1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. 3 // Copyright (C) 2008 Juergen Beisert 4 5 #include <linux/bits.h> 6 #include <linux/clk.h> 7 #include <linux/completion.h> 8 #include <linux/delay.h> 9 #include <linux/dmaengine.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/err.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/irq.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/pinctrl/consumer.h> 18 #include <linux/platform_device.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/slab.h> 21 #include <linux/spi/spi.h> 22 #include <linux/types.h> 23 #include <linux/of.h> 24 #include <linux/property.h> 25 26 #include <linux/dma/imx-dma.h> 27 28 #define DRIVER_NAME "spi_imx" 29 30 static bool use_dma = true; 31 module_param(use_dma, bool, 0644); 32 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)"); 33 34 /* define polling limits */ 35 static unsigned int polling_limit_us = 30; 36 module_param(polling_limit_us, uint, 0664); 37 MODULE_PARM_DESC(polling_limit_us, 38 "time in us to run a transfer in polling mode\n"); 39 40 #define MXC_RPM_TIMEOUT 2000 /* 2000ms */ 41 42 #define MXC_CSPIRXDATA 0x00 43 #define MXC_CSPITXDATA 0x04 44 #define MXC_CSPICTRL 0x08 45 #define MXC_CSPIINT 0x0c 46 #define MXC_RESET 0x1c 47 48 /* generic defines to abstract from the different register layouts */ 49 #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */ 50 #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */ 51 #define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */ 52 53 /* The maximum bytes that a sdma BD can transfer. */ 54 #define MAX_SDMA_BD_BYTES (1 << 15) 55 #define MX51_ECSPI_CTRL_MAX_BURST 512 56 /* The maximum bytes that IMX53_ECSPI can transfer in target mode.*/ 57 #define MX53_MAX_TRANSFER_BYTES 512 58 59 enum spi_imx_devtype { 60 IMX1_CSPI, 61 IMX21_CSPI, 62 IMX27_CSPI, 63 IMX31_CSPI, 64 IMX35_CSPI, /* CSPI on all i.mx except above */ 65 IMX51_ECSPI, /* ECSPI on i.mx51 */ 66 IMX53_ECSPI, /* ECSPI on i.mx53 and later */ 67 }; 68 69 struct spi_imx_data; 70 71 struct spi_imx_devtype_data { 72 void (*intctrl)(struct spi_imx_data *spi_imx, int enable); 73 int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg); 74 int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi); 75 void (*trigger)(struct spi_imx_data *spi_imx); 76 int (*rx_available)(struct spi_imx_data *spi_imx); 77 void (*reset)(struct spi_imx_data *spi_imx); 78 void (*setup_wml)(struct spi_imx_data *spi_imx); 79 void (*disable)(struct spi_imx_data *spi_imx); 80 bool has_dmamode; 81 bool has_targetmode; 82 unsigned int fifo_size; 83 bool dynamic_burst; 84 /* 85 * ERR009165 fixed or not: 86 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf 87 */ 88 bool tx_glitch_fixed; 89 enum spi_imx_devtype devtype; 90 }; 91 92 struct spi_imx_data { 93 struct spi_controller *controller; 94 struct device *dev; 95 96 struct completion xfer_done; 97 void __iomem *base; 98 unsigned long base_phys; 99 100 struct clk *clk_per; 101 struct clk *clk_ipg; 102 unsigned long spi_clk; 103 unsigned int spi_bus_clk; 104 105 unsigned int bits_per_word; 106 unsigned int spi_drctl; 107 108 unsigned int count, remainder; 109 void (*tx)(struct spi_imx_data *spi_imx); 110 void (*rx)(struct spi_imx_data *spi_imx); 111 void *rx_buf; 112 const void *tx_buf; 113 unsigned int txfifo; /* number of words pushed in tx FIFO */ 114 unsigned int dynamic_burst; 115 bool rx_only; 116 117 /* Target mode */ 118 bool target_mode; 119 bool target_aborted; 120 unsigned int target_burst; 121 122 /* DMA */ 123 bool usedma; 124 u32 wml; 125 struct completion dma_rx_completion; 126 struct completion dma_tx_completion; 127 128 const struct spi_imx_devtype_data *devtype_data; 129 }; 130 131 static inline int is_imx27_cspi(struct spi_imx_data *d) 132 { 133 return d->devtype_data->devtype == IMX27_CSPI; 134 } 135 136 static inline int is_imx35_cspi(struct spi_imx_data *d) 137 { 138 return d->devtype_data->devtype == IMX35_CSPI; 139 } 140 141 static inline int is_imx51_ecspi(struct spi_imx_data *d) 142 { 143 return d->devtype_data->devtype == IMX51_ECSPI; 144 } 145 146 static inline int is_imx53_ecspi(struct spi_imx_data *d) 147 { 148 return d->devtype_data->devtype == IMX53_ECSPI; 149 } 150 151 #define MXC_SPI_BUF_RX(type) \ 152 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \ 153 { \ 154 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \ 155 \ 156 if (spi_imx->rx_buf) { \ 157 *(type *)spi_imx->rx_buf = val; \ 158 spi_imx->rx_buf += sizeof(type); \ 159 } \ 160 \ 161 spi_imx->remainder -= sizeof(type); \ 162 } 163 164 #define MXC_SPI_BUF_TX(type) \ 165 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \ 166 { \ 167 type val = 0; \ 168 \ 169 if (spi_imx->tx_buf) { \ 170 val = *(type *)spi_imx->tx_buf; \ 171 spi_imx->tx_buf += sizeof(type); \ 172 } \ 173 \ 174 spi_imx->count -= sizeof(type); \ 175 \ 176 writel(val, spi_imx->base + MXC_CSPITXDATA); \ 177 } 178 179 MXC_SPI_BUF_RX(u8) 180 MXC_SPI_BUF_TX(u8) 181 MXC_SPI_BUF_RX(u16) 182 MXC_SPI_BUF_TX(u16) 183 MXC_SPI_BUF_RX(u32) 184 MXC_SPI_BUF_TX(u32) 185 186 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set 187 * (which is currently not the case in this driver) 188 */ 189 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 190 256, 384, 512, 768, 1024}; 191 192 /* MX21, MX27 */ 193 static unsigned int spi_imx_clkdiv_1(unsigned int fin, 194 unsigned int fspi, unsigned int max, unsigned int *fres) 195 { 196 int i; 197 198 for (i = 2; i < max; i++) 199 if (fspi * mxc_clkdivs[i] >= fin) 200 break; 201 202 *fres = fin / mxc_clkdivs[i]; 203 return i; 204 } 205 206 /* MX1, MX31, MX35, MX51 CSPI */ 207 static unsigned int spi_imx_clkdiv_2(unsigned int fin, 208 unsigned int fspi, unsigned int *fres) 209 { 210 int i, div = 4; 211 212 for (i = 0; i < 7; i++) { 213 if (fspi * div >= fin) 214 goto out; 215 div <<= 1; 216 } 217 218 out: 219 *fres = fin / div; 220 return i; 221 } 222 223 static int spi_imx_bytes_per_word(const int bits_per_word) 224 { 225 if (bits_per_word <= 8) 226 return 1; 227 else if (bits_per_word <= 16) 228 return 2; 229 else 230 return 4; 231 } 232 233 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi, 234 struct spi_transfer *transfer) 235 { 236 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 237 238 if (!use_dma || controller->fallback) 239 return false; 240 241 if (!controller->dma_rx) 242 return false; 243 244 if (spi_imx->target_mode) 245 return false; 246 247 if (transfer->len < spi_imx->devtype_data->fifo_size) 248 return false; 249 250 spi_imx->dynamic_burst = 0; 251 252 return true; 253 } 254 255 /* 256 * Note the number of natively supported chip selects for MX51 is 4. Some 257 * devices may have less actual SS pins but the register map supports 4. When 258 * using gpio chip selects the cs values passed into the macros below can go 259 * outside the range 0 - 3. We therefore need to limit the cs value to avoid 260 * corrupting bits outside the allocated locations. 261 * 262 * The simplest way to do this is to just mask the cs bits to 2 bits. This 263 * still allows all 4 native chip selects to work as well as gpio chip selects 264 * (which can use any of the 4 chip select configurations). 265 */ 266 267 #define MX51_ECSPI_CTRL 0x08 268 #define MX51_ECSPI_CTRL_ENABLE (1 << 0) 269 #define MX51_ECSPI_CTRL_XCH (1 << 2) 270 #define MX51_ECSPI_CTRL_SMC (1 << 3) 271 #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4) 272 #define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16) 273 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8 274 #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12 275 #define MX51_ECSPI_CTRL_CS(cs) ((cs & 3) << 18) 276 #define MX51_ECSPI_CTRL_BL_OFFSET 20 277 #define MX51_ECSPI_CTRL_BL_MASK (0xfff << 20) 278 279 #define MX51_ECSPI_CONFIG 0x0c 280 #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs & 3) + 0)) 281 #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs & 3) + 4)) 282 #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs & 3) + 8)) 283 #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs & 3) + 12)) 284 #define MX51_ECSPI_CONFIG_DATACTL(cs) (1 << ((cs & 3) + 16)) 285 #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs & 3) + 20)) 286 287 #define MX51_ECSPI_INT 0x10 288 #define MX51_ECSPI_INT_TEEN (1 << 0) 289 #define MX51_ECSPI_INT_RREN (1 << 3) 290 #define MX51_ECSPI_INT_RDREN (1 << 4) 291 292 #define MX51_ECSPI_DMA 0x14 293 #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f) 294 #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16) 295 #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24) 296 297 #define MX51_ECSPI_DMA_TEDEN (1 << 7) 298 #define MX51_ECSPI_DMA_RXDEN (1 << 23) 299 #define MX51_ECSPI_DMA_RXTDEN (1 << 31) 300 301 #define MX51_ECSPI_STAT 0x18 302 #define MX51_ECSPI_STAT_RR (1 << 3) 303 304 #define MX51_ECSPI_TESTREG 0x20 305 #define MX51_ECSPI_TESTREG_LBC BIT(31) 306 307 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx) 308 { 309 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); 310 311 if (spi_imx->rx_buf) { 312 #ifdef __LITTLE_ENDIAN 313 unsigned int bytes_per_word; 314 315 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word); 316 if (bytes_per_word == 1) 317 swab32s(&val); 318 else if (bytes_per_word == 2) 319 swahw32s(&val); 320 #endif 321 *(u32 *)spi_imx->rx_buf = val; 322 spi_imx->rx_buf += sizeof(u32); 323 } 324 325 spi_imx->remainder -= sizeof(u32); 326 } 327 328 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx) 329 { 330 int unaligned; 331 u32 val; 332 333 unaligned = spi_imx->remainder % 4; 334 335 if (!unaligned) { 336 spi_imx_buf_rx_swap_u32(spi_imx); 337 return; 338 } 339 340 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) { 341 spi_imx_buf_rx_u16(spi_imx); 342 return; 343 } 344 345 val = readl(spi_imx->base + MXC_CSPIRXDATA); 346 347 while (unaligned--) { 348 if (spi_imx->rx_buf) { 349 *(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff; 350 spi_imx->rx_buf++; 351 } 352 spi_imx->remainder--; 353 } 354 } 355 356 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx) 357 { 358 u32 val = 0; 359 #ifdef __LITTLE_ENDIAN 360 unsigned int bytes_per_word; 361 #endif 362 363 if (spi_imx->tx_buf) { 364 val = *(u32 *)spi_imx->tx_buf; 365 spi_imx->tx_buf += sizeof(u32); 366 } 367 368 spi_imx->count -= sizeof(u32); 369 #ifdef __LITTLE_ENDIAN 370 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word); 371 372 if (bytes_per_word == 1) 373 swab32s(&val); 374 else if (bytes_per_word == 2) 375 swahw32s(&val); 376 #endif 377 writel(val, spi_imx->base + MXC_CSPITXDATA); 378 } 379 380 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx) 381 { 382 int unaligned; 383 u32 val = 0; 384 385 unaligned = spi_imx->count % 4; 386 387 if (!unaligned) { 388 spi_imx_buf_tx_swap_u32(spi_imx); 389 return; 390 } 391 392 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) { 393 spi_imx_buf_tx_u16(spi_imx); 394 return; 395 } 396 397 while (unaligned--) { 398 if (spi_imx->tx_buf) { 399 val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned); 400 spi_imx->tx_buf++; 401 } 402 spi_imx->count--; 403 } 404 405 writel(val, spi_imx->base + MXC_CSPITXDATA); 406 } 407 408 static void mx53_ecspi_rx_target(struct spi_imx_data *spi_imx) 409 { 410 u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA)); 411 412 if (spi_imx->rx_buf) { 413 int n_bytes = spi_imx->target_burst % sizeof(val); 414 415 if (!n_bytes) 416 n_bytes = sizeof(val); 417 418 memcpy(spi_imx->rx_buf, 419 ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes); 420 421 spi_imx->rx_buf += n_bytes; 422 spi_imx->target_burst -= n_bytes; 423 } 424 425 spi_imx->remainder -= sizeof(u32); 426 } 427 428 static void mx53_ecspi_tx_target(struct spi_imx_data *spi_imx) 429 { 430 u32 val = 0; 431 int n_bytes = spi_imx->count % sizeof(val); 432 433 if (!n_bytes) 434 n_bytes = sizeof(val); 435 436 if (spi_imx->tx_buf) { 437 memcpy(((u8 *)&val) + sizeof(val) - n_bytes, 438 spi_imx->tx_buf, n_bytes); 439 val = cpu_to_be32(val); 440 spi_imx->tx_buf += n_bytes; 441 } 442 443 spi_imx->count -= n_bytes; 444 445 writel(val, spi_imx->base + MXC_CSPITXDATA); 446 } 447 448 /* MX51 eCSPI */ 449 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx, 450 unsigned int fspi, unsigned int *fres) 451 { 452 /* 453 * there are two 4-bit dividers, the pre-divider divides by 454 * $pre, the post-divider by 2^$post 455 */ 456 unsigned int pre, post; 457 unsigned int fin = spi_imx->spi_clk; 458 459 fspi = min(fspi, fin); 460 461 post = fls(fin) - fls(fspi); 462 if (fin > fspi << post) 463 post++; 464 465 /* now we have: (fin <= fspi << post) with post being minimal */ 466 467 post = max(4U, post) - 4; 468 if (unlikely(post > 0xf)) { 469 dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n", 470 fspi, fin); 471 return 0xff; 472 } 473 474 pre = DIV_ROUND_UP(fin, fspi << post) - 1; 475 476 dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n", 477 __func__, fin, fspi, post, pre); 478 479 /* Resulting frequency for the SCLK line. */ 480 *fres = (fin / (pre + 1)) >> post; 481 482 return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) | 483 (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET); 484 } 485 486 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable) 487 { 488 unsigned int val = 0; 489 490 if (enable & MXC_INT_TE) 491 val |= MX51_ECSPI_INT_TEEN; 492 493 if (enable & MXC_INT_RR) 494 val |= MX51_ECSPI_INT_RREN; 495 496 if (enable & MXC_INT_RDR) 497 val |= MX51_ECSPI_INT_RDREN; 498 499 writel(val, spi_imx->base + MX51_ECSPI_INT); 500 } 501 502 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx) 503 { 504 u32 reg; 505 506 reg = readl(spi_imx->base + MX51_ECSPI_CTRL); 507 reg |= MX51_ECSPI_CTRL_XCH; 508 writel(reg, spi_imx->base + MX51_ECSPI_CTRL); 509 } 510 511 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx) 512 { 513 u32 ctrl; 514 515 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 516 ctrl &= ~MX51_ECSPI_CTRL_ENABLE; 517 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 518 } 519 520 static int mx51_ecspi_channel(const struct spi_device *spi) 521 { 522 if (!spi_get_csgpiod(spi, 0)) 523 return spi_get_chipselect(spi, 0); 524 return spi->controller->unused_native_cs; 525 } 526 527 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx, 528 struct spi_message *msg) 529 { 530 struct spi_device *spi = msg->spi; 531 struct spi_transfer *xfer; 532 u32 ctrl = MX51_ECSPI_CTRL_ENABLE; 533 u32 min_speed_hz = ~0U; 534 u32 testreg, delay; 535 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG); 536 u32 current_cfg = cfg; 537 int channel = mx51_ecspi_channel(spi); 538 539 /* set Host or Target mode */ 540 if (spi_imx->target_mode) 541 ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK; 542 else 543 ctrl |= MX51_ECSPI_CTRL_MODE_MASK; 544 545 /* 546 * Enable SPI_RDY handling (falling edge/level triggered). 547 */ 548 if (spi->mode & SPI_READY) 549 ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl); 550 551 /* set chip select to use */ 552 ctrl |= MX51_ECSPI_CTRL_CS(channel); 553 554 /* 555 * The ctrl register must be written first, with the EN bit set other 556 * registers must not be written to. 557 */ 558 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 559 560 testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG); 561 if (spi->mode & SPI_LOOP) 562 testreg |= MX51_ECSPI_TESTREG_LBC; 563 else 564 testreg &= ~MX51_ECSPI_TESTREG_LBC; 565 writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG); 566 567 /* 568 * eCSPI burst completion by Chip Select signal in Target mode 569 * is not functional for imx53 Soc, config SPI burst completed when 570 * BURST_LENGTH + 1 bits are received 571 */ 572 if (spi_imx->target_mode && is_imx53_ecspi(spi_imx)) 573 cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(channel); 574 else 575 cfg |= MX51_ECSPI_CONFIG_SBBCTRL(channel); 576 577 if (spi->mode & SPI_CPOL) { 578 cfg |= MX51_ECSPI_CONFIG_SCLKPOL(channel); 579 cfg |= MX51_ECSPI_CONFIG_SCLKCTL(channel); 580 } else { 581 cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(channel); 582 cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(channel); 583 } 584 585 if (spi->mode & SPI_MOSI_IDLE_LOW) 586 cfg |= MX51_ECSPI_CONFIG_DATACTL(channel); 587 else 588 cfg &= ~MX51_ECSPI_CONFIG_DATACTL(channel); 589 590 if (spi->mode & SPI_CS_HIGH) 591 cfg |= MX51_ECSPI_CONFIG_SSBPOL(channel); 592 else 593 cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(channel); 594 595 if (cfg == current_cfg) 596 return 0; 597 598 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG); 599 600 /* 601 * Wait until the changes in the configuration register CONFIGREG 602 * propagate into the hardware. It takes exactly one tick of the 603 * SCLK clock, but we will wait two SCLK clock just to be sure. The 604 * effect of the delay it takes for the hardware to apply changes 605 * is noticable if the SCLK clock run very slow. In such a case, if 606 * the polarity of SCLK should be inverted, the GPIO ChipSelect might 607 * be asserted before the SCLK polarity changes, which would disrupt 608 * the SPI communication as the device on the other end would consider 609 * the change of SCLK polarity as a clock tick already. 610 * 611 * Because spi_imx->spi_bus_clk is only set in prepare_message 612 * callback, iterate over all the transfers in spi_message, find the 613 * one with lowest bus frequency, and use that bus frequency for the 614 * delay calculation. In case all transfers have speed_hz == 0, then 615 * min_speed_hz is ~0 and the resulting delay is zero. 616 */ 617 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 618 if (!xfer->speed_hz) 619 continue; 620 min_speed_hz = min(xfer->speed_hz, min_speed_hz); 621 } 622 623 delay = (2 * 1000000) / min_speed_hz; 624 if (likely(delay < 10)) /* SCLK is faster than 200 kHz */ 625 udelay(delay); 626 else /* SCLK is _very_ slow */ 627 usleep_range(delay, delay + 10); 628 629 return 0; 630 } 631 632 static void mx51_configure_cpha(struct spi_imx_data *spi_imx, 633 struct spi_device *spi) 634 { 635 bool cpha = (spi->mode & SPI_CPHA); 636 bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only; 637 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG); 638 int channel = mx51_ecspi_channel(spi); 639 640 /* Flip cpha logical value iff flip_cpha */ 641 cpha ^= flip_cpha; 642 643 if (cpha) 644 cfg |= MX51_ECSPI_CONFIG_SCLKPHA(channel); 645 else 646 cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(channel); 647 648 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG); 649 } 650 651 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx, 652 struct spi_device *spi) 653 { 654 u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 655 u32 clk; 656 657 /* Clear BL field and set the right value */ 658 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK; 659 if (spi_imx->target_mode && is_imx53_ecspi(spi_imx)) 660 ctrl |= (spi_imx->target_burst * 8 - 1) 661 << MX51_ECSPI_CTRL_BL_OFFSET; 662 else { 663 if (spi_imx->usedma) { 664 ctrl |= (spi_imx->bits_per_word - 1) 665 << MX51_ECSPI_CTRL_BL_OFFSET; 666 } else { 667 if (spi_imx->count >= MX51_ECSPI_CTRL_MAX_BURST) 668 ctrl |= (MX51_ECSPI_CTRL_MAX_BURST * BITS_PER_BYTE - 1) 669 << MX51_ECSPI_CTRL_BL_OFFSET; 670 else 671 ctrl |= (spi_imx->count / DIV_ROUND_UP(spi_imx->bits_per_word, 672 BITS_PER_BYTE) * spi_imx->bits_per_word - 1) 673 << MX51_ECSPI_CTRL_BL_OFFSET; 674 } 675 } 676 677 /* set clock speed */ 678 ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET | 679 0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET); 680 ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk); 681 spi_imx->spi_bus_clk = clk; 682 683 mx51_configure_cpha(spi_imx, spi); 684 685 /* 686 * ERR009165: work in XHC mode instead of SMC as PIO on the chips 687 * before i.mx6ul. 688 */ 689 if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed) 690 ctrl |= MX51_ECSPI_CTRL_SMC; 691 else 692 ctrl &= ~MX51_ECSPI_CTRL_SMC; 693 694 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 695 696 return 0; 697 } 698 699 static void mx51_setup_wml(struct spi_imx_data *spi_imx) 700 { 701 u32 tx_wml = 0; 702 703 if (spi_imx->devtype_data->tx_glitch_fixed) 704 tx_wml = spi_imx->wml; 705 /* 706 * Configure the DMA register: setup the watermark 707 * and enable DMA request. 708 */ 709 writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) | 710 MX51_ECSPI_DMA_TX_WML(tx_wml) | 711 MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) | 712 MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN | 713 MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA); 714 } 715 716 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx) 717 { 718 return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR; 719 } 720 721 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx) 722 { 723 /* drain receive buffer */ 724 while (mx51_ecspi_rx_available(spi_imx)) 725 readl(spi_imx->base + MXC_CSPIRXDATA); 726 } 727 728 #define MX31_INTREG_TEEN (1 << 0) 729 #define MX31_INTREG_RREN (1 << 3) 730 731 #define MX31_CSPICTRL_ENABLE (1 << 0) 732 #define MX31_CSPICTRL_HOST (1 << 1) 733 #define MX31_CSPICTRL_XCH (1 << 2) 734 #define MX31_CSPICTRL_SMC (1 << 3) 735 #define MX31_CSPICTRL_POL (1 << 4) 736 #define MX31_CSPICTRL_PHA (1 << 5) 737 #define MX31_CSPICTRL_SSCTL (1 << 6) 738 #define MX31_CSPICTRL_SSPOL (1 << 7) 739 #define MX31_CSPICTRL_BC_SHIFT 8 740 #define MX35_CSPICTRL_BL_SHIFT 20 741 #define MX31_CSPICTRL_CS_SHIFT 24 742 #define MX35_CSPICTRL_CS_SHIFT 12 743 #define MX31_CSPICTRL_DR_SHIFT 16 744 745 #define MX31_CSPI_DMAREG 0x10 746 #define MX31_DMAREG_RH_DEN (1<<4) 747 #define MX31_DMAREG_TH_DEN (1<<1) 748 749 #define MX31_CSPISTATUS 0x14 750 #define MX31_STATUS_RR (1 << 3) 751 752 #define MX31_CSPI_TESTREG 0x1C 753 #define MX31_TEST_LBC (1 << 14) 754 755 /* These functions also work for the i.MX35, but be aware that 756 * the i.MX35 has a slightly different register layout for bits 757 * we do not use here. 758 */ 759 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable) 760 { 761 unsigned int val = 0; 762 763 if (enable & MXC_INT_TE) 764 val |= MX31_INTREG_TEEN; 765 if (enable & MXC_INT_RR) 766 val |= MX31_INTREG_RREN; 767 768 writel(val, spi_imx->base + MXC_CSPIINT); 769 } 770 771 static void mx31_trigger(struct spi_imx_data *spi_imx) 772 { 773 unsigned int reg; 774 775 reg = readl(spi_imx->base + MXC_CSPICTRL); 776 reg |= MX31_CSPICTRL_XCH; 777 writel(reg, spi_imx->base + MXC_CSPICTRL); 778 } 779 780 static int mx31_prepare_message(struct spi_imx_data *spi_imx, 781 struct spi_message *msg) 782 { 783 return 0; 784 } 785 786 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx, 787 struct spi_device *spi) 788 { 789 unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_HOST; 790 unsigned int clk; 791 792 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) << 793 MX31_CSPICTRL_DR_SHIFT; 794 spi_imx->spi_bus_clk = clk; 795 796 if (is_imx35_cspi(spi_imx)) { 797 reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT; 798 reg |= MX31_CSPICTRL_SSCTL; 799 } else { 800 reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT; 801 } 802 803 if (spi->mode & SPI_CPHA) 804 reg |= MX31_CSPICTRL_PHA; 805 if (spi->mode & SPI_CPOL) 806 reg |= MX31_CSPICTRL_POL; 807 if (spi->mode & SPI_CS_HIGH) 808 reg |= MX31_CSPICTRL_SSPOL; 809 if (!spi_get_csgpiod(spi, 0)) 810 reg |= (spi_get_chipselect(spi, 0)) << 811 (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT : 812 MX31_CSPICTRL_CS_SHIFT); 813 814 if (spi_imx->usedma) 815 reg |= MX31_CSPICTRL_SMC; 816 817 writel(reg, spi_imx->base + MXC_CSPICTRL); 818 819 reg = readl(spi_imx->base + MX31_CSPI_TESTREG); 820 if (spi->mode & SPI_LOOP) 821 reg |= MX31_TEST_LBC; 822 else 823 reg &= ~MX31_TEST_LBC; 824 writel(reg, spi_imx->base + MX31_CSPI_TESTREG); 825 826 if (spi_imx->usedma) { 827 /* 828 * configure DMA requests when RXFIFO is half full and 829 * when TXFIFO is half empty 830 */ 831 writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN, 832 spi_imx->base + MX31_CSPI_DMAREG); 833 } 834 835 return 0; 836 } 837 838 static int mx31_rx_available(struct spi_imx_data *spi_imx) 839 { 840 return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR; 841 } 842 843 static void mx31_reset(struct spi_imx_data *spi_imx) 844 { 845 /* drain receive buffer */ 846 while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR) 847 readl(spi_imx->base + MXC_CSPIRXDATA); 848 } 849 850 #define MX21_INTREG_RR (1 << 4) 851 #define MX21_INTREG_TEEN (1 << 9) 852 #define MX21_INTREG_RREN (1 << 13) 853 854 #define MX21_CSPICTRL_POL (1 << 5) 855 #define MX21_CSPICTRL_PHA (1 << 6) 856 #define MX21_CSPICTRL_SSPOL (1 << 8) 857 #define MX21_CSPICTRL_XCH (1 << 9) 858 #define MX21_CSPICTRL_ENABLE (1 << 10) 859 #define MX21_CSPICTRL_HOST (1 << 11) 860 #define MX21_CSPICTRL_DR_SHIFT 14 861 #define MX21_CSPICTRL_CS_SHIFT 19 862 863 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable) 864 { 865 unsigned int val = 0; 866 867 if (enable & MXC_INT_TE) 868 val |= MX21_INTREG_TEEN; 869 if (enable & MXC_INT_RR) 870 val |= MX21_INTREG_RREN; 871 872 writel(val, spi_imx->base + MXC_CSPIINT); 873 } 874 875 static void mx21_trigger(struct spi_imx_data *spi_imx) 876 { 877 unsigned int reg; 878 879 reg = readl(spi_imx->base + MXC_CSPICTRL); 880 reg |= MX21_CSPICTRL_XCH; 881 writel(reg, spi_imx->base + MXC_CSPICTRL); 882 } 883 884 static int mx21_prepare_message(struct spi_imx_data *spi_imx, 885 struct spi_message *msg) 886 { 887 return 0; 888 } 889 890 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx, 891 struct spi_device *spi) 892 { 893 unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_HOST; 894 unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18; 895 unsigned int clk; 896 897 reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk) 898 << MX21_CSPICTRL_DR_SHIFT; 899 spi_imx->spi_bus_clk = clk; 900 901 reg |= spi_imx->bits_per_word - 1; 902 903 if (spi->mode & SPI_CPHA) 904 reg |= MX21_CSPICTRL_PHA; 905 if (spi->mode & SPI_CPOL) 906 reg |= MX21_CSPICTRL_POL; 907 if (spi->mode & SPI_CS_HIGH) 908 reg |= MX21_CSPICTRL_SSPOL; 909 if (!spi_get_csgpiod(spi, 0)) 910 reg |= spi_get_chipselect(spi, 0) << MX21_CSPICTRL_CS_SHIFT; 911 912 writel(reg, spi_imx->base + MXC_CSPICTRL); 913 914 return 0; 915 } 916 917 static int mx21_rx_available(struct spi_imx_data *spi_imx) 918 { 919 return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR; 920 } 921 922 static void mx21_reset(struct spi_imx_data *spi_imx) 923 { 924 writel(1, spi_imx->base + MXC_RESET); 925 } 926 927 #define MX1_INTREG_RR (1 << 3) 928 #define MX1_INTREG_TEEN (1 << 8) 929 #define MX1_INTREG_RREN (1 << 11) 930 931 #define MX1_CSPICTRL_POL (1 << 4) 932 #define MX1_CSPICTRL_PHA (1 << 5) 933 #define MX1_CSPICTRL_XCH (1 << 8) 934 #define MX1_CSPICTRL_ENABLE (1 << 9) 935 #define MX1_CSPICTRL_HOST (1 << 10) 936 #define MX1_CSPICTRL_DR_SHIFT 13 937 938 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable) 939 { 940 unsigned int val = 0; 941 942 if (enable & MXC_INT_TE) 943 val |= MX1_INTREG_TEEN; 944 if (enable & MXC_INT_RR) 945 val |= MX1_INTREG_RREN; 946 947 writel(val, spi_imx->base + MXC_CSPIINT); 948 } 949 950 static void mx1_trigger(struct spi_imx_data *spi_imx) 951 { 952 unsigned int reg; 953 954 reg = readl(spi_imx->base + MXC_CSPICTRL); 955 reg |= MX1_CSPICTRL_XCH; 956 writel(reg, spi_imx->base + MXC_CSPICTRL); 957 } 958 959 static int mx1_prepare_message(struct spi_imx_data *spi_imx, 960 struct spi_message *msg) 961 { 962 return 0; 963 } 964 965 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx, 966 struct spi_device *spi) 967 { 968 unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_HOST; 969 unsigned int clk; 970 971 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) << 972 MX1_CSPICTRL_DR_SHIFT; 973 spi_imx->spi_bus_clk = clk; 974 975 reg |= spi_imx->bits_per_word - 1; 976 977 if (spi->mode & SPI_CPHA) 978 reg |= MX1_CSPICTRL_PHA; 979 if (spi->mode & SPI_CPOL) 980 reg |= MX1_CSPICTRL_POL; 981 982 writel(reg, spi_imx->base + MXC_CSPICTRL); 983 984 return 0; 985 } 986 987 static int mx1_rx_available(struct spi_imx_data *spi_imx) 988 { 989 return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR; 990 } 991 992 static void mx1_reset(struct spi_imx_data *spi_imx) 993 { 994 writel(1, spi_imx->base + MXC_RESET); 995 } 996 997 static struct spi_imx_devtype_data imx1_cspi_devtype_data = { 998 .intctrl = mx1_intctrl, 999 .prepare_message = mx1_prepare_message, 1000 .prepare_transfer = mx1_prepare_transfer, 1001 .trigger = mx1_trigger, 1002 .rx_available = mx1_rx_available, 1003 .reset = mx1_reset, 1004 .fifo_size = 8, 1005 .has_dmamode = false, 1006 .dynamic_burst = false, 1007 .has_targetmode = false, 1008 .devtype = IMX1_CSPI, 1009 }; 1010 1011 static struct spi_imx_devtype_data imx21_cspi_devtype_data = { 1012 .intctrl = mx21_intctrl, 1013 .prepare_message = mx21_prepare_message, 1014 .prepare_transfer = mx21_prepare_transfer, 1015 .trigger = mx21_trigger, 1016 .rx_available = mx21_rx_available, 1017 .reset = mx21_reset, 1018 .fifo_size = 8, 1019 .has_dmamode = false, 1020 .dynamic_burst = false, 1021 .has_targetmode = false, 1022 .devtype = IMX21_CSPI, 1023 }; 1024 1025 static struct spi_imx_devtype_data imx27_cspi_devtype_data = { 1026 /* i.mx27 cspi shares the functions with i.mx21 one */ 1027 .intctrl = mx21_intctrl, 1028 .prepare_message = mx21_prepare_message, 1029 .prepare_transfer = mx21_prepare_transfer, 1030 .trigger = mx21_trigger, 1031 .rx_available = mx21_rx_available, 1032 .reset = mx21_reset, 1033 .fifo_size = 8, 1034 .has_dmamode = false, 1035 .dynamic_burst = false, 1036 .has_targetmode = false, 1037 .devtype = IMX27_CSPI, 1038 }; 1039 1040 static struct spi_imx_devtype_data imx31_cspi_devtype_data = { 1041 .intctrl = mx31_intctrl, 1042 .prepare_message = mx31_prepare_message, 1043 .prepare_transfer = mx31_prepare_transfer, 1044 .trigger = mx31_trigger, 1045 .rx_available = mx31_rx_available, 1046 .reset = mx31_reset, 1047 .fifo_size = 8, 1048 .has_dmamode = false, 1049 .dynamic_burst = false, 1050 .has_targetmode = false, 1051 .devtype = IMX31_CSPI, 1052 }; 1053 1054 static struct spi_imx_devtype_data imx35_cspi_devtype_data = { 1055 /* i.mx35 and later cspi shares the functions with i.mx31 one */ 1056 .intctrl = mx31_intctrl, 1057 .prepare_message = mx31_prepare_message, 1058 .prepare_transfer = mx31_prepare_transfer, 1059 .trigger = mx31_trigger, 1060 .rx_available = mx31_rx_available, 1061 .reset = mx31_reset, 1062 .fifo_size = 8, 1063 .has_dmamode = true, 1064 .dynamic_burst = false, 1065 .has_targetmode = false, 1066 .devtype = IMX35_CSPI, 1067 }; 1068 1069 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = { 1070 .intctrl = mx51_ecspi_intctrl, 1071 .prepare_message = mx51_ecspi_prepare_message, 1072 .prepare_transfer = mx51_ecspi_prepare_transfer, 1073 .trigger = mx51_ecspi_trigger, 1074 .rx_available = mx51_ecspi_rx_available, 1075 .reset = mx51_ecspi_reset, 1076 .setup_wml = mx51_setup_wml, 1077 .fifo_size = 64, 1078 .has_dmamode = true, 1079 .dynamic_burst = true, 1080 .has_targetmode = true, 1081 .disable = mx51_ecspi_disable, 1082 .devtype = IMX51_ECSPI, 1083 }; 1084 1085 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = { 1086 .intctrl = mx51_ecspi_intctrl, 1087 .prepare_message = mx51_ecspi_prepare_message, 1088 .prepare_transfer = mx51_ecspi_prepare_transfer, 1089 .trigger = mx51_ecspi_trigger, 1090 .rx_available = mx51_ecspi_rx_available, 1091 .reset = mx51_ecspi_reset, 1092 .fifo_size = 64, 1093 .has_dmamode = true, 1094 .has_targetmode = true, 1095 .disable = mx51_ecspi_disable, 1096 .devtype = IMX53_ECSPI, 1097 }; 1098 1099 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = { 1100 .intctrl = mx51_ecspi_intctrl, 1101 .prepare_message = mx51_ecspi_prepare_message, 1102 .prepare_transfer = mx51_ecspi_prepare_transfer, 1103 .trigger = mx51_ecspi_trigger, 1104 .rx_available = mx51_ecspi_rx_available, 1105 .reset = mx51_ecspi_reset, 1106 .setup_wml = mx51_setup_wml, 1107 .fifo_size = 64, 1108 .has_dmamode = true, 1109 .dynamic_burst = true, 1110 .has_targetmode = true, 1111 .tx_glitch_fixed = true, 1112 .disable = mx51_ecspi_disable, 1113 .devtype = IMX51_ECSPI, 1114 }; 1115 1116 static const struct of_device_id spi_imx_dt_ids[] = { 1117 { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, }, 1118 { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, }, 1119 { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, }, 1120 { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, }, 1121 { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, }, 1122 { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, }, 1123 { .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, }, 1124 { .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, }, 1125 { /* sentinel */ } 1126 }; 1127 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids); 1128 1129 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits) 1130 { 1131 u32 ctrl; 1132 1133 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 1134 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK; 1135 ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET); 1136 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 1137 } 1138 1139 static void spi_imx_push(struct spi_imx_data *spi_imx) 1140 { 1141 unsigned int burst_len; 1142 1143 /* 1144 * Reload the FIFO when the remaining bytes to be transferred in the 1145 * current burst is 0. This only applies when bits_per_word is a 1146 * multiple of 8. 1147 */ 1148 if (!spi_imx->remainder) { 1149 if (spi_imx->dynamic_burst) { 1150 1151 /* We need to deal unaligned data first */ 1152 burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST; 1153 1154 if (!burst_len) 1155 burst_len = MX51_ECSPI_CTRL_MAX_BURST; 1156 1157 spi_imx_set_burst_len(spi_imx, burst_len * 8); 1158 1159 spi_imx->remainder = burst_len; 1160 } else { 1161 spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word); 1162 } 1163 } 1164 1165 while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) { 1166 if (!spi_imx->count) 1167 break; 1168 if (spi_imx->dynamic_burst && 1169 spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4)) 1170 break; 1171 spi_imx->tx(spi_imx); 1172 spi_imx->txfifo++; 1173 } 1174 1175 if (!spi_imx->target_mode) 1176 spi_imx->devtype_data->trigger(spi_imx); 1177 } 1178 1179 static irqreturn_t spi_imx_isr(int irq, void *dev_id) 1180 { 1181 struct spi_imx_data *spi_imx = dev_id; 1182 1183 while (spi_imx->txfifo && 1184 spi_imx->devtype_data->rx_available(spi_imx)) { 1185 spi_imx->rx(spi_imx); 1186 spi_imx->txfifo--; 1187 } 1188 1189 if (spi_imx->count) { 1190 spi_imx_push(spi_imx); 1191 return IRQ_HANDLED; 1192 } 1193 1194 if (spi_imx->txfifo) { 1195 /* No data left to push, but still waiting for rx data, 1196 * enable receive data available interrupt. 1197 */ 1198 spi_imx->devtype_data->intctrl( 1199 spi_imx, MXC_INT_RR); 1200 return IRQ_HANDLED; 1201 } 1202 1203 spi_imx->devtype_data->intctrl(spi_imx, 0); 1204 complete(&spi_imx->xfer_done); 1205 1206 return IRQ_HANDLED; 1207 } 1208 1209 static int spi_imx_dma_configure(struct spi_controller *controller) 1210 { 1211 int ret; 1212 enum dma_slave_buswidth buswidth; 1213 struct dma_slave_config rx = {}, tx = {}; 1214 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1215 1216 switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) { 1217 case 4: 1218 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 1219 break; 1220 case 2: 1221 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 1222 break; 1223 case 1: 1224 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 1225 break; 1226 default: 1227 return -EINVAL; 1228 } 1229 1230 tx.direction = DMA_MEM_TO_DEV; 1231 tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA; 1232 tx.dst_addr_width = buswidth; 1233 tx.dst_maxburst = spi_imx->wml; 1234 ret = dmaengine_slave_config(controller->dma_tx, &tx); 1235 if (ret) { 1236 dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret); 1237 return ret; 1238 } 1239 1240 rx.direction = DMA_DEV_TO_MEM; 1241 rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA; 1242 rx.src_addr_width = buswidth; 1243 rx.src_maxburst = spi_imx->wml; 1244 ret = dmaengine_slave_config(controller->dma_rx, &rx); 1245 if (ret) { 1246 dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret); 1247 return ret; 1248 } 1249 1250 return 0; 1251 } 1252 1253 static int spi_imx_setupxfer(struct spi_device *spi, 1254 struct spi_transfer *t) 1255 { 1256 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1257 1258 if (!t) 1259 return 0; 1260 1261 if (!t->speed_hz) { 1262 if (!spi->max_speed_hz) { 1263 dev_err(&spi->dev, "no speed_hz provided!\n"); 1264 return -EINVAL; 1265 } 1266 dev_dbg(&spi->dev, "using spi->max_speed_hz!\n"); 1267 spi_imx->spi_bus_clk = spi->max_speed_hz; 1268 } else 1269 spi_imx->spi_bus_clk = t->speed_hz; 1270 1271 spi_imx->bits_per_word = t->bits_per_word; 1272 spi_imx->count = t->len; 1273 1274 /* 1275 * Initialize the functions for transfer. To transfer non byte-aligned 1276 * words, we have to use multiple word-size bursts, we can't use 1277 * dynamic_burst in that case. 1278 */ 1279 if (spi_imx->devtype_data->dynamic_burst && !spi_imx->target_mode && 1280 !(spi->mode & SPI_CS_WORD) && 1281 (spi_imx->bits_per_word == 8 || 1282 spi_imx->bits_per_word == 16 || 1283 spi_imx->bits_per_word == 32)) { 1284 1285 spi_imx->rx = spi_imx_buf_rx_swap; 1286 spi_imx->tx = spi_imx_buf_tx_swap; 1287 spi_imx->dynamic_burst = 1; 1288 1289 } else { 1290 if (spi_imx->bits_per_word <= 8) { 1291 spi_imx->rx = spi_imx_buf_rx_u8; 1292 spi_imx->tx = spi_imx_buf_tx_u8; 1293 } else if (spi_imx->bits_per_word <= 16) { 1294 spi_imx->rx = spi_imx_buf_rx_u16; 1295 spi_imx->tx = spi_imx_buf_tx_u16; 1296 } else { 1297 spi_imx->rx = spi_imx_buf_rx_u32; 1298 spi_imx->tx = spi_imx_buf_tx_u32; 1299 } 1300 spi_imx->dynamic_burst = 0; 1301 } 1302 1303 if (spi_imx_can_dma(spi_imx->controller, spi, t)) 1304 spi_imx->usedma = true; 1305 else 1306 spi_imx->usedma = false; 1307 1308 spi_imx->rx_only = ((t->tx_buf == NULL) 1309 || (t->tx_buf == spi->controller->dummy_tx)); 1310 1311 if (is_imx53_ecspi(spi_imx) && spi_imx->target_mode) { 1312 spi_imx->rx = mx53_ecspi_rx_target; 1313 spi_imx->tx = mx53_ecspi_tx_target; 1314 spi_imx->target_burst = t->len; 1315 } 1316 1317 spi_imx->devtype_data->prepare_transfer(spi_imx, spi); 1318 1319 return 0; 1320 } 1321 1322 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx) 1323 { 1324 struct spi_controller *controller = spi_imx->controller; 1325 1326 if (controller->dma_rx) { 1327 dma_release_channel(controller->dma_rx); 1328 controller->dma_rx = NULL; 1329 } 1330 1331 if (controller->dma_tx) { 1332 dma_release_channel(controller->dma_tx); 1333 controller->dma_tx = NULL; 1334 } 1335 } 1336 1337 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx, 1338 struct spi_controller *controller) 1339 { 1340 int ret; 1341 1342 spi_imx->wml = spi_imx->devtype_data->fifo_size / 2; 1343 1344 /* Prepare for TX DMA: */ 1345 controller->dma_tx = dma_request_chan(dev, "tx"); 1346 if (IS_ERR(controller->dma_tx)) { 1347 ret = PTR_ERR(controller->dma_tx); 1348 dev_err_probe(dev, ret, "can't get the TX DMA channel!\n"); 1349 controller->dma_tx = NULL; 1350 goto err; 1351 } 1352 1353 /* Prepare for RX : */ 1354 controller->dma_rx = dma_request_chan(dev, "rx"); 1355 if (IS_ERR(controller->dma_rx)) { 1356 ret = PTR_ERR(controller->dma_rx); 1357 dev_err_probe(dev, ret, "can't get the RX DMA channel!\n"); 1358 controller->dma_rx = NULL; 1359 goto err; 1360 } 1361 1362 init_completion(&spi_imx->dma_rx_completion); 1363 init_completion(&spi_imx->dma_tx_completion); 1364 controller->can_dma = spi_imx_can_dma; 1365 controller->max_dma_len = MAX_SDMA_BD_BYTES; 1366 spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX | 1367 SPI_CONTROLLER_MUST_TX; 1368 1369 return 0; 1370 err: 1371 spi_imx_sdma_exit(spi_imx); 1372 return ret; 1373 } 1374 1375 static void spi_imx_dma_rx_callback(void *cookie) 1376 { 1377 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 1378 1379 complete(&spi_imx->dma_rx_completion); 1380 } 1381 1382 static void spi_imx_dma_tx_callback(void *cookie) 1383 { 1384 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 1385 1386 complete(&spi_imx->dma_tx_completion); 1387 } 1388 1389 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size) 1390 { 1391 unsigned long timeout = 0; 1392 1393 /* Time with actual data transfer and CS change delay related to HW */ 1394 timeout = (8 + 4) * size / spi_imx->spi_bus_clk; 1395 1396 /* Add extra second for scheduler related activities */ 1397 timeout += 1; 1398 1399 /* Double calculated timeout */ 1400 return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC); 1401 } 1402 1403 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx, 1404 struct spi_transfer *transfer) 1405 { 1406 struct dma_async_tx_descriptor *desc_tx, *desc_rx; 1407 unsigned long transfer_timeout; 1408 unsigned long time_left; 1409 struct spi_controller *controller = spi_imx->controller; 1410 struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg; 1411 struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents); 1412 unsigned int bytes_per_word, i; 1413 int ret; 1414 1415 /* Get the right burst length from the last sg to ensure no tail data */ 1416 bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word); 1417 for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) { 1418 if (!(sg_dma_len(last_sg) % (i * bytes_per_word))) 1419 break; 1420 } 1421 /* Use 1 as wml in case no available burst length got */ 1422 if (i == 0) 1423 i = 1; 1424 1425 spi_imx->wml = i; 1426 1427 ret = spi_imx_dma_configure(controller); 1428 if (ret) 1429 goto dma_failure_no_start; 1430 1431 if (!spi_imx->devtype_data->setup_wml) { 1432 dev_err(spi_imx->dev, "No setup_wml()?\n"); 1433 ret = -EINVAL; 1434 goto dma_failure_no_start; 1435 } 1436 spi_imx->devtype_data->setup_wml(spi_imx); 1437 1438 /* 1439 * The TX DMA setup starts the transfer, so make sure RX is configured 1440 * before TX. 1441 */ 1442 desc_rx = dmaengine_prep_slave_sg(controller->dma_rx, 1443 rx->sgl, rx->nents, DMA_DEV_TO_MEM, 1444 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1445 if (!desc_rx) { 1446 ret = -EINVAL; 1447 goto dma_failure_no_start; 1448 } 1449 1450 desc_rx->callback = spi_imx_dma_rx_callback; 1451 desc_rx->callback_param = (void *)spi_imx; 1452 dmaengine_submit(desc_rx); 1453 reinit_completion(&spi_imx->dma_rx_completion); 1454 dma_async_issue_pending(controller->dma_rx); 1455 1456 desc_tx = dmaengine_prep_slave_sg(controller->dma_tx, 1457 tx->sgl, tx->nents, DMA_MEM_TO_DEV, 1458 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1459 if (!desc_tx) { 1460 dmaengine_terminate_all(controller->dma_tx); 1461 dmaengine_terminate_all(controller->dma_rx); 1462 return -EINVAL; 1463 } 1464 1465 desc_tx->callback = spi_imx_dma_tx_callback; 1466 desc_tx->callback_param = (void *)spi_imx; 1467 dmaengine_submit(desc_tx); 1468 reinit_completion(&spi_imx->dma_tx_completion); 1469 dma_async_issue_pending(controller->dma_tx); 1470 1471 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1472 1473 /* Wait SDMA to finish the data transfer.*/ 1474 time_left = wait_for_completion_timeout(&spi_imx->dma_tx_completion, 1475 transfer_timeout); 1476 if (!time_left) { 1477 dev_err(spi_imx->dev, "I/O Error in DMA TX\n"); 1478 dmaengine_terminate_all(controller->dma_tx); 1479 dmaengine_terminate_all(controller->dma_rx); 1480 return -ETIMEDOUT; 1481 } 1482 1483 time_left = wait_for_completion_timeout(&spi_imx->dma_rx_completion, 1484 transfer_timeout); 1485 if (!time_left) { 1486 dev_err(&controller->dev, "I/O Error in DMA RX\n"); 1487 spi_imx->devtype_data->reset(spi_imx); 1488 dmaengine_terminate_all(controller->dma_rx); 1489 return -ETIMEDOUT; 1490 } 1491 1492 return 0; 1493 /* fallback to pio */ 1494 dma_failure_no_start: 1495 transfer->error |= SPI_TRANS_FAIL_NO_START; 1496 return ret; 1497 } 1498 1499 static int spi_imx_pio_transfer(struct spi_device *spi, 1500 struct spi_transfer *transfer) 1501 { 1502 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1503 unsigned long transfer_timeout; 1504 unsigned long time_left; 1505 1506 spi_imx->tx_buf = transfer->tx_buf; 1507 spi_imx->rx_buf = transfer->rx_buf; 1508 spi_imx->count = transfer->len; 1509 spi_imx->txfifo = 0; 1510 spi_imx->remainder = 0; 1511 1512 reinit_completion(&spi_imx->xfer_done); 1513 1514 spi_imx_push(spi_imx); 1515 1516 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE); 1517 1518 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1519 1520 time_left = wait_for_completion_timeout(&spi_imx->xfer_done, 1521 transfer_timeout); 1522 if (!time_left) { 1523 dev_err(&spi->dev, "I/O Error in PIO\n"); 1524 spi_imx->devtype_data->reset(spi_imx); 1525 return -ETIMEDOUT; 1526 } 1527 1528 return 0; 1529 } 1530 1531 static int spi_imx_poll_transfer(struct spi_device *spi, 1532 struct spi_transfer *transfer) 1533 { 1534 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1535 unsigned long timeout; 1536 1537 spi_imx->tx_buf = transfer->tx_buf; 1538 spi_imx->rx_buf = transfer->rx_buf; 1539 spi_imx->count = transfer->len; 1540 spi_imx->txfifo = 0; 1541 spi_imx->remainder = 0; 1542 1543 /* fill in the fifo before timeout calculations if we are 1544 * interrupted here, then the data is getting transferred by 1545 * the HW while we are interrupted 1546 */ 1547 spi_imx_push(spi_imx); 1548 1549 timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies; 1550 while (spi_imx->txfifo) { 1551 /* RX */ 1552 while (spi_imx->txfifo && 1553 spi_imx->devtype_data->rx_available(spi_imx)) { 1554 spi_imx->rx(spi_imx); 1555 spi_imx->txfifo--; 1556 } 1557 1558 /* TX */ 1559 if (spi_imx->count) { 1560 spi_imx_push(spi_imx); 1561 continue; 1562 } 1563 1564 if (spi_imx->txfifo && 1565 time_after(jiffies, timeout)) { 1566 1567 dev_err_ratelimited(&spi->dev, 1568 "timeout period reached: jiffies: %lu- falling back to interrupt mode\n", 1569 jiffies - timeout); 1570 1571 /* fall back to interrupt mode */ 1572 return spi_imx_pio_transfer(spi, transfer); 1573 } 1574 } 1575 1576 return 0; 1577 } 1578 1579 static int spi_imx_pio_transfer_target(struct spi_device *spi, 1580 struct spi_transfer *transfer) 1581 { 1582 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1583 int ret = 0; 1584 1585 if (is_imx53_ecspi(spi_imx) && 1586 transfer->len > MX53_MAX_TRANSFER_BYTES) { 1587 dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n", 1588 MX53_MAX_TRANSFER_BYTES); 1589 return -EMSGSIZE; 1590 } 1591 1592 spi_imx->tx_buf = transfer->tx_buf; 1593 spi_imx->rx_buf = transfer->rx_buf; 1594 spi_imx->count = transfer->len; 1595 spi_imx->txfifo = 0; 1596 spi_imx->remainder = 0; 1597 1598 reinit_completion(&spi_imx->xfer_done); 1599 spi_imx->target_aborted = false; 1600 1601 spi_imx_push(spi_imx); 1602 1603 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR); 1604 1605 if (wait_for_completion_interruptible(&spi_imx->xfer_done) || 1606 spi_imx->target_aborted) { 1607 dev_dbg(&spi->dev, "interrupted\n"); 1608 ret = -EINTR; 1609 } 1610 1611 /* ecspi has a HW issue when works in Target mode, 1612 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty, 1613 * ECSPI_TXDATA keeps shift out the last word data, 1614 * so we have to disable ECSPI when in target mode after the 1615 * transfer completes 1616 */ 1617 if (spi_imx->devtype_data->disable) 1618 spi_imx->devtype_data->disable(spi_imx); 1619 1620 return ret; 1621 } 1622 1623 static int spi_imx_transfer_one(struct spi_controller *controller, 1624 struct spi_device *spi, 1625 struct spi_transfer *transfer) 1626 { 1627 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1628 unsigned long hz_per_byte, byte_limit; 1629 1630 spi_imx_setupxfer(spi, transfer); 1631 transfer->effective_speed_hz = spi_imx->spi_bus_clk; 1632 1633 /* flush rxfifo before transfer */ 1634 while (spi_imx->devtype_data->rx_available(spi_imx)) 1635 readl(spi_imx->base + MXC_CSPIRXDATA); 1636 1637 if (spi_imx->target_mode) 1638 return spi_imx_pio_transfer_target(spi, transfer); 1639 1640 /* 1641 * If we decided in spi_imx_can_dma() that we want to do a DMA 1642 * transfer, the SPI transfer has already been mapped, so we 1643 * have to do the DMA transfer here. 1644 */ 1645 if (spi_imx->usedma) 1646 return spi_imx_dma_transfer(spi_imx, transfer); 1647 /* 1648 * Calculate the estimated time in us the transfer runs. Find 1649 * the number of Hz per byte per polling limit. 1650 */ 1651 hz_per_byte = polling_limit_us ? ((8 + 4) * USEC_PER_SEC) / polling_limit_us : 0; 1652 byte_limit = hz_per_byte ? transfer->effective_speed_hz / hz_per_byte : 1; 1653 1654 /* run in polling mode for short transfers */ 1655 if (transfer->len < byte_limit) 1656 return spi_imx_poll_transfer(spi, transfer); 1657 1658 return spi_imx_pio_transfer(spi, transfer); 1659 } 1660 1661 static int spi_imx_setup(struct spi_device *spi) 1662 { 1663 dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__, 1664 spi->mode, spi->bits_per_word, spi->max_speed_hz); 1665 1666 return 0; 1667 } 1668 1669 static void spi_imx_cleanup(struct spi_device *spi) 1670 { 1671 } 1672 1673 static int 1674 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg) 1675 { 1676 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1677 int ret; 1678 1679 ret = pm_runtime_resume_and_get(spi_imx->dev); 1680 if (ret < 0) { 1681 dev_err(spi_imx->dev, "failed to enable clock\n"); 1682 return ret; 1683 } 1684 1685 ret = spi_imx->devtype_data->prepare_message(spi_imx, msg); 1686 if (ret) { 1687 pm_runtime_mark_last_busy(spi_imx->dev); 1688 pm_runtime_put_autosuspend(spi_imx->dev); 1689 } 1690 1691 return ret; 1692 } 1693 1694 static int 1695 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg) 1696 { 1697 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1698 1699 pm_runtime_mark_last_busy(spi_imx->dev); 1700 pm_runtime_put_autosuspend(spi_imx->dev); 1701 return 0; 1702 } 1703 1704 static int spi_imx_target_abort(struct spi_controller *controller) 1705 { 1706 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1707 1708 spi_imx->target_aborted = true; 1709 complete(&spi_imx->xfer_done); 1710 1711 return 0; 1712 } 1713 1714 static int spi_imx_probe(struct platform_device *pdev) 1715 { 1716 struct device_node *np = pdev->dev.of_node; 1717 struct spi_controller *controller; 1718 struct spi_imx_data *spi_imx; 1719 struct resource *res; 1720 int ret, irq, spi_drctl; 1721 const struct spi_imx_devtype_data *devtype_data = 1722 of_device_get_match_data(&pdev->dev); 1723 bool target_mode; 1724 u32 val; 1725 1726 target_mode = devtype_data->has_targetmode && 1727 of_property_read_bool(np, "spi-slave"); 1728 if (target_mode) 1729 controller = spi_alloc_target(&pdev->dev, 1730 sizeof(struct spi_imx_data)); 1731 else 1732 controller = spi_alloc_host(&pdev->dev, 1733 sizeof(struct spi_imx_data)); 1734 if (!controller) 1735 return -ENOMEM; 1736 1737 ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl); 1738 if ((ret < 0) || (spi_drctl >= 0x3)) { 1739 /* '11' is reserved */ 1740 spi_drctl = 0; 1741 } 1742 1743 platform_set_drvdata(pdev, controller); 1744 1745 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32); 1746 controller->bus_num = np ? -1 : pdev->id; 1747 controller->use_gpio_descriptors = true; 1748 1749 spi_imx = spi_controller_get_devdata(controller); 1750 spi_imx->controller = controller; 1751 spi_imx->dev = &pdev->dev; 1752 spi_imx->target_mode = target_mode; 1753 1754 spi_imx->devtype_data = devtype_data; 1755 1756 /* 1757 * Get number of chip selects from device properties. This can be 1758 * coming from device tree or boardfiles, if it is not defined, 1759 * a default value of 3 chip selects will be used, as all the legacy 1760 * board files have <= 3 chip selects. 1761 */ 1762 if (!device_property_read_u32(&pdev->dev, "num-cs", &val)) 1763 controller->num_chipselect = val; 1764 else 1765 controller->num_chipselect = 3; 1766 1767 controller->transfer_one = spi_imx_transfer_one; 1768 controller->setup = spi_imx_setup; 1769 controller->cleanup = spi_imx_cleanup; 1770 controller->prepare_message = spi_imx_prepare_message; 1771 controller->unprepare_message = spi_imx_unprepare_message; 1772 controller->target_abort = spi_imx_target_abort; 1773 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS | 1774 SPI_MOSI_IDLE_LOW; 1775 1776 if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) || 1777 is_imx53_ecspi(spi_imx)) 1778 controller->mode_bits |= SPI_LOOP | SPI_READY; 1779 1780 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) 1781 controller->mode_bits |= SPI_RX_CPHA_FLIP; 1782 1783 if (is_imx51_ecspi(spi_imx) && 1784 device_property_read_u32(&pdev->dev, "cs-gpios", NULL)) 1785 /* 1786 * When using HW-CS implementing SPI_CS_WORD can be done by just 1787 * setting the burst length to the word size. This is 1788 * considerably faster than manually controlling the CS. 1789 */ 1790 controller->mode_bits |= SPI_CS_WORD; 1791 1792 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) { 1793 controller->max_native_cs = 4; 1794 controller->flags |= SPI_CONTROLLER_GPIO_SS; 1795 } 1796 1797 spi_imx->spi_drctl = spi_drctl; 1798 1799 init_completion(&spi_imx->xfer_done); 1800 1801 spi_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1802 if (IS_ERR(spi_imx->base)) { 1803 ret = PTR_ERR(spi_imx->base); 1804 goto out_controller_put; 1805 } 1806 spi_imx->base_phys = res->start; 1807 1808 irq = platform_get_irq(pdev, 0); 1809 if (irq < 0) { 1810 ret = irq; 1811 goto out_controller_put; 1812 } 1813 1814 ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0, 1815 dev_name(&pdev->dev), spi_imx); 1816 if (ret) { 1817 dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret); 1818 goto out_controller_put; 1819 } 1820 1821 spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 1822 if (IS_ERR(spi_imx->clk_ipg)) { 1823 ret = PTR_ERR(spi_imx->clk_ipg); 1824 goto out_controller_put; 1825 } 1826 1827 spi_imx->clk_per = devm_clk_get(&pdev->dev, "per"); 1828 if (IS_ERR(spi_imx->clk_per)) { 1829 ret = PTR_ERR(spi_imx->clk_per); 1830 goto out_controller_put; 1831 } 1832 1833 ret = clk_prepare_enable(spi_imx->clk_per); 1834 if (ret) 1835 goto out_controller_put; 1836 1837 ret = clk_prepare_enable(spi_imx->clk_ipg); 1838 if (ret) 1839 goto out_put_per; 1840 1841 pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT); 1842 pm_runtime_use_autosuspend(spi_imx->dev); 1843 pm_runtime_get_noresume(spi_imx->dev); 1844 pm_runtime_set_active(spi_imx->dev); 1845 pm_runtime_enable(spi_imx->dev); 1846 1847 spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per); 1848 /* 1849 * Only validated on i.mx35 and i.mx6 now, can remove the constraint 1850 * if validated on other chips. 1851 */ 1852 if (spi_imx->devtype_data->has_dmamode) { 1853 ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller); 1854 if (ret == -EPROBE_DEFER) 1855 goto out_runtime_pm_put; 1856 1857 if (ret < 0) 1858 dev_dbg(&pdev->dev, "dma setup error %d, use pio\n", 1859 ret); 1860 } 1861 1862 spi_imx->devtype_data->reset(spi_imx); 1863 1864 spi_imx->devtype_data->intctrl(spi_imx, 0); 1865 1866 controller->dev.of_node = pdev->dev.of_node; 1867 ret = spi_register_controller(controller); 1868 if (ret) { 1869 dev_err_probe(&pdev->dev, ret, "register controller failed\n"); 1870 goto out_register_controller; 1871 } 1872 1873 pm_runtime_mark_last_busy(spi_imx->dev); 1874 pm_runtime_put_autosuspend(spi_imx->dev); 1875 1876 return ret; 1877 1878 out_register_controller: 1879 if (spi_imx->devtype_data->has_dmamode) 1880 spi_imx_sdma_exit(spi_imx); 1881 out_runtime_pm_put: 1882 pm_runtime_dont_use_autosuspend(spi_imx->dev); 1883 pm_runtime_set_suspended(&pdev->dev); 1884 pm_runtime_disable(spi_imx->dev); 1885 1886 clk_disable_unprepare(spi_imx->clk_ipg); 1887 out_put_per: 1888 clk_disable_unprepare(spi_imx->clk_per); 1889 out_controller_put: 1890 spi_controller_put(controller); 1891 1892 return ret; 1893 } 1894 1895 static void spi_imx_remove(struct platform_device *pdev) 1896 { 1897 struct spi_controller *controller = platform_get_drvdata(pdev); 1898 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1899 int ret; 1900 1901 spi_unregister_controller(controller); 1902 1903 ret = pm_runtime_get_sync(spi_imx->dev); 1904 if (ret >= 0) 1905 writel(0, spi_imx->base + MXC_CSPICTRL); 1906 else 1907 dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n"); 1908 1909 pm_runtime_dont_use_autosuspend(spi_imx->dev); 1910 pm_runtime_put_sync(spi_imx->dev); 1911 pm_runtime_disable(spi_imx->dev); 1912 1913 spi_imx_sdma_exit(spi_imx); 1914 } 1915 1916 static int __maybe_unused spi_imx_runtime_resume(struct device *dev) 1917 { 1918 struct spi_controller *controller = dev_get_drvdata(dev); 1919 struct spi_imx_data *spi_imx; 1920 int ret; 1921 1922 spi_imx = spi_controller_get_devdata(controller); 1923 1924 ret = clk_prepare_enable(spi_imx->clk_per); 1925 if (ret) 1926 return ret; 1927 1928 ret = clk_prepare_enable(spi_imx->clk_ipg); 1929 if (ret) { 1930 clk_disable_unprepare(spi_imx->clk_per); 1931 return ret; 1932 } 1933 1934 return 0; 1935 } 1936 1937 static int __maybe_unused spi_imx_runtime_suspend(struct device *dev) 1938 { 1939 struct spi_controller *controller = dev_get_drvdata(dev); 1940 struct spi_imx_data *spi_imx; 1941 1942 spi_imx = spi_controller_get_devdata(controller); 1943 1944 clk_disable_unprepare(spi_imx->clk_per); 1945 clk_disable_unprepare(spi_imx->clk_ipg); 1946 1947 return 0; 1948 } 1949 1950 static int __maybe_unused spi_imx_suspend(struct device *dev) 1951 { 1952 pinctrl_pm_select_sleep_state(dev); 1953 return 0; 1954 } 1955 1956 static int __maybe_unused spi_imx_resume(struct device *dev) 1957 { 1958 pinctrl_pm_select_default_state(dev); 1959 return 0; 1960 } 1961 1962 static const struct dev_pm_ops imx_spi_pm = { 1963 SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend, 1964 spi_imx_runtime_resume, NULL) 1965 SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume) 1966 }; 1967 1968 static struct platform_driver spi_imx_driver = { 1969 .driver = { 1970 .name = DRIVER_NAME, 1971 .of_match_table = spi_imx_dt_ids, 1972 .pm = &imx_spi_pm, 1973 }, 1974 .probe = spi_imx_probe, 1975 .remove_new = spi_imx_remove, 1976 }; 1977 module_platform_driver(spi_imx_driver); 1978 1979 MODULE_DESCRIPTION("i.MX SPI Controller driver"); 1980 MODULE_AUTHOR("Sascha Hauer, Pengutronix"); 1981 MODULE_LICENSE("GPL"); 1982 MODULE_ALIAS("platform:" DRIVER_NAME); 1983