xref: /linux/drivers/spi/spi-imx.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 // Copyright (C) 2008 Juergen Beisert
4 
5 #include <linux/bits.h>
6 #include <linux/clk.h>
7 #include <linux/completion.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/irq.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/slab.h>
21 #include <linux/spi/spi.h>
22 #include <linux/types.h>
23 #include <linux/of.h>
24 #include <linux/property.h>
25 
26 #include <linux/dma/imx-dma.h>
27 
28 #define DRIVER_NAME "spi_imx"
29 
30 static bool use_dma = true;
31 module_param(use_dma, bool, 0644);
32 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
33 
34 /* define polling limits */
35 static unsigned int polling_limit_us = 30;
36 module_param(polling_limit_us, uint, 0664);
37 MODULE_PARM_DESC(polling_limit_us,
38 		 "time in us to run a transfer in polling mode\n");
39 
40 #define MXC_RPM_TIMEOUT		2000 /* 2000ms */
41 
42 #define MXC_CSPIRXDATA		0x00
43 #define MXC_CSPITXDATA		0x04
44 #define MXC_CSPICTRL		0x08
45 #define MXC_CSPIINT		0x0c
46 #define MXC_RESET		0x1c
47 
48 /* generic defines to abstract from the different register layouts */
49 #define MXC_INT_RR	(1 << 0) /* Receive data ready interrupt */
50 #define MXC_INT_TE	(1 << 1) /* Transmit FIFO empty interrupt */
51 #define MXC_INT_RDR	BIT(4) /* Receive date threshold interrupt */
52 
53 /* The maximum bytes that a sdma BD can transfer. */
54 #define MAX_SDMA_BD_BYTES (1 << 15)
55 #define MX51_ECSPI_CTRL_MAX_BURST	512
56 /* The maximum bytes that IMX53_ECSPI can transfer in target mode.*/
57 #define MX53_MAX_TRANSFER_BYTES		512
58 
59 enum spi_imx_devtype {
60 	IMX1_CSPI,
61 	IMX21_CSPI,
62 	IMX27_CSPI,
63 	IMX31_CSPI,
64 	IMX35_CSPI,	/* CSPI on all i.mx except above */
65 	IMX51_ECSPI,	/* ECSPI on i.mx51 */
66 	IMX53_ECSPI,	/* ECSPI on i.mx53 and later */
67 };
68 
69 struct spi_imx_data;
70 
71 struct spi_imx_devtype_data {
72 	void (*intctrl)(struct spi_imx_data *spi_imx, int enable);
73 	int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg);
74 	int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi);
75 	void (*trigger)(struct spi_imx_data *spi_imx);
76 	int (*rx_available)(struct spi_imx_data *spi_imx);
77 	void (*reset)(struct spi_imx_data *spi_imx);
78 	void (*setup_wml)(struct spi_imx_data *spi_imx);
79 	void (*disable)(struct spi_imx_data *spi_imx);
80 	bool has_dmamode;
81 	bool has_targetmode;
82 	unsigned int fifo_size;
83 	bool dynamic_burst;
84 	/*
85 	 * ERR009165 fixed or not:
86 	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
87 	 */
88 	bool tx_glitch_fixed;
89 	enum spi_imx_devtype devtype;
90 };
91 
92 struct spi_imx_data {
93 	struct spi_controller *controller;
94 	struct device *dev;
95 
96 	struct completion xfer_done;
97 	void __iomem *base;
98 	unsigned long base_phys;
99 
100 	struct clk *clk_per;
101 	struct clk *clk_ipg;
102 	unsigned long spi_clk;
103 	unsigned int spi_bus_clk;
104 
105 	unsigned int bits_per_word;
106 	unsigned int spi_drctl;
107 
108 	unsigned int count, remainder;
109 	void (*tx)(struct spi_imx_data *spi_imx);
110 	void (*rx)(struct spi_imx_data *spi_imx);
111 	void *rx_buf;
112 	const void *tx_buf;
113 	unsigned int txfifo; /* number of words pushed in tx FIFO */
114 	unsigned int dynamic_burst;
115 	bool rx_only;
116 
117 	/* Target mode */
118 	bool target_mode;
119 	bool target_aborted;
120 	unsigned int target_burst;
121 
122 	/* DMA */
123 	bool usedma;
124 	u32 wml;
125 	struct completion dma_rx_completion;
126 	struct completion dma_tx_completion;
127 
128 	const struct spi_imx_devtype_data *devtype_data;
129 };
130 
131 static inline int is_imx27_cspi(struct spi_imx_data *d)
132 {
133 	return d->devtype_data->devtype == IMX27_CSPI;
134 }
135 
136 static inline int is_imx35_cspi(struct spi_imx_data *d)
137 {
138 	return d->devtype_data->devtype == IMX35_CSPI;
139 }
140 
141 static inline int is_imx51_ecspi(struct spi_imx_data *d)
142 {
143 	return d->devtype_data->devtype == IMX51_ECSPI;
144 }
145 
146 static inline int is_imx53_ecspi(struct spi_imx_data *d)
147 {
148 	return d->devtype_data->devtype == IMX53_ECSPI;
149 }
150 
151 #define MXC_SPI_BUF_RX(type)						\
152 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx)		\
153 {									\
154 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);	\
155 									\
156 	if (spi_imx->rx_buf) {						\
157 		*(type *)spi_imx->rx_buf = val;				\
158 		spi_imx->rx_buf += sizeof(type);			\
159 	}								\
160 									\
161 	spi_imx->remainder -= sizeof(type);				\
162 }
163 
164 #define MXC_SPI_BUF_TX(type)						\
165 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx)		\
166 {									\
167 	type val = 0;							\
168 									\
169 	if (spi_imx->tx_buf) {						\
170 		val = *(type *)spi_imx->tx_buf;				\
171 		spi_imx->tx_buf += sizeof(type);			\
172 	}								\
173 									\
174 	spi_imx->count -= sizeof(type);					\
175 									\
176 	writel(val, spi_imx->base + MXC_CSPITXDATA);			\
177 }
178 
179 MXC_SPI_BUF_RX(u8)
180 MXC_SPI_BUF_TX(u8)
181 MXC_SPI_BUF_RX(u16)
182 MXC_SPI_BUF_TX(u16)
183 MXC_SPI_BUF_RX(u32)
184 MXC_SPI_BUF_TX(u32)
185 
186 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
187  * (which is currently not the case in this driver)
188  */
189 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
190 	256, 384, 512, 768, 1024};
191 
192 /* MX21, MX27 */
193 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
194 		unsigned int fspi, unsigned int max, unsigned int *fres)
195 {
196 	int i;
197 
198 	for (i = 2; i < max; i++)
199 		if (fspi * mxc_clkdivs[i] >= fin)
200 			break;
201 
202 	*fres = fin / mxc_clkdivs[i];
203 	return i;
204 }
205 
206 /* MX1, MX31, MX35, MX51 CSPI */
207 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
208 		unsigned int fspi, unsigned int *fres)
209 {
210 	int i, div = 4;
211 
212 	for (i = 0; i < 7; i++) {
213 		if (fspi * div >= fin)
214 			goto out;
215 		div <<= 1;
216 	}
217 
218 out:
219 	*fres = fin / div;
220 	return i;
221 }
222 
223 static int spi_imx_bytes_per_word(const int bits_per_word)
224 {
225 	if (bits_per_word <= 8)
226 		return 1;
227 	else if (bits_per_word <= 16)
228 		return 2;
229 	else
230 		return 4;
231 }
232 
233 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi,
234 			 struct spi_transfer *transfer)
235 {
236 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
237 
238 	if (!use_dma || controller->fallback)
239 		return false;
240 
241 	if (!controller->dma_rx)
242 		return false;
243 
244 	if (spi_imx->target_mode)
245 		return false;
246 
247 	if (transfer->len < spi_imx->devtype_data->fifo_size)
248 		return false;
249 
250 	spi_imx->dynamic_burst = 0;
251 
252 	return true;
253 }
254 
255 /*
256  * Note the number of natively supported chip selects for MX51 is 4. Some
257  * devices may have less actual SS pins but the register map supports 4. When
258  * using gpio chip selects the cs values passed into the macros below can go
259  * outside the range 0 - 3. We therefore need to limit the cs value to avoid
260  * corrupting bits outside the allocated locations.
261  *
262  * The simplest way to do this is to just mask the cs bits to 2 bits. This
263  * still allows all 4 native chip selects to work as well as gpio chip selects
264  * (which can use any of the 4 chip select configurations).
265  */
266 
267 #define MX51_ECSPI_CTRL		0x08
268 #define MX51_ECSPI_CTRL_ENABLE		(1 <<  0)
269 #define MX51_ECSPI_CTRL_XCH		(1 <<  2)
270 #define MX51_ECSPI_CTRL_SMC		(1 << 3)
271 #define MX51_ECSPI_CTRL_MODE_MASK	(0xf << 4)
272 #define MX51_ECSPI_CTRL_DRCTL(drctl)	((drctl) << 16)
273 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET	8
274 #define MX51_ECSPI_CTRL_PREDIV_OFFSET	12
275 #define MX51_ECSPI_CTRL_CS(cs)		((cs & 3) << 18)
276 #define MX51_ECSPI_CTRL_BL_OFFSET	20
277 #define MX51_ECSPI_CTRL_BL_MASK		(0xfff << 20)
278 
279 #define MX51_ECSPI_CONFIG	0x0c
280 #define MX51_ECSPI_CONFIG_SCLKPHA(cs)	(1 << ((cs & 3) +  0))
281 #define MX51_ECSPI_CONFIG_SCLKPOL(cs)	(1 << ((cs & 3) +  4))
282 #define MX51_ECSPI_CONFIG_SBBCTRL(cs)	(1 << ((cs & 3) +  8))
283 #define MX51_ECSPI_CONFIG_SSBPOL(cs)	(1 << ((cs & 3) + 12))
284 #define MX51_ECSPI_CONFIG_DATACTL(cs)	(1 << ((cs & 3) + 16))
285 #define MX51_ECSPI_CONFIG_SCLKCTL(cs)	(1 << ((cs & 3) + 20))
286 
287 #define MX51_ECSPI_INT		0x10
288 #define MX51_ECSPI_INT_TEEN		(1 <<  0)
289 #define MX51_ECSPI_INT_RREN		(1 <<  3)
290 #define MX51_ECSPI_INT_RDREN		(1 <<  4)
291 
292 #define MX51_ECSPI_DMA		0x14
293 #define MX51_ECSPI_DMA_TX_WML(wml)	((wml) & 0x3f)
294 #define MX51_ECSPI_DMA_RX_WML(wml)	(((wml) & 0x3f) << 16)
295 #define MX51_ECSPI_DMA_RXT_WML(wml)	(((wml) & 0x3f) << 24)
296 
297 #define MX51_ECSPI_DMA_TEDEN		(1 << 7)
298 #define MX51_ECSPI_DMA_RXDEN		(1 << 23)
299 #define MX51_ECSPI_DMA_RXTDEN		(1 << 31)
300 
301 #define MX51_ECSPI_STAT		0x18
302 #define MX51_ECSPI_STAT_RR		(1 <<  3)
303 
304 #define MX51_ECSPI_TESTREG	0x20
305 #define MX51_ECSPI_TESTREG_LBC	BIT(31)
306 
307 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
308 {
309 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
310 
311 	if (spi_imx->rx_buf) {
312 #ifdef __LITTLE_ENDIAN
313 		unsigned int bytes_per_word;
314 
315 		bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
316 		if (bytes_per_word == 1)
317 			swab32s(&val);
318 		else if (bytes_per_word == 2)
319 			swahw32s(&val);
320 #endif
321 		*(u32 *)spi_imx->rx_buf = val;
322 		spi_imx->rx_buf += sizeof(u32);
323 	}
324 
325 	spi_imx->remainder -= sizeof(u32);
326 }
327 
328 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
329 {
330 	int unaligned;
331 	u32 val;
332 
333 	unaligned = spi_imx->remainder % 4;
334 
335 	if (!unaligned) {
336 		spi_imx_buf_rx_swap_u32(spi_imx);
337 		return;
338 	}
339 
340 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
341 		spi_imx_buf_rx_u16(spi_imx);
342 		return;
343 	}
344 
345 	val = readl(spi_imx->base + MXC_CSPIRXDATA);
346 
347 	while (unaligned--) {
348 		if (spi_imx->rx_buf) {
349 			*(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff;
350 			spi_imx->rx_buf++;
351 		}
352 		spi_imx->remainder--;
353 	}
354 }
355 
356 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
357 {
358 	u32 val = 0;
359 #ifdef __LITTLE_ENDIAN
360 	unsigned int bytes_per_word;
361 #endif
362 
363 	if (spi_imx->tx_buf) {
364 		val = *(u32 *)spi_imx->tx_buf;
365 		spi_imx->tx_buf += sizeof(u32);
366 	}
367 
368 	spi_imx->count -= sizeof(u32);
369 #ifdef __LITTLE_ENDIAN
370 	bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
371 
372 	if (bytes_per_word == 1)
373 		swab32s(&val);
374 	else if (bytes_per_word == 2)
375 		swahw32s(&val);
376 #endif
377 	writel(val, spi_imx->base + MXC_CSPITXDATA);
378 }
379 
380 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
381 {
382 	int unaligned;
383 	u32 val = 0;
384 
385 	unaligned = spi_imx->count % 4;
386 
387 	if (!unaligned) {
388 		spi_imx_buf_tx_swap_u32(spi_imx);
389 		return;
390 	}
391 
392 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
393 		spi_imx_buf_tx_u16(spi_imx);
394 		return;
395 	}
396 
397 	while (unaligned--) {
398 		if (spi_imx->tx_buf) {
399 			val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned);
400 			spi_imx->tx_buf++;
401 		}
402 		spi_imx->count--;
403 	}
404 
405 	writel(val, spi_imx->base + MXC_CSPITXDATA);
406 }
407 
408 static void mx53_ecspi_rx_target(struct spi_imx_data *spi_imx)
409 {
410 	u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA));
411 
412 	if (spi_imx->rx_buf) {
413 		int n_bytes = spi_imx->target_burst % sizeof(val);
414 
415 		if (!n_bytes)
416 			n_bytes = sizeof(val);
417 
418 		memcpy(spi_imx->rx_buf,
419 		       ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
420 
421 		spi_imx->rx_buf += n_bytes;
422 		spi_imx->target_burst -= n_bytes;
423 	}
424 
425 	spi_imx->remainder -= sizeof(u32);
426 }
427 
428 static void mx53_ecspi_tx_target(struct spi_imx_data *spi_imx)
429 {
430 	u32 val = 0;
431 	int n_bytes = spi_imx->count % sizeof(val);
432 
433 	if (!n_bytes)
434 		n_bytes = sizeof(val);
435 
436 	if (spi_imx->tx_buf) {
437 		memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
438 		       spi_imx->tx_buf, n_bytes);
439 		val = cpu_to_be32(val);
440 		spi_imx->tx_buf += n_bytes;
441 	}
442 
443 	spi_imx->count -= n_bytes;
444 
445 	writel(val, spi_imx->base + MXC_CSPITXDATA);
446 }
447 
448 /* MX51 eCSPI */
449 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
450 				      unsigned int fspi, unsigned int *fres)
451 {
452 	/*
453 	 * there are two 4-bit dividers, the pre-divider divides by
454 	 * $pre, the post-divider by 2^$post
455 	 */
456 	unsigned int pre, post;
457 	unsigned int fin = spi_imx->spi_clk;
458 
459 	fspi = min(fspi, fin);
460 
461 	post = fls(fin) - fls(fspi);
462 	if (fin > fspi << post)
463 		post++;
464 
465 	/* now we have: (fin <= fspi << post) with post being minimal */
466 
467 	post = max(4U, post) - 4;
468 	if (unlikely(post > 0xf)) {
469 		dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
470 				fspi, fin);
471 		return 0xff;
472 	}
473 
474 	pre = DIV_ROUND_UP(fin, fspi << post) - 1;
475 
476 	dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
477 			__func__, fin, fspi, post, pre);
478 
479 	/* Resulting frequency for the SCLK line. */
480 	*fres = (fin / (pre + 1)) >> post;
481 
482 	return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
483 		(post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
484 }
485 
486 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
487 {
488 	unsigned int val = 0;
489 
490 	if (enable & MXC_INT_TE)
491 		val |= MX51_ECSPI_INT_TEEN;
492 
493 	if (enable & MXC_INT_RR)
494 		val |= MX51_ECSPI_INT_RREN;
495 
496 	if (enable & MXC_INT_RDR)
497 		val |= MX51_ECSPI_INT_RDREN;
498 
499 	writel(val, spi_imx->base + MX51_ECSPI_INT);
500 }
501 
502 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
503 {
504 	u32 reg;
505 
506 	reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
507 	reg |= MX51_ECSPI_CTRL_XCH;
508 	writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
509 }
510 
511 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
512 {
513 	u32 ctrl;
514 
515 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
516 	ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
517 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
518 }
519 
520 static int mx51_ecspi_channel(const struct spi_device *spi)
521 {
522 	if (!spi_get_csgpiod(spi, 0))
523 		return spi_get_chipselect(spi, 0);
524 	return spi->controller->unused_native_cs;
525 }
526 
527 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
528 				      struct spi_message *msg)
529 {
530 	struct spi_device *spi = msg->spi;
531 	struct spi_transfer *xfer;
532 	u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
533 	u32 min_speed_hz = ~0U;
534 	u32 testreg, delay;
535 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
536 	u32 current_cfg = cfg;
537 	int channel = mx51_ecspi_channel(spi);
538 
539 	/* set Host or Target mode */
540 	if (spi_imx->target_mode)
541 		ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
542 	else
543 		ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
544 
545 	/*
546 	 * Enable SPI_RDY handling (falling edge/level triggered).
547 	 */
548 	if (spi->mode & SPI_READY)
549 		ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
550 
551 	/* set chip select to use */
552 	ctrl |= MX51_ECSPI_CTRL_CS(channel);
553 
554 	/*
555 	 * The ctrl register must be written first, with the EN bit set other
556 	 * registers must not be written to.
557 	 */
558 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
559 
560 	testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
561 	if (spi->mode & SPI_LOOP)
562 		testreg |= MX51_ECSPI_TESTREG_LBC;
563 	else
564 		testreg &= ~MX51_ECSPI_TESTREG_LBC;
565 	writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
566 
567 	/*
568 	 * eCSPI burst completion by Chip Select signal in Target mode
569 	 * is not functional for imx53 Soc, config SPI burst completed when
570 	 * BURST_LENGTH + 1 bits are received
571 	 */
572 	if (spi_imx->target_mode && is_imx53_ecspi(spi_imx))
573 		cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(channel);
574 	else
575 		cfg |= MX51_ECSPI_CONFIG_SBBCTRL(channel);
576 
577 	if (spi->mode & SPI_CPOL) {
578 		cfg |= MX51_ECSPI_CONFIG_SCLKPOL(channel);
579 		cfg |= MX51_ECSPI_CONFIG_SCLKCTL(channel);
580 	} else {
581 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(channel);
582 		cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(channel);
583 	}
584 
585 	if (spi->mode & SPI_MOSI_IDLE_LOW)
586 		cfg |= MX51_ECSPI_CONFIG_DATACTL(channel);
587 	else
588 		cfg &= ~MX51_ECSPI_CONFIG_DATACTL(channel);
589 
590 	if (spi->mode & SPI_CS_HIGH)
591 		cfg |= MX51_ECSPI_CONFIG_SSBPOL(channel);
592 	else
593 		cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(channel);
594 
595 	if (cfg == current_cfg)
596 		return 0;
597 
598 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
599 
600 	/*
601 	 * Wait until the changes in the configuration register CONFIGREG
602 	 * propagate into the hardware. It takes exactly one tick of the
603 	 * SCLK clock, but we will wait two SCLK clock just to be sure. The
604 	 * effect of the delay it takes for the hardware to apply changes
605 	 * is noticable if the SCLK clock run very slow. In such a case, if
606 	 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
607 	 * be asserted before the SCLK polarity changes, which would disrupt
608 	 * the SPI communication as the device on the other end would consider
609 	 * the change of SCLK polarity as a clock tick already.
610 	 *
611 	 * Because spi_imx->spi_bus_clk is only set in prepare_message
612 	 * callback, iterate over all the transfers in spi_message, find the
613 	 * one with lowest bus frequency, and use that bus frequency for the
614 	 * delay calculation. In case all transfers have speed_hz == 0, then
615 	 * min_speed_hz is ~0 and the resulting delay is zero.
616 	 */
617 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
618 		if (!xfer->speed_hz)
619 			continue;
620 		min_speed_hz = min(xfer->speed_hz, min_speed_hz);
621 	}
622 
623 	delay = (2 * 1000000) / min_speed_hz;
624 	if (likely(delay < 10))	/* SCLK is faster than 200 kHz */
625 		udelay(delay);
626 	else			/* SCLK is _very_ slow */
627 		usleep_range(delay, delay + 10);
628 
629 	return 0;
630 }
631 
632 static void mx51_configure_cpha(struct spi_imx_data *spi_imx,
633 				struct spi_device *spi)
634 {
635 	bool cpha = (spi->mode & SPI_CPHA);
636 	bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only;
637 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
638 	int channel = mx51_ecspi_channel(spi);
639 
640 	/* Flip cpha logical value iff flip_cpha */
641 	cpha ^= flip_cpha;
642 
643 	if (cpha)
644 		cfg |= MX51_ECSPI_CONFIG_SCLKPHA(channel);
645 	else
646 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(channel);
647 
648 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
649 }
650 
651 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
652 				       struct spi_device *spi)
653 {
654 	u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
655 	u32 clk;
656 
657 	/* Clear BL field and set the right value */
658 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
659 	if (spi_imx->target_mode && is_imx53_ecspi(spi_imx))
660 		ctrl |= (spi_imx->target_burst * 8 - 1)
661 			<< MX51_ECSPI_CTRL_BL_OFFSET;
662 	else {
663 		ctrl |= (spi_imx->bits_per_word - 1)
664 			<< MX51_ECSPI_CTRL_BL_OFFSET;
665 	}
666 
667 	/* set clock speed */
668 	ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
669 		  0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
670 	ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk);
671 	spi_imx->spi_bus_clk = clk;
672 
673 	mx51_configure_cpha(spi_imx, spi);
674 
675 	/*
676 	 * ERR009165: work in XHC mode instead of SMC as PIO on the chips
677 	 * before i.mx6ul.
678 	 */
679 	if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed)
680 		ctrl |= MX51_ECSPI_CTRL_SMC;
681 	else
682 		ctrl &= ~MX51_ECSPI_CTRL_SMC;
683 
684 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
685 
686 	return 0;
687 }
688 
689 static void mx51_setup_wml(struct spi_imx_data *spi_imx)
690 {
691 	u32 tx_wml = 0;
692 
693 	if (spi_imx->devtype_data->tx_glitch_fixed)
694 		tx_wml = spi_imx->wml;
695 	/*
696 	 * Configure the DMA register: setup the watermark
697 	 * and enable DMA request.
698 	 */
699 	writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
700 		MX51_ECSPI_DMA_TX_WML(tx_wml) |
701 		MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
702 		MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
703 		MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
704 }
705 
706 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
707 {
708 	return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
709 }
710 
711 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
712 {
713 	/* drain receive buffer */
714 	while (mx51_ecspi_rx_available(spi_imx))
715 		readl(spi_imx->base + MXC_CSPIRXDATA);
716 }
717 
718 #define MX31_INTREG_TEEN	(1 << 0)
719 #define MX31_INTREG_RREN	(1 << 3)
720 
721 #define MX31_CSPICTRL_ENABLE	(1 << 0)
722 #define MX31_CSPICTRL_HOST	(1 << 1)
723 #define MX31_CSPICTRL_XCH	(1 << 2)
724 #define MX31_CSPICTRL_SMC	(1 << 3)
725 #define MX31_CSPICTRL_POL	(1 << 4)
726 #define MX31_CSPICTRL_PHA	(1 << 5)
727 #define MX31_CSPICTRL_SSCTL	(1 << 6)
728 #define MX31_CSPICTRL_SSPOL	(1 << 7)
729 #define MX31_CSPICTRL_BC_SHIFT	8
730 #define MX35_CSPICTRL_BL_SHIFT	20
731 #define MX31_CSPICTRL_CS_SHIFT	24
732 #define MX35_CSPICTRL_CS_SHIFT	12
733 #define MX31_CSPICTRL_DR_SHIFT	16
734 
735 #define MX31_CSPI_DMAREG	0x10
736 #define MX31_DMAREG_RH_DEN	(1<<4)
737 #define MX31_DMAREG_TH_DEN	(1<<1)
738 
739 #define MX31_CSPISTATUS		0x14
740 #define MX31_STATUS_RR		(1 << 3)
741 
742 #define MX31_CSPI_TESTREG	0x1C
743 #define MX31_TEST_LBC		(1 << 14)
744 
745 /* These functions also work for the i.MX35, but be aware that
746  * the i.MX35 has a slightly different register layout for bits
747  * we do not use here.
748  */
749 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
750 {
751 	unsigned int val = 0;
752 
753 	if (enable & MXC_INT_TE)
754 		val |= MX31_INTREG_TEEN;
755 	if (enable & MXC_INT_RR)
756 		val |= MX31_INTREG_RREN;
757 
758 	writel(val, spi_imx->base + MXC_CSPIINT);
759 }
760 
761 static void mx31_trigger(struct spi_imx_data *spi_imx)
762 {
763 	unsigned int reg;
764 
765 	reg = readl(spi_imx->base + MXC_CSPICTRL);
766 	reg |= MX31_CSPICTRL_XCH;
767 	writel(reg, spi_imx->base + MXC_CSPICTRL);
768 }
769 
770 static int mx31_prepare_message(struct spi_imx_data *spi_imx,
771 				struct spi_message *msg)
772 {
773 	return 0;
774 }
775 
776 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
777 				 struct spi_device *spi)
778 {
779 	unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_HOST;
780 	unsigned int clk;
781 
782 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
783 		MX31_CSPICTRL_DR_SHIFT;
784 	spi_imx->spi_bus_clk = clk;
785 
786 	if (is_imx35_cspi(spi_imx)) {
787 		reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
788 		reg |= MX31_CSPICTRL_SSCTL;
789 	} else {
790 		reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
791 	}
792 
793 	if (spi->mode & SPI_CPHA)
794 		reg |= MX31_CSPICTRL_PHA;
795 	if (spi->mode & SPI_CPOL)
796 		reg |= MX31_CSPICTRL_POL;
797 	if (spi->mode & SPI_CS_HIGH)
798 		reg |= MX31_CSPICTRL_SSPOL;
799 	if (!spi_get_csgpiod(spi, 0))
800 		reg |= (spi_get_chipselect(spi, 0)) <<
801 			(is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
802 						  MX31_CSPICTRL_CS_SHIFT);
803 
804 	if (spi_imx->usedma)
805 		reg |= MX31_CSPICTRL_SMC;
806 
807 	writel(reg, spi_imx->base + MXC_CSPICTRL);
808 
809 	reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
810 	if (spi->mode & SPI_LOOP)
811 		reg |= MX31_TEST_LBC;
812 	else
813 		reg &= ~MX31_TEST_LBC;
814 	writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
815 
816 	if (spi_imx->usedma) {
817 		/*
818 		 * configure DMA requests when RXFIFO is half full and
819 		 * when TXFIFO is half empty
820 		 */
821 		writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
822 			spi_imx->base + MX31_CSPI_DMAREG);
823 	}
824 
825 	return 0;
826 }
827 
828 static int mx31_rx_available(struct spi_imx_data *spi_imx)
829 {
830 	return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
831 }
832 
833 static void mx31_reset(struct spi_imx_data *spi_imx)
834 {
835 	/* drain receive buffer */
836 	while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
837 		readl(spi_imx->base + MXC_CSPIRXDATA);
838 }
839 
840 #define MX21_INTREG_RR		(1 << 4)
841 #define MX21_INTREG_TEEN	(1 << 9)
842 #define MX21_INTREG_RREN	(1 << 13)
843 
844 #define MX21_CSPICTRL_POL	(1 << 5)
845 #define MX21_CSPICTRL_PHA	(1 << 6)
846 #define MX21_CSPICTRL_SSPOL	(1 << 8)
847 #define MX21_CSPICTRL_XCH	(1 << 9)
848 #define MX21_CSPICTRL_ENABLE	(1 << 10)
849 #define MX21_CSPICTRL_HOST	(1 << 11)
850 #define MX21_CSPICTRL_DR_SHIFT	14
851 #define MX21_CSPICTRL_CS_SHIFT	19
852 
853 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
854 {
855 	unsigned int val = 0;
856 
857 	if (enable & MXC_INT_TE)
858 		val |= MX21_INTREG_TEEN;
859 	if (enable & MXC_INT_RR)
860 		val |= MX21_INTREG_RREN;
861 
862 	writel(val, spi_imx->base + MXC_CSPIINT);
863 }
864 
865 static void mx21_trigger(struct spi_imx_data *spi_imx)
866 {
867 	unsigned int reg;
868 
869 	reg = readl(spi_imx->base + MXC_CSPICTRL);
870 	reg |= MX21_CSPICTRL_XCH;
871 	writel(reg, spi_imx->base + MXC_CSPICTRL);
872 }
873 
874 static int mx21_prepare_message(struct spi_imx_data *spi_imx,
875 				struct spi_message *msg)
876 {
877 	return 0;
878 }
879 
880 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
881 				 struct spi_device *spi)
882 {
883 	unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_HOST;
884 	unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
885 	unsigned int clk;
886 
887 	reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk)
888 		<< MX21_CSPICTRL_DR_SHIFT;
889 	spi_imx->spi_bus_clk = clk;
890 
891 	reg |= spi_imx->bits_per_word - 1;
892 
893 	if (spi->mode & SPI_CPHA)
894 		reg |= MX21_CSPICTRL_PHA;
895 	if (spi->mode & SPI_CPOL)
896 		reg |= MX21_CSPICTRL_POL;
897 	if (spi->mode & SPI_CS_HIGH)
898 		reg |= MX21_CSPICTRL_SSPOL;
899 	if (!spi_get_csgpiod(spi, 0))
900 		reg |= spi_get_chipselect(spi, 0) << MX21_CSPICTRL_CS_SHIFT;
901 
902 	writel(reg, spi_imx->base + MXC_CSPICTRL);
903 
904 	return 0;
905 }
906 
907 static int mx21_rx_available(struct spi_imx_data *spi_imx)
908 {
909 	return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
910 }
911 
912 static void mx21_reset(struct spi_imx_data *spi_imx)
913 {
914 	writel(1, spi_imx->base + MXC_RESET);
915 }
916 
917 #define MX1_INTREG_RR		(1 << 3)
918 #define MX1_INTREG_TEEN		(1 << 8)
919 #define MX1_INTREG_RREN		(1 << 11)
920 
921 #define MX1_CSPICTRL_POL	(1 << 4)
922 #define MX1_CSPICTRL_PHA	(1 << 5)
923 #define MX1_CSPICTRL_XCH	(1 << 8)
924 #define MX1_CSPICTRL_ENABLE	(1 << 9)
925 #define MX1_CSPICTRL_HOST	(1 << 10)
926 #define MX1_CSPICTRL_DR_SHIFT	13
927 
928 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
929 {
930 	unsigned int val = 0;
931 
932 	if (enable & MXC_INT_TE)
933 		val |= MX1_INTREG_TEEN;
934 	if (enable & MXC_INT_RR)
935 		val |= MX1_INTREG_RREN;
936 
937 	writel(val, spi_imx->base + MXC_CSPIINT);
938 }
939 
940 static void mx1_trigger(struct spi_imx_data *spi_imx)
941 {
942 	unsigned int reg;
943 
944 	reg = readl(spi_imx->base + MXC_CSPICTRL);
945 	reg |= MX1_CSPICTRL_XCH;
946 	writel(reg, spi_imx->base + MXC_CSPICTRL);
947 }
948 
949 static int mx1_prepare_message(struct spi_imx_data *spi_imx,
950 			       struct spi_message *msg)
951 {
952 	return 0;
953 }
954 
955 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
956 				struct spi_device *spi)
957 {
958 	unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_HOST;
959 	unsigned int clk;
960 
961 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
962 		MX1_CSPICTRL_DR_SHIFT;
963 	spi_imx->spi_bus_clk = clk;
964 
965 	reg |= spi_imx->bits_per_word - 1;
966 
967 	if (spi->mode & SPI_CPHA)
968 		reg |= MX1_CSPICTRL_PHA;
969 	if (spi->mode & SPI_CPOL)
970 		reg |= MX1_CSPICTRL_POL;
971 
972 	writel(reg, spi_imx->base + MXC_CSPICTRL);
973 
974 	return 0;
975 }
976 
977 static int mx1_rx_available(struct spi_imx_data *spi_imx)
978 {
979 	return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
980 }
981 
982 static void mx1_reset(struct spi_imx_data *spi_imx)
983 {
984 	writel(1, spi_imx->base + MXC_RESET);
985 }
986 
987 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
988 	.intctrl = mx1_intctrl,
989 	.prepare_message = mx1_prepare_message,
990 	.prepare_transfer = mx1_prepare_transfer,
991 	.trigger = mx1_trigger,
992 	.rx_available = mx1_rx_available,
993 	.reset = mx1_reset,
994 	.fifo_size = 8,
995 	.has_dmamode = false,
996 	.dynamic_burst = false,
997 	.has_targetmode = false,
998 	.devtype = IMX1_CSPI,
999 };
1000 
1001 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
1002 	.intctrl = mx21_intctrl,
1003 	.prepare_message = mx21_prepare_message,
1004 	.prepare_transfer = mx21_prepare_transfer,
1005 	.trigger = mx21_trigger,
1006 	.rx_available = mx21_rx_available,
1007 	.reset = mx21_reset,
1008 	.fifo_size = 8,
1009 	.has_dmamode = false,
1010 	.dynamic_burst = false,
1011 	.has_targetmode = false,
1012 	.devtype = IMX21_CSPI,
1013 };
1014 
1015 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
1016 	/* i.mx27 cspi shares the functions with i.mx21 one */
1017 	.intctrl = mx21_intctrl,
1018 	.prepare_message = mx21_prepare_message,
1019 	.prepare_transfer = mx21_prepare_transfer,
1020 	.trigger = mx21_trigger,
1021 	.rx_available = mx21_rx_available,
1022 	.reset = mx21_reset,
1023 	.fifo_size = 8,
1024 	.has_dmamode = false,
1025 	.dynamic_burst = false,
1026 	.has_targetmode = false,
1027 	.devtype = IMX27_CSPI,
1028 };
1029 
1030 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
1031 	.intctrl = mx31_intctrl,
1032 	.prepare_message = mx31_prepare_message,
1033 	.prepare_transfer = mx31_prepare_transfer,
1034 	.trigger = mx31_trigger,
1035 	.rx_available = mx31_rx_available,
1036 	.reset = mx31_reset,
1037 	.fifo_size = 8,
1038 	.has_dmamode = false,
1039 	.dynamic_burst = false,
1040 	.has_targetmode = false,
1041 	.devtype = IMX31_CSPI,
1042 };
1043 
1044 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
1045 	/* i.mx35 and later cspi shares the functions with i.mx31 one */
1046 	.intctrl = mx31_intctrl,
1047 	.prepare_message = mx31_prepare_message,
1048 	.prepare_transfer = mx31_prepare_transfer,
1049 	.trigger = mx31_trigger,
1050 	.rx_available = mx31_rx_available,
1051 	.reset = mx31_reset,
1052 	.fifo_size = 8,
1053 	.has_dmamode = false,
1054 	.dynamic_burst = false,
1055 	.has_targetmode = false,
1056 	.devtype = IMX35_CSPI,
1057 };
1058 
1059 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
1060 	.intctrl = mx51_ecspi_intctrl,
1061 	.prepare_message = mx51_ecspi_prepare_message,
1062 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1063 	.trigger = mx51_ecspi_trigger,
1064 	.rx_available = mx51_ecspi_rx_available,
1065 	.reset = mx51_ecspi_reset,
1066 	.setup_wml = mx51_setup_wml,
1067 	.fifo_size = 64,
1068 	.has_dmamode = true,
1069 	.dynamic_burst = true,
1070 	.has_targetmode = true,
1071 	.disable = mx51_ecspi_disable,
1072 	.devtype = IMX51_ECSPI,
1073 };
1074 
1075 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
1076 	.intctrl = mx51_ecspi_intctrl,
1077 	.prepare_message = mx51_ecspi_prepare_message,
1078 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1079 	.trigger = mx51_ecspi_trigger,
1080 	.rx_available = mx51_ecspi_rx_available,
1081 	.reset = mx51_ecspi_reset,
1082 	.fifo_size = 64,
1083 	.has_dmamode = true,
1084 	.has_targetmode = true,
1085 	.disable = mx51_ecspi_disable,
1086 	.devtype = IMX53_ECSPI,
1087 };
1088 
1089 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = {
1090 	.intctrl = mx51_ecspi_intctrl,
1091 	.prepare_message = mx51_ecspi_prepare_message,
1092 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1093 	.trigger = mx51_ecspi_trigger,
1094 	.rx_available = mx51_ecspi_rx_available,
1095 	.reset = mx51_ecspi_reset,
1096 	.setup_wml = mx51_setup_wml,
1097 	.fifo_size = 64,
1098 	.has_dmamode = true,
1099 	.dynamic_burst = true,
1100 	.has_targetmode = true,
1101 	.tx_glitch_fixed = true,
1102 	.disable = mx51_ecspi_disable,
1103 	.devtype = IMX51_ECSPI,
1104 };
1105 
1106 static const struct of_device_id spi_imx_dt_ids[] = {
1107 	{ .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
1108 	{ .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
1109 	{ .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
1110 	{ .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
1111 	{ .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
1112 	{ .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
1113 	{ .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
1114 	{ .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, },
1115 	{ /* sentinel */ }
1116 };
1117 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
1118 
1119 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
1120 {
1121 	u32 ctrl;
1122 
1123 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
1124 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
1125 	ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET);
1126 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
1127 }
1128 
1129 static void spi_imx_push(struct spi_imx_data *spi_imx)
1130 {
1131 	unsigned int burst_len;
1132 
1133 	/*
1134 	 * Reload the FIFO when the remaining bytes to be transferred in the
1135 	 * current burst is 0. This only applies when bits_per_word is a
1136 	 * multiple of 8.
1137 	 */
1138 	if (!spi_imx->remainder) {
1139 		if (spi_imx->dynamic_burst) {
1140 
1141 			/* We need to deal unaligned data first */
1142 			burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST;
1143 
1144 			if (!burst_len)
1145 				burst_len = MX51_ECSPI_CTRL_MAX_BURST;
1146 
1147 			spi_imx_set_burst_len(spi_imx, burst_len * 8);
1148 
1149 			spi_imx->remainder = burst_len;
1150 		} else {
1151 			spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word);
1152 		}
1153 	}
1154 
1155 	while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
1156 		if (!spi_imx->count)
1157 			break;
1158 		if (spi_imx->dynamic_burst &&
1159 		    spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4))
1160 			break;
1161 		spi_imx->tx(spi_imx);
1162 		spi_imx->txfifo++;
1163 	}
1164 
1165 	if (!spi_imx->target_mode)
1166 		spi_imx->devtype_data->trigger(spi_imx);
1167 }
1168 
1169 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
1170 {
1171 	struct spi_imx_data *spi_imx = dev_id;
1172 
1173 	while (spi_imx->txfifo &&
1174 	       spi_imx->devtype_data->rx_available(spi_imx)) {
1175 		spi_imx->rx(spi_imx);
1176 		spi_imx->txfifo--;
1177 	}
1178 
1179 	if (spi_imx->count) {
1180 		spi_imx_push(spi_imx);
1181 		return IRQ_HANDLED;
1182 	}
1183 
1184 	if (spi_imx->txfifo) {
1185 		/* No data left to push, but still waiting for rx data,
1186 		 * enable receive data available interrupt.
1187 		 */
1188 		spi_imx->devtype_data->intctrl(
1189 				spi_imx, MXC_INT_RR);
1190 		return IRQ_HANDLED;
1191 	}
1192 
1193 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1194 	complete(&spi_imx->xfer_done);
1195 
1196 	return IRQ_HANDLED;
1197 }
1198 
1199 static int spi_imx_dma_configure(struct spi_controller *controller)
1200 {
1201 	int ret;
1202 	enum dma_slave_buswidth buswidth;
1203 	struct dma_slave_config rx = {}, tx = {};
1204 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1205 
1206 	switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
1207 	case 4:
1208 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1209 		break;
1210 	case 2:
1211 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1212 		break;
1213 	case 1:
1214 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1215 		break;
1216 	default:
1217 		return -EINVAL;
1218 	}
1219 
1220 	tx.direction = DMA_MEM_TO_DEV;
1221 	tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
1222 	tx.dst_addr_width = buswidth;
1223 	tx.dst_maxburst = spi_imx->wml;
1224 	ret = dmaengine_slave_config(controller->dma_tx, &tx);
1225 	if (ret) {
1226 		dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
1227 		return ret;
1228 	}
1229 
1230 	rx.direction = DMA_DEV_TO_MEM;
1231 	rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
1232 	rx.src_addr_width = buswidth;
1233 	rx.src_maxburst = spi_imx->wml;
1234 	ret = dmaengine_slave_config(controller->dma_rx, &rx);
1235 	if (ret) {
1236 		dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
1237 		return ret;
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 static int spi_imx_setupxfer(struct spi_device *spi,
1244 				 struct spi_transfer *t)
1245 {
1246 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1247 
1248 	if (!t)
1249 		return 0;
1250 
1251 	if (!t->speed_hz) {
1252 		if (!spi->max_speed_hz) {
1253 			dev_err(&spi->dev, "no speed_hz provided!\n");
1254 			return -EINVAL;
1255 		}
1256 		dev_dbg(&spi->dev, "using spi->max_speed_hz!\n");
1257 		spi_imx->spi_bus_clk = spi->max_speed_hz;
1258 	} else
1259 		spi_imx->spi_bus_clk = t->speed_hz;
1260 
1261 	spi_imx->bits_per_word = t->bits_per_word;
1262 	spi_imx->count = t->len;
1263 
1264 	/*
1265 	 * Initialize the functions for transfer. To transfer non byte-aligned
1266 	 * words, we have to use multiple word-size bursts, we can't use
1267 	 * dynamic_burst in that case.
1268 	 */
1269 	if (spi_imx->devtype_data->dynamic_burst && !spi_imx->target_mode &&
1270 	    !(spi->mode & SPI_CS_WORD) &&
1271 	    (spi_imx->bits_per_word == 8 ||
1272 	    spi_imx->bits_per_word == 16 ||
1273 	    spi_imx->bits_per_word == 32)) {
1274 
1275 		spi_imx->rx = spi_imx_buf_rx_swap;
1276 		spi_imx->tx = spi_imx_buf_tx_swap;
1277 		spi_imx->dynamic_burst = 1;
1278 
1279 	} else {
1280 		if (spi_imx->bits_per_word <= 8) {
1281 			spi_imx->rx = spi_imx_buf_rx_u8;
1282 			spi_imx->tx = spi_imx_buf_tx_u8;
1283 		} else if (spi_imx->bits_per_word <= 16) {
1284 			spi_imx->rx = spi_imx_buf_rx_u16;
1285 			spi_imx->tx = spi_imx_buf_tx_u16;
1286 		} else {
1287 			spi_imx->rx = spi_imx_buf_rx_u32;
1288 			spi_imx->tx = spi_imx_buf_tx_u32;
1289 		}
1290 		spi_imx->dynamic_burst = 0;
1291 	}
1292 
1293 	if (spi_imx_can_dma(spi_imx->controller, spi, t))
1294 		spi_imx->usedma = true;
1295 	else
1296 		spi_imx->usedma = false;
1297 
1298 	spi_imx->rx_only = ((t->tx_buf == NULL)
1299 			|| (t->tx_buf == spi->controller->dummy_tx));
1300 
1301 	if (is_imx53_ecspi(spi_imx) && spi_imx->target_mode) {
1302 		spi_imx->rx = mx53_ecspi_rx_target;
1303 		spi_imx->tx = mx53_ecspi_tx_target;
1304 		spi_imx->target_burst = t->len;
1305 	}
1306 
1307 	spi_imx->devtype_data->prepare_transfer(spi_imx, spi);
1308 
1309 	return 0;
1310 }
1311 
1312 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
1313 {
1314 	struct spi_controller *controller = spi_imx->controller;
1315 
1316 	if (controller->dma_rx) {
1317 		dma_release_channel(controller->dma_rx);
1318 		controller->dma_rx = NULL;
1319 	}
1320 
1321 	if (controller->dma_tx) {
1322 		dma_release_channel(controller->dma_tx);
1323 		controller->dma_tx = NULL;
1324 	}
1325 }
1326 
1327 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
1328 			     struct spi_controller *controller)
1329 {
1330 	int ret;
1331 
1332 	spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
1333 
1334 	/* Prepare for TX DMA: */
1335 	controller->dma_tx = dma_request_chan(dev, "tx");
1336 	if (IS_ERR(controller->dma_tx)) {
1337 		ret = PTR_ERR(controller->dma_tx);
1338 		dev_err_probe(dev, ret, "can't get the TX DMA channel!\n");
1339 		controller->dma_tx = NULL;
1340 		goto err;
1341 	}
1342 
1343 	/* Prepare for RX : */
1344 	controller->dma_rx = dma_request_chan(dev, "rx");
1345 	if (IS_ERR(controller->dma_rx)) {
1346 		ret = PTR_ERR(controller->dma_rx);
1347 		dev_err_probe(dev, ret, "can't get the RX DMA channel!\n");
1348 		controller->dma_rx = NULL;
1349 		goto err;
1350 	}
1351 
1352 	init_completion(&spi_imx->dma_rx_completion);
1353 	init_completion(&spi_imx->dma_tx_completion);
1354 	controller->can_dma = spi_imx_can_dma;
1355 	controller->max_dma_len = MAX_SDMA_BD_BYTES;
1356 	spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX |
1357 					 SPI_CONTROLLER_MUST_TX;
1358 
1359 	return 0;
1360 err:
1361 	spi_imx_sdma_exit(spi_imx);
1362 	return ret;
1363 }
1364 
1365 static void spi_imx_dma_rx_callback(void *cookie)
1366 {
1367 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1368 
1369 	complete(&spi_imx->dma_rx_completion);
1370 }
1371 
1372 static void spi_imx_dma_tx_callback(void *cookie)
1373 {
1374 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1375 
1376 	complete(&spi_imx->dma_tx_completion);
1377 }
1378 
1379 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
1380 {
1381 	unsigned long timeout = 0;
1382 
1383 	/* Time with actual data transfer and CS change delay related to HW */
1384 	timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
1385 
1386 	/* Add extra second for scheduler related activities */
1387 	timeout += 1;
1388 
1389 	/* Double calculated timeout */
1390 	return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
1391 }
1392 
1393 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
1394 				struct spi_transfer *transfer)
1395 {
1396 	struct dma_async_tx_descriptor *desc_tx, *desc_rx;
1397 	unsigned long transfer_timeout;
1398 	unsigned long time_left;
1399 	struct spi_controller *controller = spi_imx->controller;
1400 	struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
1401 	struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents);
1402 	unsigned int bytes_per_word, i;
1403 	int ret;
1404 
1405 	/* Get the right burst length from the last sg to ensure no tail data */
1406 	bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
1407 	for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
1408 		if (!(sg_dma_len(last_sg) % (i * bytes_per_word)))
1409 			break;
1410 	}
1411 	/* Use 1 as wml in case no available burst length got */
1412 	if (i == 0)
1413 		i = 1;
1414 
1415 	spi_imx->wml =  i;
1416 
1417 	ret = spi_imx_dma_configure(controller);
1418 	if (ret)
1419 		goto dma_failure_no_start;
1420 
1421 	if (!spi_imx->devtype_data->setup_wml) {
1422 		dev_err(spi_imx->dev, "No setup_wml()?\n");
1423 		ret = -EINVAL;
1424 		goto dma_failure_no_start;
1425 	}
1426 	spi_imx->devtype_data->setup_wml(spi_imx);
1427 
1428 	/*
1429 	 * The TX DMA setup starts the transfer, so make sure RX is configured
1430 	 * before TX.
1431 	 */
1432 	desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
1433 				rx->sgl, rx->nents, DMA_DEV_TO_MEM,
1434 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1435 	if (!desc_rx) {
1436 		ret = -EINVAL;
1437 		goto dma_failure_no_start;
1438 	}
1439 
1440 	desc_rx->callback = spi_imx_dma_rx_callback;
1441 	desc_rx->callback_param = (void *)spi_imx;
1442 	dmaengine_submit(desc_rx);
1443 	reinit_completion(&spi_imx->dma_rx_completion);
1444 	dma_async_issue_pending(controller->dma_rx);
1445 
1446 	desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
1447 				tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1448 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1449 	if (!desc_tx) {
1450 		dmaengine_terminate_all(controller->dma_tx);
1451 		dmaengine_terminate_all(controller->dma_rx);
1452 		return -EINVAL;
1453 	}
1454 
1455 	desc_tx->callback = spi_imx_dma_tx_callback;
1456 	desc_tx->callback_param = (void *)spi_imx;
1457 	dmaengine_submit(desc_tx);
1458 	reinit_completion(&spi_imx->dma_tx_completion);
1459 	dma_async_issue_pending(controller->dma_tx);
1460 
1461 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1462 
1463 	/* Wait SDMA to finish the data transfer.*/
1464 	time_left = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1465 						transfer_timeout);
1466 	if (!time_left) {
1467 		dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1468 		dmaengine_terminate_all(controller->dma_tx);
1469 		dmaengine_terminate_all(controller->dma_rx);
1470 		return -ETIMEDOUT;
1471 	}
1472 
1473 	time_left = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1474 						transfer_timeout);
1475 	if (!time_left) {
1476 		dev_err(&controller->dev, "I/O Error in DMA RX\n");
1477 		spi_imx->devtype_data->reset(spi_imx);
1478 		dmaengine_terminate_all(controller->dma_rx);
1479 		return -ETIMEDOUT;
1480 	}
1481 
1482 	return 0;
1483 /* fallback to pio */
1484 dma_failure_no_start:
1485 	transfer->error |= SPI_TRANS_FAIL_NO_START;
1486 	return ret;
1487 }
1488 
1489 static int spi_imx_pio_transfer(struct spi_device *spi,
1490 				struct spi_transfer *transfer)
1491 {
1492 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1493 	unsigned long transfer_timeout;
1494 	unsigned long time_left;
1495 
1496 	spi_imx->tx_buf = transfer->tx_buf;
1497 	spi_imx->rx_buf = transfer->rx_buf;
1498 	spi_imx->count = transfer->len;
1499 	spi_imx->txfifo = 0;
1500 	spi_imx->remainder = 0;
1501 
1502 	reinit_completion(&spi_imx->xfer_done);
1503 
1504 	spi_imx_push(spi_imx);
1505 
1506 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1507 
1508 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1509 
1510 	time_left = wait_for_completion_timeout(&spi_imx->xfer_done,
1511 						transfer_timeout);
1512 	if (!time_left) {
1513 		dev_err(&spi->dev, "I/O Error in PIO\n");
1514 		spi_imx->devtype_data->reset(spi_imx);
1515 		return -ETIMEDOUT;
1516 	}
1517 
1518 	return 0;
1519 }
1520 
1521 static int spi_imx_poll_transfer(struct spi_device *spi,
1522 				 struct spi_transfer *transfer)
1523 {
1524 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1525 	unsigned long timeout;
1526 
1527 	spi_imx->tx_buf = transfer->tx_buf;
1528 	spi_imx->rx_buf = transfer->rx_buf;
1529 	spi_imx->count = transfer->len;
1530 	spi_imx->txfifo = 0;
1531 	spi_imx->remainder = 0;
1532 
1533 	/* fill in the fifo before timeout calculations if we are
1534 	 * interrupted here, then the data is getting transferred by
1535 	 * the HW while we are interrupted
1536 	 */
1537 	spi_imx_push(spi_imx);
1538 
1539 	timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies;
1540 	while (spi_imx->txfifo) {
1541 		/* RX */
1542 		while (spi_imx->txfifo &&
1543 		       spi_imx->devtype_data->rx_available(spi_imx)) {
1544 			spi_imx->rx(spi_imx);
1545 			spi_imx->txfifo--;
1546 		}
1547 
1548 		/* TX */
1549 		if (spi_imx->count) {
1550 			spi_imx_push(spi_imx);
1551 			continue;
1552 		}
1553 
1554 		if (spi_imx->txfifo &&
1555 		    time_after(jiffies, timeout)) {
1556 
1557 			dev_err_ratelimited(&spi->dev,
1558 					    "timeout period reached: jiffies: %lu- falling back to interrupt mode\n",
1559 					    jiffies - timeout);
1560 
1561 			/* fall back to interrupt mode */
1562 			return spi_imx_pio_transfer(spi, transfer);
1563 		}
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 static int spi_imx_pio_transfer_target(struct spi_device *spi,
1570 				       struct spi_transfer *transfer)
1571 {
1572 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1573 	int ret = 0;
1574 
1575 	if (is_imx53_ecspi(spi_imx) &&
1576 	    transfer->len > MX53_MAX_TRANSFER_BYTES) {
1577 		dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
1578 			MX53_MAX_TRANSFER_BYTES);
1579 		return -EMSGSIZE;
1580 	}
1581 
1582 	spi_imx->tx_buf = transfer->tx_buf;
1583 	spi_imx->rx_buf = transfer->rx_buf;
1584 	spi_imx->count = transfer->len;
1585 	spi_imx->txfifo = 0;
1586 	spi_imx->remainder = 0;
1587 
1588 	reinit_completion(&spi_imx->xfer_done);
1589 	spi_imx->target_aborted = false;
1590 
1591 	spi_imx_push(spi_imx);
1592 
1593 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
1594 
1595 	if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
1596 	    spi_imx->target_aborted) {
1597 		dev_dbg(&spi->dev, "interrupted\n");
1598 		ret = -EINTR;
1599 	}
1600 
1601 	/* ecspi has a HW issue when works in Target mode,
1602 	 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
1603 	 * ECSPI_TXDATA keeps shift out the last word data,
1604 	 * so we have to disable ECSPI when in target mode after the
1605 	 * transfer completes
1606 	 */
1607 	if (spi_imx->devtype_data->disable)
1608 		spi_imx->devtype_data->disable(spi_imx);
1609 
1610 	return ret;
1611 }
1612 
1613 static int spi_imx_transfer_one(struct spi_controller *controller,
1614 				struct spi_device *spi,
1615 				struct spi_transfer *transfer)
1616 {
1617 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1618 	unsigned long hz_per_byte, byte_limit;
1619 
1620 	spi_imx_setupxfer(spi, transfer);
1621 	transfer->effective_speed_hz = spi_imx->spi_bus_clk;
1622 
1623 	/* flush rxfifo before transfer */
1624 	while (spi_imx->devtype_data->rx_available(spi_imx))
1625 		readl(spi_imx->base + MXC_CSPIRXDATA);
1626 
1627 	if (spi_imx->target_mode)
1628 		return spi_imx_pio_transfer_target(spi, transfer);
1629 
1630 	/*
1631 	 * If we decided in spi_imx_can_dma() that we want to do a DMA
1632 	 * transfer, the SPI transfer has already been mapped, so we
1633 	 * have to do the DMA transfer here.
1634 	 */
1635 	if (spi_imx->usedma)
1636 		return spi_imx_dma_transfer(spi_imx, transfer);
1637 	/*
1638 	 * Calculate the estimated time in us the transfer runs. Find
1639 	 * the number of Hz per byte per polling limit.
1640 	 */
1641 	hz_per_byte = polling_limit_us ? ((8 + 4) * USEC_PER_SEC) / polling_limit_us : 0;
1642 	byte_limit = hz_per_byte ? transfer->effective_speed_hz / hz_per_byte : 1;
1643 
1644 	/* run in polling mode for short transfers */
1645 	if (transfer->len < byte_limit)
1646 		return spi_imx_poll_transfer(spi, transfer);
1647 
1648 	return spi_imx_pio_transfer(spi, transfer);
1649 }
1650 
1651 static int spi_imx_setup(struct spi_device *spi)
1652 {
1653 	dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1654 		 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1655 
1656 	return 0;
1657 }
1658 
1659 static int
1660 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg)
1661 {
1662 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1663 	int ret;
1664 
1665 	ret = pm_runtime_resume_and_get(spi_imx->dev);
1666 	if (ret < 0) {
1667 		dev_err(spi_imx->dev, "failed to enable clock\n");
1668 		return ret;
1669 	}
1670 
1671 	ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
1672 	if (ret) {
1673 		pm_runtime_mark_last_busy(spi_imx->dev);
1674 		pm_runtime_put_autosuspend(spi_imx->dev);
1675 	}
1676 
1677 	return ret;
1678 }
1679 
1680 static int
1681 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg)
1682 {
1683 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1684 
1685 	pm_runtime_mark_last_busy(spi_imx->dev);
1686 	pm_runtime_put_autosuspend(spi_imx->dev);
1687 	return 0;
1688 }
1689 
1690 static int spi_imx_target_abort(struct spi_controller *controller)
1691 {
1692 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1693 
1694 	spi_imx->target_aborted = true;
1695 	complete(&spi_imx->xfer_done);
1696 
1697 	return 0;
1698 }
1699 
1700 static int spi_imx_probe(struct platform_device *pdev)
1701 {
1702 	struct device_node *np = pdev->dev.of_node;
1703 	struct spi_controller *controller;
1704 	struct spi_imx_data *spi_imx;
1705 	struct resource *res;
1706 	int ret, irq, spi_drctl;
1707 	const struct spi_imx_devtype_data *devtype_data =
1708 			of_device_get_match_data(&pdev->dev);
1709 	bool target_mode;
1710 	u32 val;
1711 
1712 	target_mode = devtype_data->has_targetmode &&
1713 		      of_property_read_bool(np, "spi-slave");
1714 	if (target_mode)
1715 		controller = spi_alloc_target(&pdev->dev,
1716 					      sizeof(struct spi_imx_data));
1717 	else
1718 		controller = spi_alloc_host(&pdev->dev,
1719 					    sizeof(struct spi_imx_data));
1720 	if (!controller)
1721 		return -ENOMEM;
1722 
1723 	ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
1724 	if ((ret < 0) || (spi_drctl >= 0x3)) {
1725 		/* '11' is reserved */
1726 		spi_drctl = 0;
1727 	}
1728 
1729 	platform_set_drvdata(pdev, controller);
1730 
1731 	controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1732 	controller->bus_num = np ? -1 : pdev->id;
1733 	controller->use_gpio_descriptors = true;
1734 
1735 	spi_imx = spi_controller_get_devdata(controller);
1736 	spi_imx->controller = controller;
1737 	spi_imx->dev = &pdev->dev;
1738 	spi_imx->target_mode = target_mode;
1739 
1740 	spi_imx->devtype_data = devtype_data;
1741 
1742 	/*
1743 	 * Get number of chip selects from device properties. This can be
1744 	 * coming from device tree or boardfiles, if it is not defined,
1745 	 * a default value of 3 chip selects will be used, as all the legacy
1746 	 * board files have <= 3 chip selects.
1747 	 */
1748 	if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
1749 		controller->num_chipselect = val;
1750 	else
1751 		controller->num_chipselect = 3;
1752 
1753 	controller->transfer_one = spi_imx_transfer_one;
1754 	controller->setup = spi_imx_setup;
1755 	controller->prepare_message = spi_imx_prepare_message;
1756 	controller->unprepare_message = spi_imx_unprepare_message;
1757 	controller->target_abort = spi_imx_target_abort;
1758 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS |
1759 				SPI_MOSI_IDLE_LOW;
1760 
1761 	if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
1762 	    is_imx53_ecspi(spi_imx))
1763 		controller->mode_bits |= SPI_LOOP | SPI_READY;
1764 
1765 	if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx))
1766 		controller->mode_bits |= SPI_RX_CPHA_FLIP;
1767 
1768 	if (is_imx51_ecspi(spi_imx) &&
1769 	    device_property_read_u32(&pdev->dev, "cs-gpios", NULL))
1770 		/*
1771 		 * When using HW-CS implementing SPI_CS_WORD can be done by just
1772 		 * setting the burst length to the word size. This is
1773 		 * considerably faster than manually controlling the CS.
1774 		 */
1775 		controller->mode_bits |= SPI_CS_WORD;
1776 
1777 	if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) {
1778 		controller->max_native_cs = 4;
1779 		controller->flags |= SPI_CONTROLLER_GPIO_SS;
1780 	}
1781 
1782 	spi_imx->spi_drctl = spi_drctl;
1783 
1784 	init_completion(&spi_imx->xfer_done);
1785 
1786 	spi_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1787 	if (IS_ERR(spi_imx->base)) {
1788 		ret = PTR_ERR(spi_imx->base);
1789 		goto out_controller_put;
1790 	}
1791 	spi_imx->base_phys = res->start;
1792 
1793 	irq = platform_get_irq(pdev, 0);
1794 	if (irq < 0) {
1795 		ret = irq;
1796 		goto out_controller_put;
1797 	}
1798 
1799 	ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1800 			       dev_name(&pdev->dev), spi_imx);
1801 	if (ret) {
1802 		dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1803 		goto out_controller_put;
1804 	}
1805 
1806 	spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1807 	if (IS_ERR(spi_imx->clk_ipg)) {
1808 		ret = PTR_ERR(spi_imx->clk_ipg);
1809 		goto out_controller_put;
1810 	}
1811 
1812 	spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1813 	if (IS_ERR(spi_imx->clk_per)) {
1814 		ret = PTR_ERR(spi_imx->clk_per);
1815 		goto out_controller_put;
1816 	}
1817 
1818 	ret = clk_prepare_enable(spi_imx->clk_per);
1819 	if (ret)
1820 		goto out_controller_put;
1821 
1822 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1823 	if (ret)
1824 		goto out_put_per;
1825 
1826 	pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
1827 	pm_runtime_use_autosuspend(spi_imx->dev);
1828 	pm_runtime_get_noresume(spi_imx->dev);
1829 	pm_runtime_set_active(spi_imx->dev);
1830 	pm_runtime_enable(spi_imx->dev);
1831 
1832 	spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1833 	/*
1834 	 * Only validated on i.mx35 and i.mx6 now, can remove the constraint
1835 	 * if validated on other chips.
1836 	 */
1837 	if (spi_imx->devtype_data->has_dmamode) {
1838 		ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller);
1839 		if (ret == -EPROBE_DEFER)
1840 			goto out_runtime_pm_put;
1841 
1842 		if (ret < 0)
1843 			dev_dbg(&pdev->dev, "dma setup error %d, use pio\n",
1844 				ret);
1845 	}
1846 
1847 	spi_imx->devtype_data->reset(spi_imx);
1848 
1849 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1850 
1851 	controller->dev.of_node = pdev->dev.of_node;
1852 	ret = spi_register_controller(controller);
1853 	if (ret) {
1854 		dev_err_probe(&pdev->dev, ret, "register controller failed\n");
1855 		goto out_register_controller;
1856 	}
1857 
1858 	pm_runtime_mark_last_busy(spi_imx->dev);
1859 	pm_runtime_put_autosuspend(spi_imx->dev);
1860 
1861 	return ret;
1862 
1863 out_register_controller:
1864 	if (spi_imx->devtype_data->has_dmamode)
1865 		spi_imx_sdma_exit(spi_imx);
1866 out_runtime_pm_put:
1867 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1868 	pm_runtime_disable(spi_imx->dev);
1869 	pm_runtime_set_suspended(&pdev->dev);
1870 
1871 	clk_disable_unprepare(spi_imx->clk_ipg);
1872 out_put_per:
1873 	clk_disable_unprepare(spi_imx->clk_per);
1874 out_controller_put:
1875 	spi_controller_put(controller);
1876 
1877 	return ret;
1878 }
1879 
1880 static void spi_imx_remove(struct platform_device *pdev)
1881 {
1882 	struct spi_controller *controller = platform_get_drvdata(pdev);
1883 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1884 	int ret;
1885 
1886 	spi_unregister_controller(controller);
1887 
1888 	ret = pm_runtime_get_sync(spi_imx->dev);
1889 	if (ret >= 0)
1890 		writel(0, spi_imx->base + MXC_CSPICTRL);
1891 	else
1892 		dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n");
1893 
1894 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1895 	pm_runtime_put_sync(spi_imx->dev);
1896 	pm_runtime_disable(spi_imx->dev);
1897 
1898 	spi_imx_sdma_exit(spi_imx);
1899 }
1900 
1901 static int spi_imx_runtime_resume(struct device *dev)
1902 {
1903 	struct spi_controller *controller = dev_get_drvdata(dev);
1904 	struct spi_imx_data *spi_imx;
1905 	int ret;
1906 
1907 	spi_imx = spi_controller_get_devdata(controller);
1908 
1909 	ret = clk_prepare_enable(spi_imx->clk_per);
1910 	if (ret)
1911 		return ret;
1912 
1913 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1914 	if (ret) {
1915 		clk_disable_unprepare(spi_imx->clk_per);
1916 		return ret;
1917 	}
1918 
1919 	return 0;
1920 }
1921 
1922 static int spi_imx_runtime_suspend(struct device *dev)
1923 {
1924 	struct spi_controller *controller = dev_get_drvdata(dev);
1925 	struct spi_imx_data *spi_imx;
1926 
1927 	spi_imx = spi_controller_get_devdata(controller);
1928 
1929 	clk_disable_unprepare(spi_imx->clk_per);
1930 	clk_disable_unprepare(spi_imx->clk_ipg);
1931 
1932 	return 0;
1933 }
1934 
1935 static int spi_imx_suspend(struct device *dev)
1936 {
1937 	pinctrl_pm_select_sleep_state(dev);
1938 	return 0;
1939 }
1940 
1941 static int spi_imx_resume(struct device *dev)
1942 {
1943 	pinctrl_pm_select_default_state(dev);
1944 	return 0;
1945 }
1946 
1947 static const struct dev_pm_ops imx_spi_pm = {
1948 	RUNTIME_PM_OPS(spi_imx_runtime_suspend,	spi_imx_runtime_resume, NULL)
1949 	SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
1950 };
1951 
1952 static struct platform_driver spi_imx_driver = {
1953 	.driver = {
1954 		   .name = DRIVER_NAME,
1955 		   .of_match_table = spi_imx_dt_ids,
1956 		   .pm = pm_ptr(&imx_spi_pm),
1957 	},
1958 	.probe = spi_imx_probe,
1959 	.remove_new = spi_imx_remove,
1960 };
1961 module_platform_driver(spi_imx_driver);
1962 
1963 MODULE_DESCRIPTION("i.MX SPI Controller driver");
1964 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
1965 MODULE_LICENSE("GPL");
1966 MODULE_ALIAS("platform:" DRIVER_NAME);
1967