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1768 1769 spi_imx->target_aborted = true; 1770 complete(&spi_imx->xfer_done); 1771 1772 return 0; 1773 } 1774 1775 static int spi_imx_probe(struct platform_device *pdev) 1776 { 1777 struct device_node *np = pdev->dev.of_node; 1778 struct spi_controller *controller; 1779 struct spi_imx_data *spi_imx; 1780 struct resource *res; 1781 int ret, irq, spi_drctl; 1782 const struct spi_imx_devtype_data *devtype_data = 1783 of_device_get_match_data(&pdev->dev); 1784 bool target_mode; 1785 u32 val; 1786 1787 target_mode = devtype_data->has_targetmode && 1788 of_property_read_bool(np, "spi-slave"); 1789 if (target_mode) 1790 controller = spi_alloc_target(&pdev->dev, 1791 sizeof(struct spi_imx_data)); 1792 else 1793 controller = spi_alloc_host(&pdev->dev, 1794 sizeof(struct spi_imx_data)); 1795 if (!controller) 1796 return -ENOMEM; 1797 1798 ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl); 1799 if ((ret < 0) || (spi_drctl >= 0x3)) { 1800 /* '11' is reserved */ 1801 spi_drctl = 0; 1802 } 1803 1804 platform_set_drvdata(pdev, controller); 1805 1806 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32); 1807 controller->bus_num = np ? -1 : pdev->id; 1808 controller->use_gpio_descriptors = true; 1809 1810 spi_imx = spi_controller_get_devdata(controller); 1811 spi_imx->controller = controller; 1812 spi_imx->dev = &pdev->dev; 1813 spi_imx->target_mode = target_mode; 1814 1815 spi_imx->devtype_data = devtype_data; 1816 1817 /* 1818 * Get number of chip selects from device properties. This can be 1819 * coming from device tree or boardfiles, if it is not defined, 1820 * a default value of 3 chip selects will be used, as all the legacy 1821 * board files have <= 3 chip selects. 1822 */ 1823 if (!device_property_read_u32(&pdev->dev, "num-cs", &val)) 1824 controller->num_chipselect = val; 1825 else 1826 controller->num_chipselect = 3; 1827 1828 controller->transfer_one = spi_imx_transfer_one; 1829 controller->setup = spi_imx_setup; 1830 controller->prepare_message = spi_imx_prepare_message; 1831 controller->unprepare_message = spi_imx_unprepare_message; 1832 controller->target_abort = spi_imx_target_abort; 1833 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS | 1834 SPI_MOSI_IDLE_LOW; 1835 1836 if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) || 1837 is_imx53_ecspi(spi_imx)) 1838 controller->mode_bits |= SPI_LOOP | SPI_READY; 1839 1840 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) 1841 controller->mode_bits |= SPI_RX_CPHA_FLIP; 1842 1843 if (is_imx51_ecspi(spi_imx) && 1844 device_property_read_u32(&pdev->dev, "cs-gpios", NULL)) 1845 /* 1846 * When using HW-CS implementing SPI_CS_WORD can be done by just 1847 * setting the burst length to the word size. This is 1848 * considerably faster than manually controlling the CS. 1849 */ 1850 controller->mode_bits |= SPI_CS_WORD; 1851 1852 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) { 1853 controller->max_native_cs = 4; 1854 controller->flags |= SPI_CONTROLLER_GPIO_SS; 1855 } 1856 1857 spi_imx->spi_drctl = spi_drctl; 1858 1859 init_completion(&spi_imx->xfer_done); 1860 1861 spi_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1862 if (IS_ERR(spi_imx->base)) { 1863 ret = PTR_ERR(spi_imx->base); 1864 goto out_controller_put; 1865 } 1866 spi_imx->base_phys = res->start; 1867 1868 irq = platform_get_irq(pdev, 0); 1869 if (irq < 0) { 1870 ret = irq; 1871 goto out_controller_put; 1872 } 1873 1874 ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0, 1875 dev_name(&pdev->dev), spi_imx); 1876 if (ret) { 1877 dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret); 1878 goto out_controller_put; 1879 } 1880 1881 spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 1882 if (IS_ERR(spi_imx->clk_ipg)) { 1883 ret = PTR_ERR(spi_imx->clk_ipg); 1884 goto out_controller_put; 1885 } 1886 1887 spi_imx->clk_per = devm_clk_get(&pdev->dev, "per"); 1888 if (IS_ERR(spi_imx->clk_per)) { 1889 ret = PTR_ERR(spi_imx->clk_per); 1890 goto out_controller_put; 1891 } 1892 1893 ret = clk_prepare_enable(spi_imx->clk_per); 1894 if (ret) 1895 goto out_controller_put; 1896 1897 ret = clk_prepare_enable(spi_imx->clk_ipg); 1898 if (ret) 1899 goto out_put_per; 1900 1901 pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT); 1902 pm_runtime_use_autosuspend(spi_imx->dev); 1903 pm_runtime_get_noresume(spi_imx->dev); 1904 pm_runtime_set_active(spi_imx->dev); 1905 pm_runtime_enable(spi_imx->dev); 1906 1907 spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per); 1908 /* 1909 * Only validated on i.mx35 and i.mx6 now, can remove the constraint 1910 * if validated on other chips. 1911 */ 1912 if (spi_imx->devtype_data->has_dmamode) { 1913 ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller); 1914 if (ret == -EPROBE_DEFER) 1915 goto out_runtime_pm_put; 1916 1917 if (ret < 0) 1918 dev_dbg(&pdev->dev, "dma setup error %d, use pio\n", 1919 ret); 1920 } 1921 1922 spi_imx->devtype_data->reset(spi_imx); 1923 1924 spi_imx->devtype_data->intctrl(spi_imx, 0); 1925 1926 controller->dev.of_node = pdev->dev.of_node; 1927 ret = spi_register_controller(controller); 1928 if (ret) { 1929 dev_err_probe(&pdev->dev, ret, "register controller failed\n"); 1930 goto out_register_controller; 1931 } 1932 1933 pm_runtime_mark_last_busy(spi_imx->dev); 1934 pm_runtime_put_autosuspend(spi_imx->dev); 1935 1936 return ret; 1937 1938 out_register_controller: 1939 if (spi_imx->devtype_data->has_dmamode) 1940 spi_imx_sdma_exit(spi_imx); 1941 out_runtime_pm_put: 1942 pm_runtime_dont_use_autosuspend(spi_imx->dev); 1943 pm_runtime_disable(spi_imx->dev); 1944 pm_runtime_set_suspended(&pdev->dev); 1945 1946 clk_disable_unprepare(spi_imx->clk_ipg); 1947 out_put_per: 1948 clk_disable_unprepare(spi_imx->clk_per); 1949 out_controller_put: 1950 spi_controller_put(controller); 1951 1952 return ret; 1953 } 1954 1955 static void spi_imx_remove(struct platform_device *pdev) 1956 { 1957 struct spi_controller *controller = platform_get_drvdata(pdev); 1958 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1959 int ret; 1960 1961 spi_unregister_controller(controller); 1962 1963 ret = pm_runtime_get_sync(spi_imx->dev); 1964 if (ret >= 0) 1965 writel(0, spi_imx->base + MXC_CSPICTRL); 1966 else 1967 dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n"); 1968 1969 pm_runtime_dont_use_autosuspend(spi_imx->dev); 1970 pm_runtime_put_sync(spi_imx->dev); 1971 pm_runtime_disable(spi_imx->dev); 1972 1973 spi_imx_sdma_exit(spi_imx); 1974 } 1975 1976 static int spi_imx_runtime_resume(struct device *dev) 1977 { 1978 struct spi_controller *controller = dev_get_drvdata(dev); 1979 struct spi_imx_data *spi_imx; 1980 int ret; 1981 1982 spi_imx = spi_controller_get_devdata(controller); 1983 1984 ret = clk_prepare_enable(spi_imx->clk_per); 1985 if (ret) 1986 return ret; 1987 1988 ret = clk_prepare_enable(spi_imx->clk_ipg); 1989 if (ret) { 1990 clk_disable_unprepare(spi_imx->clk_per); 1991 return ret; 1992 } 1993 1994 return 0; 1995 } 1996 1997 static int spi_imx_runtime_suspend(struct device *dev) 1998 { 1999 struct spi_controller *controller = dev_get_drvdata(dev); 2000 struct spi_imx_data *spi_imx; 2001 2002 spi_imx = spi_controller_get_devdata(controller); 2003 2004 clk_disable_unprepare(spi_imx->clk_per); 2005 clk_disable_unprepare(spi_imx->clk_ipg); 2006 2007 return 0; 2008 } 2009 2010 static int spi_imx_suspend(struct device *dev) 2011 { 2012 pinctrl_pm_select_sleep_state(dev); 2013 return 0; 2014 } 2015 2016 static int spi_imx_resume(struct device *dev) 2017 { 2018 pinctrl_pm_select_default_state(dev); 2019 return 0; 2020 } 2021 2022 static const struct dev_pm_ops imx_spi_pm = { 2023 RUNTIME_PM_OPS(spi_imx_runtime_suspend, spi_imx_runtime_resume, NULL) 2024 SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume) 2025 }; 2026 2027 static struct platform_driver spi_imx_driver = { 2028 .driver = { 2029 .name = DRIVER_NAME, 2030 .of_match_table = spi_imx_dt_ids, 2031 .pm = pm_ptr(&imx_spi_pm), 2032 }, 2033 .probe = spi_imx_probe, 2034 .remove = spi_imx_remove, 2035 }; 2036 module_platform_driver(spi_imx_driver); 2037 2038 MODULE_DESCRIPTION("i.MX SPI Controller driver"); 2039 MODULE_AUTHOR("Sascha Hauer, Pengutronix"); 2040 MODULE_LICENSE("GPL"); 2041 MODULE_ALIAS("platform:" DRIVER_NAME); 2042