1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. 3 // Copyright (C) 2008 Juergen Beisert 4 5 #include <linux/bits.h> 6 #include <linux/bitfield.h> 7 #include <linux/clk.h> 8 #include <linux/completion.h> 9 #include <linux/delay.h> 10 #include <linux/dmaengine.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/err.h> 13 #include <linux/interrupt.h> 14 #include <linux/io.h> 15 #include <linux/irq.h> 16 #include <linux/kernel.h> 17 #include <linux/math.h> 18 #include <linux/math64.h> 19 #include <linux/module.h> 20 #include <linux/overflow.h> 21 #include <linux/pinctrl/consumer.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/slab.h> 25 #include <linux/spi/spi.h> 26 #include <linux/types.h> 27 #include <linux/of.h> 28 #include <linux/property.h> 29 30 #include <linux/dma/imx-dma.h> 31 32 #define DRIVER_NAME "spi_imx" 33 34 static bool use_dma = true; 35 module_param(use_dma, bool, 0644); 36 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)"); 37 38 /* define polling limits */ 39 static unsigned int polling_limit_us = 30; 40 module_param(polling_limit_us, uint, 0664); 41 MODULE_PARM_DESC(polling_limit_us, 42 "time in us to run a transfer in polling mode\n"); 43 44 #define MXC_RPM_TIMEOUT 2000 /* 2000ms */ 45 46 #define MXC_CSPIRXDATA 0x00 47 #define MXC_CSPITXDATA 0x04 48 #define MXC_CSPICTRL 0x08 49 #define MXC_CSPIINT 0x0c 50 #define MXC_RESET 0x1c 51 52 /* generic defines to abstract from the different register layouts */ 53 #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */ 54 #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */ 55 #define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */ 56 57 /* The maximum bytes that a sdma BD can transfer. */ 58 #define MAX_SDMA_BD_BYTES (1 << 15) 59 #define MX51_ECSPI_CTRL_MAX_BURST 512 60 /* The maximum bytes that IMX53_ECSPI can transfer in target mode.*/ 61 #define MX53_MAX_TRANSFER_BYTES 512 62 63 enum spi_imx_devtype { 64 IMX1_CSPI, 65 IMX21_CSPI, 66 IMX27_CSPI, 67 IMX31_CSPI, 68 IMX35_CSPI, /* CSPI on all i.mx except above */ 69 IMX51_ECSPI, /* ECSPI on i.mx51 */ 70 IMX53_ECSPI, /* ECSPI on i.mx53 and later */ 71 }; 72 73 struct spi_imx_data; 74 75 struct spi_imx_devtype_data { 76 void (*intctrl)(struct spi_imx_data *spi_imx, int enable); 77 int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg); 78 int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi, 79 struct spi_transfer *t); 80 void (*trigger)(struct spi_imx_data *spi_imx); 81 int (*rx_available)(struct spi_imx_data *spi_imx); 82 void (*reset)(struct spi_imx_data *spi_imx); 83 void (*setup_wml)(struct spi_imx_data *spi_imx); 84 void (*disable)(struct spi_imx_data *spi_imx); 85 bool has_dmamode; 86 bool has_targetmode; 87 unsigned int fifo_size; 88 bool dynamic_burst; 89 /* 90 * ERR009165 fixed or not: 91 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf 92 */ 93 bool tx_glitch_fixed; 94 enum spi_imx_devtype devtype; 95 }; 96 97 struct spi_imx_data { 98 struct spi_controller *controller; 99 struct device *dev; 100 101 struct completion xfer_done; 102 void __iomem *base; 103 unsigned long base_phys; 104 105 struct clk *clk_per; 106 struct clk *clk_ipg; 107 unsigned long spi_clk; 108 unsigned int spi_bus_clk; 109 110 unsigned int bits_per_word; 111 unsigned int spi_drctl; 112 113 unsigned int count, remainder; 114 void (*tx)(struct spi_imx_data *spi_imx); 115 void (*rx)(struct spi_imx_data *spi_imx); 116 void *rx_buf; 117 const void *tx_buf; 118 unsigned int txfifo; /* number of words pushed in tx FIFO */ 119 unsigned int dynamic_burst; 120 bool rx_only; 121 122 /* Target mode */ 123 bool target_mode; 124 bool target_aborted; 125 unsigned int target_burst; 126 127 /* DMA */ 128 bool usedma; 129 u32 wml; 130 struct completion dma_rx_completion; 131 struct completion dma_tx_completion; 132 133 const struct spi_imx_devtype_data *devtype_data; 134 }; 135 136 static inline int is_imx27_cspi(struct spi_imx_data *d) 137 { 138 return d->devtype_data->devtype == IMX27_CSPI; 139 } 140 141 static inline int is_imx35_cspi(struct spi_imx_data *d) 142 { 143 return d->devtype_data->devtype == IMX35_CSPI; 144 } 145 146 static inline int is_imx51_ecspi(struct spi_imx_data *d) 147 { 148 return d->devtype_data->devtype == IMX51_ECSPI; 149 } 150 151 static inline int is_imx53_ecspi(struct spi_imx_data *d) 152 { 153 return d->devtype_data->devtype == IMX53_ECSPI; 154 } 155 156 #define MXC_SPI_BUF_RX(type) \ 157 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \ 158 { \ 159 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \ 160 \ 161 if (spi_imx->rx_buf) { \ 162 *(type *)spi_imx->rx_buf = val; \ 163 spi_imx->rx_buf += sizeof(type); \ 164 } \ 165 \ 166 spi_imx->remainder -= sizeof(type); \ 167 } 168 169 #define MXC_SPI_BUF_TX(type) \ 170 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \ 171 { \ 172 type val = 0; \ 173 \ 174 if (spi_imx->tx_buf) { \ 175 val = *(type *)spi_imx->tx_buf; \ 176 spi_imx->tx_buf += sizeof(type); \ 177 } \ 178 \ 179 spi_imx->count -= sizeof(type); \ 180 \ 181 writel(val, spi_imx->base + MXC_CSPITXDATA); \ 182 } 183 184 MXC_SPI_BUF_RX(u8) 185 MXC_SPI_BUF_TX(u8) 186 MXC_SPI_BUF_RX(u16) 187 MXC_SPI_BUF_TX(u16) 188 MXC_SPI_BUF_RX(u32) 189 MXC_SPI_BUF_TX(u32) 190 191 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set 192 * (which is currently not the case in this driver) 193 */ 194 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 195 256, 384, 512, 768, 1024}; 196 197 /* MX21, MX27 */ 198 static unsigned int spi_imx_clkdiv_1(unsigned int fin, 199 unsigned int fspi, unsigned int max, unsigned int *fres) 200 { 201 int i; 202 203 for (i = 2; i < max; i++) 204 if (fspi * mxc_clkdivs[i] >= fin) 205 break; 206 207 *fres = fin / mxc_clkdivs[i]; 208 return i; 209 } 210 211 /* MX1, MX31, MX35, MX51 CSPI */ 212 static unsigned int spi_imx_clkdiv_2(unsigned int fin, 213 unsigned int fspi, unsigned int *fres) 214 { 215 int i, div = 4; 216 217 for (i = 0; i < 7; i++) { 218 if (fspi * div >= fin) 219 goto out; 220 div <<= 1; 221 } 222 223 out: 224 *fres = fin / div; 225 return i; 226 } 227 228 static int spi_imx_bytes_per_word(const int bits_per_word) 229 { 230 if (bits_per_word <= 8) 231 return 1; 232 else if (bits_per_word <= 16) 233 return 2; 234 else 235 return 4; 236 } 237 238 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi, 239 struct spi_transfer *transfer) 240 { 241 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 242 243 if (!use_dma || controller->fallback) 244 return false; 245 246 if (!controller->dma_rx) 247 return false; 248 249 if (spi_imx->target_mode) 250 return false; 251 252 if (transfer->len < spi_imx->devtype_data->fifo_size) 253 return false; 254 255 spi_imx->dynamic_burst = 0; 256 257 return true; 258 } 259 260 /* 261 * Note the number of natively supported chip selects for MX51 is 4. Some 262 * devices may have less actual SS pins but the register map supports 4. When 263 * using gpio chip selects the cs values passed into the macros below can go 264 * outside the range 0 - 3. We therefore need to limit the cs value to avoid 265 * corrupting bits outside the allocated locations. 266 * 267 * The simplest way to do this is to just mask the cs bits to 2 bits. This 268 * still allows all 4 native chip selects to work as well as gpio chip selects 269 * (which can use any of the 4 chip select configurations). 270 */ 271 272 #define MX51_ECSPI_CTRL 0x08 273 #define MX51_ECSPI_CTRL_ENABLE (1 << 0) 274 #define MX51_ECSPI_CTRL_XCH (1 << 2) 275 #define MX51_ECSPI_CTRL_SMC (1 << 3) 276 #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4) 277 #define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16) 278 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8 279 #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12 280 #define MX51_ECSPI_CTRL_CS(cs) ((cs & 3) << 18) 281 #define MX51_ECSPI_CTRL_BL_OFFSET 20 282 #define MX51_ECSPI_CTRL_BL_MASK (0xfff << 20) 283 284 #define MX51_ECSPI_CONFIG 0x0c 285 #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs & 3) + 0)) 286 #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs & 3) + 4)) 287 #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs & 3) + 8)) 288 #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs & 3) + 12)) 289 #define MX51_ECSPI_CONFIG_DATACTL(cs) (1 << ((cs & 3) + 16)) 290 #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs & 3) + 20)) 291 292 #define MX51_ECSPI_INT 0x10 293 #define MX51_ECSPI_INT_TEEN (1 << 0) 294 #define MX51_ECSPI_INT_RREN (1 << 3) 295 #define MX51_ECSPI_INT_RDREN (1 << 4) 296 297 #define MX51_ECSPI_DMA 0x14 298 #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f) 299 #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16) 300 #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24) 301 302 #define MX51_ECSPI_DMA_TEDEN (1 << 7) 303 #define MX51_ECSPI_DMA_RXDEN (1 << 23) 304 #define MX51_ECSPI_DMA_RXTDEN (1 << 31) 305 306 #define MX51_ECSPI_STAT 0x18 307 #define MX51_ECSPI_STAT_RR (1 << 3) 308 309 #define MX51_ECSPI_PERIOD 0x1c 310 #define MX51_ECSPI_PERIOD_MASK 0x7fff 311 /* 312 * As measured on the i.MX6, the SPI host controller inserts a 4 SPI-Clock 313 * (SCLK) delay after each burst if the PERIOD reg is 0x0. This value will be 314 * called MX51_ECSPI_PERIOD_MIN_DELAY_SCK. 315 * 316 * If the PERIOD register is != 0, the controller inserts a delay of 317 * MX51_ECSPI_PERIOD_MIN_DELAY_SCK + register value + 1 SCLK after each burst. 318 */ 319 #define MX51_ECSPI_PERIOD_MIN_DELAY_SCK 4 320 321 #define MX51_ECSPI_TESTREG 0x20 322 #define MX51_ECSPI_TESTREG_LBC BIT(31) 323 324 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx) 325 { 326 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); 327 328 if (spi_imx->rx_buf) { 329 #ifdef __LITTLE_ENDIAN 330 unsigned int bytes_per_word; 331 332 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word); 333 if (bytes_per_word == 1) 334 swab32s(&val); 335 else if (bytes_per_word == 2) 336 swahw32s(&val); 337 #endif 338 *(u32 *)spi_imx->rx_buf = val; 339 spi_imx->rx_buf += sizeof(u32); 340 } 341 342 spi_imx->remainder -= sizeof(u32); 343 } 344 345 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx) 346 { 347 int unaligned; 348 u32 val; 349 350 unaligned = spi_imx->remainder % 4; 351 352 if (!unaligned) { 353 spi_imx_buf_rx_swap_u32(spi_imx); 354 return; 355 } 356 357 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) { 358 spi_imx_buf_rx_u16(spi_imx); 359 return; 360 } 361 362 val = readl(spi_imx->base + MXC_CSPIRXDATA); 363 364 while (unaligned--) { 365 if (spi_imx->rx_buf) { 366 *(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff; 367 spi_imx->rx_buf++; 368 } 369 spi_imx->remainder--; 370 } 371 } 372 373 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx) 374 { 375 u32 val = 0; 376 #ifdef __LITTLE_ENDIAN 377 unsigned int bytes_per_word; 378 #endif 379 380 if (spi_imx->tx_buf) { 381 val = *(u32 *)spi_imx->tx_buf; 382 spi_imx->tx_buf += sizeof(u32); 383 } 384 385 spi_imx->count -= sizeof(u32); 386 #ifdef __LITTLE_ENDIAN 387 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word); 388 389 if (bytes_per_word == 1) 390 swab32s(&val); 391 else if (bytes_per_word == 2) 392 swahw32s(&val); 393 #endif 394 writel(val, spi_imx->base + MXC_CSPITXDATA); 395 } 396 397 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx) 398 { 399 int unaligned; 400 u32 val = 0; 401 402 unaligned = spi_imx->count % 4; 403 404 if (!unaligned) { 405 spi_imx_buf_tx_swap_u32(spi_imx); 406 return; 407 } 408 409 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) { 410 spi_imx_buf_tx_u16(spi_imx); 411 return; 412 } 413 414 while (unaligned--) { 415 if (spi_imx->tx_buf) { 416 val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned); 417 spi_imx->tx_buf++; 418 } 419 spi_imx->count--; 420 } 421 422 writel(val, spi_imx->base + MXC_CSPITXDATA); 423 } 424 425 static void mx53_ecspi_rx_target(struct spi_imx_data *spi_imx) 426 { 427 u32 val = ioread32be(spi_imx->base + MXC_CSPIRXDATA); 428 429 if (spi_imx->rx_buf) { 430 int n_bytes = spi_imx->target_burst % sizeof(val); 431 432 if (!n_bytes) 433 n_bytes = sizeof(val); 434 435 memcpy(spi_imx->rx_buf, 436 ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes); 437 438 spi_imx->rx_buf += n_bytes; 439 spi_imx->target_burst -= n_bytes; 440 } 441 442 spi_imx->remainder -= sizeof(u32); 443 } 444 445 static void mx53_ecspi_tx_target(struct spi_imx_data *spi_imx) 446 { 447 u32 val = 0; 448 int n_bytes = spi_imx->count % sizeof(val); 449 450 if (!n_bytes) 451 n_bytes = sizeof(val); 452 453 if (spi_imx->tx_buf) { 454 memcpy(((u8 *)&val) + sizeof(val) - n_bytes, 455 spi_imx->tx_buf, n_bytes); 456 spi_imx->tx_buf += n_bytes; 457 } 458 459 spi_imx->count -= n_bytes; 460 461 iowrite32be(val, spi_imx->base + MXC_CSPITXDATA); 462 } 463 464 /* MX51 eCSPI */ 465 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx, 466 unsigned int fspi, unsigned int *fres) 467 { 468 /* 469 * there are two 4-bit dividers, the pre-divider divides by 470 * $pre, the post-divider by 2^$post 471 */ 472 unsigned int pre, post; 473 unsigned int fin = spi_imx->spi_clk; 474 475 fspi = min(fspi, fin); 476 477 post = fls(fin) - fls(fspi); 478 if (fin > fspi << post) 479 post++; 480 481 /* now we have: (fin <= fspi << post) with post being minimal */ 482 483 post = max(4U, post) - 4; 484 if (unlikely(post > 0xf)) { 485 dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n", 486 fspi, fin); 487 return 0xff; 488 } 489 490 pre = DIV_ROUND_UP(fin, fspi << post) - 1; 491 492 dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n", 493 __func__, fin, fspi, post, pre); 494 495 /* Resulting frequency for the SCLK line. */ 496 *fres = (fin / (pre + 1)) >> post; 497 498 return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) | 499 (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET); 500 } 501 502 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable) 503 { 504 unsigned int val = 0; 505 506 if (enable & MXC_INT_TE) 507 val |= MX51_ECSPI_INT_TEEN; 508 509 if (enable & MXC_INT_RR) 510 val |= MX51_ECSPI_INT_RREN; 511 512 if (enable & MXC_INT_RDR) 513 val |= MX51_ECSPI_INT_RDREN; 514 515 writel(val, spi_imx->base + MX51_ECSPI_INT); 516 } 517 518 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx) 519 { 520 u32 reg; 521 522 if (spi_imx->usedma) { 523 reg = readl(spi_imx->base + MX51_ECSPI_DMA); 524 reg |= MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN; 525 writel(reg, spi_imx->base + MX51_ECSPI_DMA); 526 } else { 527 reg = readl(spi_imx->base + MX51_ECSPI_CTRL); 528 reg |= MX51_ECSPI_CTRL_XCH; 529 writel(reg, spi_imx->base + MX51_ECSPI_CTRL); 530 } 531 } 532 533 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx) 534 { 535 u32 ctrl; 536 537 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 538 ctrl &= ~MX51_ECSPI_CTRL_ENABLE; 539 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 540 } 541 542 static int mx51_ecspi_channel(const struct spi_device *spi) 543 { 544 if (!spi_get_csgpiod(spi, 0)) 545 return spi_get_chipselect(spi, 0); 546 return spi->controller->unused_native_cs; 547 } 548 549 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx, 550 struct spi_message *msg) 551 { 552 struct spi_device *spi = msg->spi; 553 struct spi_transfer *xfer; 554 u32 ctrl = MX51_ECSPI_CTRL_ENABLE; 555 u32 min_speed_hz = ~0U; 556 u32 testreg, delay; 557 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG); 558 u32 current_cfg = cfg; 559 int channel = mx51_ecspi_channel(spi); 560 561 /* set Host or Target mode */ 562 if (spi_imx->target_mode) 563 ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK; 564 else 565 ctrl |= MX51_ECSPI_CTRL_MODE_MASK; 566 567 /* 568 * Enable SPI_RDY handling (falling edge/level triggered). 569 */ 570 if (spi->mode & SPI_READY) 571 ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl); 572 573 /* set chip select to use */ 574 ctrl |= MX51_ECSPI_CTRL_CS(channel); 575 576 /* 577 * The ctrl register must be written first, with the EN bit set other 578 * registers must not be written to. 579 */ 580 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 581 582 testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG); 583 if (spi->mode & SPI_LOOP) 584 testreg |= MX51_ECSPI_TESTREG_LBC; 585 else 586 testreg &= ~MX51_ECSPI_TESTREG_LBC; 587 writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG); 588 589 /* 590 * eCSPI burst completion by Chip Select signal in Target mode 591 * is not functional for imx53 Soc, config SPI burst completed when 592 * BURST_LENGTH + 1 bits are received 593 */ 594 if (spi_imx->target_mode && is_imx53_ecspi(spi_imx)) 595 cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(channel); 596 else 597 cfg |= MX51_ECSPI_CONFIG_SBBCTRL(channel); 598 599 if (spi->mode & SPI_CPOL) { 600 cfg |= MX51_ECSPI_CONFIG_SCLKPOL(channel); 601 cfg |= MX51_ECSPI_CONFIG_SCLKCTL(channel); 602 } else { 603 cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(channel); 604 cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(channel); 605 } 606 607 if (spi->mode & SPI_MOSI_IDLE_LOW) 608 cfg |= MX51_ECSPI_CONFIG_DATACTL(channel); 609 else 610 cfg &= ~MX51_ECSPI_CONFIG_DATACTL(channel); 611 612 if (spi->mode & SPI_CS_HIGH) 613 cfg |= MX51_ECSPI_CONFIG_SSBPOL(channel); 614 else 615 cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(channel); 616 617 if (cfg == current_cfg) 618 return 0; 619 620 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG); 621 622 /* 623 * Wait until the changes in the configuration register CONFIGREG 624 * propagate into the hardware. It takes exactly one tick of the 625 * SCLK clock, but we will wait two SCLK clock just to be sure. The 626 * effect of the delay it takes for the hardware to apply changes 627 * is noticable if the SCLK clock run very slow. In such a case, if 628 * the polarity of SCLK should be inverted, the GPIO ChipSelect might 629 * be asserted before the SCLK polarity changes, which would disrupt 630 * the SPI communication as the device on the other end would consider 631 * the change of SCLK polarity as a clock tick already. 632 * 633 * Because spi_imx->spi_bus_clk is only set in prepare_message 634 * callback, iterate over all the transfers in spi_message, find the 635 * one with lowest bus frequency, and use that bus frequency for the 636 * delay calculation. In case all transfers have speed_hz == 0, then 637 * min_speed_hz is ~0 and the resulting delay is zero. 638 */ 639 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 640 if (!xfer->speed_hz) 641 continue; 642 min_speed_hz = min(xfer->speed_hz, min_speed_hz); 643 } 644 645 delay = (2 * 1000000) / min_speed_hz; 646 if (likely(delay < 10)) /* SCLK is faster than 200 kHz */ 647 udelay(delay); 648 else /* SCLK is _very_ slow */ 649 usleep_range(delay, delay + 10); 650 651 return 0; 652 } 653 654 static void mx51_configure_cpha(struct spi_imx_data *spi_imx, 655 struct spi_device *spi) 656 { 657 bool cpha = (spi->mode & SPI_CPHA); 658 bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only; 659 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG); 660 int channel = mx51_ecspi_channel(spi); 661 662 /* Flip cpha logical value iff flip_cpha */ 663 cpha ^= flip_cpha; 664 665 if (cpha) 666 cfg |= MX51_ECSPI_CONFIG_SCLKPHA(channel); 667 else 668 cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(channel); 669 670 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG); 671 } 672 673 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx, 674 struct spi_device *spi, struct spi_transfer *t) 675 { 676 u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 677 u64 word_delay_sck; 678 u32 clk; 679 680 /* Clear BL field and set the right value */ 681 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK; 682 if (spi_imx->target_mode && is_imx53_ecspi(spi_imx)) 683 ctrl |= (spi_imx->target_burst * 8 - 1) 684 << MX51_ECSPI_CTRL_BL_OFFSET; 685 else { 686 ctrl |= (spi_imx->bits_per_word - 1) 687 << MX51_ECSPI_CTRL_BL_OFFSET; 688 } 689 690 /* set clock speed */ 691 ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET | 692 0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET); 693 ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk); 694 spi_imx->spi_bus_clk = clk; 695 696 mx51_configure_cpha(spi_imx, spi); 697 698 /* 699 * ERR009165: work in XHC mode instead of SMC as PIO on the chips 700 * before i.mx6ul. 701 */ 702 if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed) 703 ctrl |= MX51_ECSPI_CTRL_SMC; 704 else 705 ctrl &= ~MX51_ECSPI_CTRL_SMC; 706 707 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 708 709 /* calculate word delay in SPI Clock (SCLK) cycles */ 710 if (t->word_delay.value == 0) { 711 word_delay_sck = 0; 712 } else if (t->word_delay.unit == SPI_DELAY_UNIT_SCK) { 713 word_delay_sck = t->word_delay.value; 714 715 if (word_delay_sck <= MX51_ECSPI_PERIOD_MIN_DELAY_SCK) 716 word_delay_sck = 0; 717 else if (word_delay_sck <= MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1) 718 word_delay_sck = 1; 719 else 720 word_delay_sck -= MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1; 721 } else { 722 int word_delay_ns; 723 724 word_delay_ns = spi_delay_to_ns(&t->word_delay, t); 725 if (word_delay_ns < 0) 726 return word_delay_ns; 727 728 if (word_delay_ns <= mul_u64_u32_div(NSEC_PER_SEC, 729 MX51_ECSPI_PERIOD_MIN_DELAY_SCK, 730 spi_imx->spi_bus_clk)) { 731 word_delay_sck = 0; 732 } else if (word_delay_ns <= mul_u64_u32_div(NSEC_PER_SEC, 733 MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1, 734 spi_imx->spi_bus_clk)) { 735 word_delay_sck = 1; 736 } else { 737 word_delay_ns -= mul_u64_u32_div(NSEC_PER_SEC, 738 MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1, 739 spi_imx->spi_bus_clk); 740 741 word_delay_sck = DIV_U64_ROUND_UP((u64)word_delay_ns * spi_imx->spi_bus_clk, 742 NSEC_PER_SEC); 743 } 744 } 745 746 if (!FIELD_FIT(MX51_ECSPI_PERIOD_MASK, word_delay_sck)) 747 return -EINVAL; 748 749 writel(FIELD_PREP(MX51_ECSPI_PERIOD_MASK, word_delay_sck), 750 spi_imx->base + MX51_ECSPI_PERIOD); 751 752 return 0; 753 } 754 755 static void mx51_setup_wml(struct spi_imx_data *spi_imx) 756 { 757 u32 tx_wml = 0; 758 759 if (spi_imx->devtype_data->tx_glitch_fixed) 760 tx_wml = spi_imx->wml; 761 /* 762 * Configure the DMA register: setup the watermark 763 * and enable DMA request. 764 */ 765 writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) | 766 MX51_ECSPI_DMA_TX_WML(tx_wml) | 767 MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) | 768 MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA); 769 } 770 771 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx) 772 { 773 return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR; 774 } 775 776 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx) 777 { 778 /* drain receive buffer */ 779 while (mx51_ecspi_rx_available(spi_imx)) 780 readl(spi_imx->base + MXC_CSPIRXDATA); 781 } 782 783 #define MX31_INTREG_TEEN (1 << 0) 784 #define MX31_INTREG_RREN (1 << 3) 785 786 #define MX31_CSPICTRL_ENABLE (1 << 0) 787 #define MX31_CSPICTRL_HOST (1 << 1) 788 #define MX31_CSPICTRL_XCH (1 << 2) 789 #define MX31_CSPICTRL_SMC (1 << 3) 790 #define MX31_CSPICTRL_POL (1 << 4) 791 #define MX31_CSPICTRL_PHA (1 << 5) 792 #define MX31_CSPICTRL_SSCTL (1 << 6) 793 #define MX31_CSPICTRL_SSPOL (1 << 7) 794 #define MX31_CSPICTRL_BC_SHIFT 8 795 #define MX35_CSPICTRL_BL_SHIFT 20 796 #define MX31_CSPICTRL_CS_SHIFT 24 797 #define MX35_CSPICTRL_CS_SHIFT 12 798 #define MX31_CSPICTRL_DR_SHIFT 16 799 800 #define MX31_CSPI_DMAREG 0x10 801 #define MX31_DMAREG_RH_DEN (1<<4) 802 #define MX31_DMAREG_TH_DEN (1<<1) 803 804 #define MX31_CSPISTATUS 0x14 805 #define MX31_STATUS_RR (1 << 3) 806 807 #define MX31_CSPI_TESTREG 0x1C 808 #define MX31_TEST_LBC (1 << 14) 809 810 /* These functions also work for the i.MX35, but be aware that 811 * the i.MX35 has a slightly different register layout for bits 812 * we do not use here. 813 */ 814 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable) 815 { 816 unsigned int val = 0; 817 818 if (enable & MXC_INT_TE) 819 val |= MX31_INTREG_TEEN; 820 if (enable & MXC_INT_RR) 821 val |= MX31_INTREG_RREN; 822 823 writel(val, spi_imx->base + MXC_CSPIINT); 824 } 825 826 static void mx31_trigger(struct spi_imx_data *spi_imx) 827 { 828 unsigned int reg; 829 830 reg = readl(spi_imx->base + MXC_CSPICTRL); 831 reg |= MX31_CSPICTRL_XCH; 832 writel(reg, spi_imx->base + MXC_CSPICTRL); 833 } 834 835 static int mx31_prepare_message(struct spi_imx_data *spi_imx, 836 struct spi_message *msg) 837 { 838 return 0; 839 } 840 841 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx, 842 struct spi_device *spi, struct spi_transfer *t) 843 { 844 unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_HOST; 845 unsigned int clk; 846 847 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) << 848 MX31_CSPICTRL_DR_SHIFT; 849 spi_imx->spi_bus_clk = clk; 850 851 if (is_imx35_cspi(spi_imx)) { 852 reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT; 853 reg |= MX31_CSPICTRL_SSCTL; 854 } else { 855 reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT; 856 } 857 858 if (spi->mode & SPI_CPHA) 859 reg |= MX31_CSPICTRL_PHA; 860 if (spi->mode & SPI_CPOL) 861 reg |= MX31_CSPICTRL_POL; 862 if (spi->mode & SPI_CS_HIGH) 863 reg |= MX31_CSPICTRL_SSPOL; 864 if (!spi_get_csgpiod(spi, 0)) 865 reg |= (spi_get_chipselect(spi, 0)) << 866 (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT : 867 MX31_CSPICTRL_CS_SHIFT); 868 869 if (spi_imx->usedma) 870 reg |= MX31_CSPICTRL_SMC; 871 872 writel(reg, spi_imx->base + MXC_CSPICTRL); 873 874 reg = readl(spi_imx->base + MX31_CSPI_TESTREG); 875 if (spi->mode & SPI_LOOP) 876 reg |= MX31_TEST_LBC; 877 else 878 reg &= ~MX31_TEST_LBC; 879 writel(reg, spi_imx->base + MX31_CSPI_TESTREG); 880 881 if (spi_imx->usedma) { 882 /* 883 * configure DMA requests when RXFIFO is half full and 884 * when TXFIFO is half empty 885 */ 886 writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN, 887 spi_imx->base + MX31_CSPI_DMAREG); 888 } 889 890 return 0; 891 } 892 893 static int mx31_rx_available(struct spi_imx_data *spi_imx) 894 { 895 return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR; 896 } 897 898 static void mx31_reset(struct spi_imx_data *spi_imx) 899 { 900 /* drain receive buffer */ 901 while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR) 902 readl(spi_imx->base + MXC_CSPIRXDATA); 903 } 904 905 #define MX21_INTREG_RR (1 << 4) 906 #define MX21_INTREG_TEEN (1 << 9) 907 #define MX21_INTREG_RREN (1 << 13) 908 909 #define MX21_CSPICTRL_POL (1 << 5) 910 #define MX21_CSPICTRL_PHA (1 << 6) 911 #define MX21_CSPICTRL_SSPOL (1 << 8) 912 #define MX21_CSPICTRL_XCH (1 << 9) 913 #define MX21_CSPICTRL_ENABLE (1 << 10) 914 #define MX21_CSPICTRL_HOST (1 << 11) 915 #define MX21_CSPICTRL_DR_SHIFT 14 916 #define MX21_CSPICTRL_CS_SHIFT 19 917 918 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable) 919 { 920 unsigned int val = 0; 921 922 if (enable & MXC_INT_TE) 923 val |= MX21_INTREG_TEEN; 924 if (enable & MXC_INT_RR) 925 val |= MX21_INTREG_RREN; 926 927 writel(val, spi_imx->base + MXC_CSPIINT); 928 } 929 930 static void mx21_trigger(struct spi_imx_data *spi_imx) 931 { 932 unsigned int reg; 933 934 reg = readl(spi_imx->base + MXC_CSPICTRL); 935 reg |= MX21_CSPICTRL_XCH; 936 writel(reg, spi_imx->base + MXC_CSPICTRL); 937 } 938 939 static int mx21_prepare_message(struct spi_imx_data *spi_imx, 940 struct spi_message *msg) 941 { 942 return 0; 943 } 944 945 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx, 946 struct spi_device *spi, struct spi_transfer *t) 947 { 948 unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_HOST; 949 unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18; 950 unsigned int clk; 951 952 reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk) 953 << MX21_CSPICTRL_DR_SHIFT; 954 spi_imx->spi_bus_clk = clk; 955 956 reg |= spi_imx->bits_per_word - 1; 957 958 if (spi->mode & SPI_CPHA) 959 reg |= MX21_CSPICTRL_PHA; 960 if (spi->mode & SPI_CPOL) 961 reg |= MX21_CSPICTRL_POL; 962 if (spi->mode & SPI_CS_HIGH) 963 reg |= MX21_CSPICTRL_SSPOL; 964 if (!spi_get_csgpiod(spi, 0)) 965 reg |= spi_get_chipselect(spi, 0) << MX21_CSPICTRL_CS_SHIFT; 966 967 writel(reg, spi_imx->base + MXC_CSPICTRL); 968 969 return 0; 970 } 971 972 static int mx21_rx_available(struct spi_imx_data *spi_imx) 973 { 974 return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR; 975 } 976 977 static void mx21_reset(struct spi_imx_data *spi_imx) 978 { 979 writel(1, spi_imx->base + MXC_RESET); 980 } 981 982 #define MX1_INTREG_RR (1 << 3) 983 #define MX1_INTREG_TEEN (1 << 8) 984 #define MX1_INTREG_RREN (1 << 11) 985 986 #define MX1_CSPICTRL_POL (1 << 4) 987 #define MX1_CSPICTRL_PHA (1 << 5) 988 #define MX1_CSPICTRL_XCH (1 << 8) 989 #define MX1_CSPICTRL_ENABLE (1 << 9) 990 #define MX1_CSPICTRL_HOST (1 << 10) 991 #define MX1_CSPICTRL_DR_SHIFT 13 992 993 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable) 994 { 995 unsigned int val = 0; 996 997 if (enable & MXC_INT_TE) 998 val |= MX1_INTREG_TEEN; 999 if (enable & MXC_INT_RR) 1000 val |= MX1_INTREG_RREN; 1001 1002 writel(val, spi_imx->base + MXC_CSPIINT); 1003 } 1004 1005 static void mx1_trigger(struct spi_imx_data *spi_imx) 1006 { 1007 unsigned int reg; 1008 1009 reg = readl(spi_imx->base + MXC_CSPICTRL); 1010 reg |= MX1_CSPICTRL_XCH; 1011 writel(reg, spi_imx->base + MXC_CSPICTRL); 1012 } 1013 1014 static int mx1_prepare_message(struct spi_imx_data *spi_imx, 1015 struct spi_message *msg) 1016 { 1017 return 0; 1018 } 1019 1020 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx, 1021 struct spi_device *spi, struct spi_transfer *t) 1022 { 1023 unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_HOST; 1024 unsigned int clk; 1025 1026 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) << 1027 MX1_CSPICTRL_DR_SHIFT; 1028 spi_imx->spi_bus_clk = clk; 1029 1030 reg |= spi_imx->bits_per_word - 1; 1031 1032 if (spi->mode & SPI_CPHA) 1033 reg |= MX1_CSPICTRL_PHA; 1034 if (spi->mode & SPI_CPOL) 1035 reg |= MX1_CSPICTRL_POL; 1036 1037 writel(reg, spi_imx->base + MXC_CSPICTRL); 1038 1039 return 0; 1040 } 1041 1042 static int mx1_rx_available(struct spi_imx_data *spi_imx) 1043 { 1044 return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR; 1045 } 1046 1047 static void mx1_reset(struct spi_imx_data *spi_imx) 1048 { 1049 writel(1, spi_imx->base + MXC_RESET); 1050 } 1051 1052 static struct spi_imx_devtype_data imx1_cspi_devtype_data = { 1053 .intctrl = mx1_intctrl, 1054 .prepare_message = mx1_prepare_message, 1055 .prepare_transfer = mx1_prepare_transfer, 1056 .trigger = mx1_trigger, 1057 .rx_available = mx1_rx_available, 1058 .reset = mx1_reset, 1059 .fifo_size = 8, 1060 .has_dmamode = false, 1061 .dynamic_burst = false, 1062 .has_targetmode = false, 1063 .devtype = IMX1_CSPI, 1064 }; 1065 1066 static struct spi_imx_devtype_data imx21_cspi_devtype_data = { 1067 .intctrl = mx21_intctrl, 1068 .prepare_message = mx21_prepare_message, 1069 .prepare_transfer = mx21_prepare_transfer, 1070 .trigger = mx21_trigger, 1071 .rx_available = mx21_rx_available, 1072 .reset = mx21_reset, 1073 .fifo_size = 8, 1074 .has_dmamode = false, 1075 .dynamic_burst = false, 1076 .has_targetmode = false, 1077 .devtype = IMX21_CSPI, 1078 }; 1079 1080 static struct spi_imx_devtype_data imx27_cspi_devtype_data = { 1081 /* i.mx27 cspi shares the functions with i.mx21 one */ 1082 .intctrl = mx21_intctrl, 1083 .prepare_message = mx21_prepare_message, 1084 .prepare_transfer = mx21_prepare_transfer, 1085 .trigger = mx21_trigger, 1086 .rx_available = mx21_rx_available, 1087 .reset = mx21_reset, 1088 .fifo_size = 8, 1089 .has_dmamode = false, 1090 .dynamic_burst = false, 1091 .has_targetmode = false, 1092 .devtype = IMX27_CSPI, 1093 }; 1094 1095 static struct spi_imx_devtype_data imx31_cspi_devtype_data = { 1096 .intctrl = mx31_intctrl, 1097 .prepare_message = mx31_prepare_message, 1098 .prepare_transfer = mx31_prepare_transfer, 1099 .trigger = mx31_trigger, 1100 .rx_available = mx31_rx_available, 1101 .reset = mx31_reset, 1102 .fifo_size = 8, 1103 .has_dmamode = false, 1104 .dynamic_burst = false, 1105 .has_targetmode = false, 1106 .devtype = IMX31_CSPI, 1107 }; 1108 1109 static struct spi_imx_devtype_data imx35_cspi_devtype_data = { 1110 /* i.mx35 and later cspi shares the functions with i.mx31 one */ 1111 .intctrl = mx31_intctrl, 1112 .prepare_message = mx31_prepare_message, 1113 .prepare_transfer = mx31_prepare_transfer, 1114 .trigger = mx31_trigger, 1115 .rx_available = mx31_rx_available, 1116 .reset = mx31_reset, 1117 .fifo_size = 8, 1118 .has_dmamode = false, 1119 .dynamic_burst = false, 1120 .has_targetmode = false, 1121 .devtype = IMX35_CSPI, 1122 }; 1123 1124 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = { 1125 .intctrl = mx51_ecspi_intctrl, 1126 .prepare_message = mx51_ecspi_prepare_message, 1127 .prepare_transfer = mx51_ecspi_prepare_transfer, 1128 .trigger = mx51_ecspi_trigger, 1129 .rx_available = mx51_ecspi_rx_available, 1130 .reset = mx51_ecspi_reset, 1131 .setup_wml = mx51_setup_wml, 1132 .fifo_size = 64, 1133 .has_dmamode = true, 1134 .dynamic_burst = true, 1135 .has_targetmode = true, 1136 .disable = mx51_ecspi_disable, 1137 .devtype = IMX51_ECSPI, 1138 }; 1139 1140 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = { 1141 .intctrl = mx51_ecspi_intctrl, 1142 .prepare_message = mx51_ecspi_prepare_message, 1143 .prepare_transfer = mx51_ecspi_prepare_transfer, 1144 .trigger = mx51_ecspi_trigger, 1145 .rx_available = mx51_ecspi_rx_available, 1146 .reset = mx51_ecspi_reset, 1147 .fifo_size = 64, 1148 .has_dmamode = true, 1149 .has_targetmode = true, 1150 .disable = mx51_ecspi_disable, 1151 .devtype = IMX53_ECSPI, 1152 }; 1153 1154 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = { 1155 .intctrl = mx51_ecspi_intctrl, 1156 .prepare_message = mx51_ecspi_prepare_message, 1157 .prepare_transfer = mx51_ecspi_prepare_transfer, 1158 .trigger = mx51_ecspi_trigger, 1159 .rx_available = mx51_ecspi_rx_available, 1160 .reset = mx51_ecspi_reset, 1161 .setup_wml = mx51_setup_wml, 1162 .fifo_size = 64, 1163 .has_dmamode = true, 1164 .dynamic_burst = true, 1165 .has_targetmode = true, 1166 .tx_glitch_fixed = true, 1167 .disable = mx51_ecspi_disable, 1168 .devtype = IMX51_ECSPI, 1169 }; 1170 1171 static const struct of_device_id spi_imx_dt_ids[] = { 1172 { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, }, 1173 { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, }, 1174 { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, }, 1175 { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, }, 1176 { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, }, 1177 { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, }, 1178 { .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, }, 1179 { .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, }, 1180 { /* sentinel */ } 1181 }; 1182 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids); 1183 1184 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits) 1185 { 1186 u32 ctrl; 1187 1188 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL); 1189 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK; 1190 ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET); 1191 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL); 1192 } 1193 1194 static void spi_imx_push(struct spi_imx_data *spi_imx) 1195 { 1196 unsigned int burst_len; 1197 1198 /* 1199 * Reload the FIFO when the remaining bytes to be transferred in the 1200 * current burst is 0. This only applies when bits_per_word is a 1201 * multiple of 8. 1202 */ 1203 if (!spi_imx->remainder) { 1204 if (spi_imx->dynamic_burst) { 1205 1206 /* We need to deal unaligned data first */ 1207 burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST; 1208 1209 if (!burst_len) 1210 burst_len = MX51_ECSPI_CTRL_MAX_BURST; 1211 1212 spi_imx_set_burst_len(spi_imx, burst_len * 8); 1213 1214 spi_imx->remainder = burst_len; 1215 } else { 1216 spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word); 1217 } 1218 } 1219 1220 while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) { 1221 if (!spi_imx->count) 1222 break; 1223 if (spi_imx->dynamic_burst && 1224 spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4)) 1225 break; 1226 spi_imx->tx(spi_imx); 1227 spi_imx->txfifo++; 1228 } 1229 1230 if (!spi_imx->target_mode) 1231 spi_imx->devtype_data->trigger(spi_imx); 1232 } 1233 1234 static irqreturn_t spi_imx_isr(int irq, void *dev_id) 1235 { 1236 struct spi_imx_data *spi_imx = dev_id; 1237 1238 while (spi_imx->txfifo && 1239 spi_imx->devtype_data->rx_available(spi_imx)) { 1240 spi_imx->rx(spi_imx); 1241 spi_imx->txfifo--; 1242 } 1243 1244 if (spi_imx->count) { 1245 spi_imx_push(spi_imx); 1246 return IRQ_HANDLED; 1247 } 1248 1249 if (spi_imx->txfifo) { 1250 /* No data left to push, but still waiting for rx data, 1251 * enable receive data available interrupt. 1252 */ 1253 spi_imx->devtype_data->intctrl( 1254 spi_imx, MXC_INT_RR); 1255 return IRQ_HANDLED; 1256 } 1257 1258 spi_imx->devtype_data->intctrl(spi_imx, 0); 1259 complete(&spi_imx->xfer_done); 1260 1261 return IRQ_HANDLED; 1262 } 1263 1264 static int spi_imx_dma_configure(struct spi_controller *controller) 1265 { 1266 int ret; 1267 enum dma_slave_buswidth buswidth; 1268 struct dma_slave_config rx = {}, tx = {}; 1269 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1270 1271 switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) { 1272 case 4: 1273 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES; 1274 break; 1275 case 2: 1276 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 1277 break; 1278 case 1: 1279 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 1280 break; 1281 default: 1282 return -EINVAL; 1283 } 1284 1285 tx.direction = DMA_MEM_TO_DEV; 1286 tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA; 1287 tx.dst_addr_width = buswidth; 1288 tx.dst_maxburst = spi_imx->wml; 1289 ret = dmaengine_slave_config(controller->dma_tx, &tx); 1290 if (ret) { 1291 dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret); 1292 return ret; 1293 } 1294 1295 rx.direction = DMA_DEV_TO_MEM; 1296 rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA; 1297 rx.src_addr_width = buswidth; 1298 rx.src_maxburst = spi_imx->wml; 1299 ret = dmaengine_slave_config(controller->dma_rx, &rx); 1300 if (ret) { 1301 dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret); 1302 return ret; 1303 } 1304 1305 return 0; 1306 } 1307 1308 static int spi_imx_setupxfer(struct spi_device *spi, 1309 struct spi_transfer *t) 1310 { 1311 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1312 1313 if (!t) 1314 return 0; 1315 1316 if (!t->speed_hz) { 1317 if (!spi->max_speed_hz) { 1318 dev_err(&spi->dev, "no speed_hz provided!\n"); 1319 return -EINVAL; 1320 } 1321 dev_dbg(&spi->dev, "using spi->max_speed_hz!\n"); 1322 spi_imx->spi_bus_clk = spi->max_speed_hz; 1323 } else 1324 spi_imx->spi_bus_clk = t->speed_hz; 1325 1326 spi_imx->bits_per_word = t->bits_per_word; 1327 spi_imx->count = t->len; 1328 1329 /* 1330 * Initialize the functions for transfer. To transfer non byte-aligned 1331 * words, we have to use multiple word-size bursts. To insert word 1332 * delay, the burst size has to equal the word size. We can't use 1333 * dynamic_burst in these cases. 1334 */ 1335 if (spi_imx->devtype_data->dynamic_burst && !spi_imx->target_mode && 1336 !(spi->mode & SPI_CS_WORD) && 1337 !(t->word_delay.value) && 1338 (spi_imx->bits_per_word == 8 || 1339 spi_imx->bits_per_word == 16 || 1340 spi_imx->bits_per_word == 32)) { 1341 1342 spi_imx->rx = spi_imx_buf_rx_swap; 1343 spi_imx->tx = spi_imx_buf_tx_swap; 1344 spi_imx->dynamic_burst = 1; 1345 1346 } else { 1347 if (spi_imx->bits_per_word <= 8) { 1348 spi_imx->rx = spi_imx_buf_rx_u8; 1349 spi_imx->tx = spi_imx_buf_tx_u8; 1350 } else if (spi_imx->bits_per_word <= 16) { 1351 spi_imx->rx = spi_imx_buf_rx_u16; 1352 spi_imx->tx = spi_imx_buf_tx_u16; 1353 } else { 1354 spi_imx->rx = spi_imx_buf_rx_u32; 1355 spi_imx->tx = spi_imx_buf_tx_u32; 1356 } 1357 spi_imx->dynamic_burst = 0; 1358 } 1359 1360 if (spi_imx_can_dma(spi_imx->controller, spi, t)) 1361 spi_imx->usedma = true; 1362 else 1363 spi_imx->usedma = false; 1364 1365 spi_imx->rx_only = ((t->tx_buf == NULL) 1366 || (t->tx_buf == spi->controller->dummy_tx)); 1367 1368 if (is_imx53_ecspi(spi_imx) && spi_imx->target_mode) { 1369 spi_imx->rx = mx53_ecspi_rx_target; 1370 spi_imx->tx = mx53_ecspi_tx_target; 1371 spi_imx->target_burst = t->len; 1372 } 1373 1374 spi_imx->devtype_data->prepare_transfer(spi_imx, spi, t); 1375 1376 return 0; 1377 } 1378 1379 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx) 1380 { 1381 struct spi_controller *controller = spi_imx->controller; 1382 1383 if (controller->dma_rx) { 1384 dma_release_channel(controller->dma_rx); 1385 controller->dma_rx = NULL; 1386 } 1387 1388 if (controller->dma_tx) { 1389 dma_release_channel(controller->dma_tx); 1390 controller->dma_tx = NULL; 1391 } 1392 } 1393 1394 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx, 1395 struct spi_controller *controller) 1396 { 1397 int ret; 1398 1399 spi_imx->wml = spi_imx->devtype_data->fifo_size / 2; 1400 1401 /* Prepare for TX DMA: */ 1402 controller->dma_tx = dma_request_chan(dev, "tx"); 1403 if (IS_ERR(controller->dma_tx)) { 1404 ret = PTR_ERR(controller->dma_tx); 1405 dev_err_probe(dev, ret, "can't get the TX DMA channel!\n"); 1406 controller->dma_tx = NULL; 1407 goto err; 1408 } 1409 1410 /* Prepare for RX : */ 1411 controller->dma_rx = dma_request_chan(dev, "rx"); 1412 if (IS_ERR(controller->dma_rx)) { 1413 ret = PTR_ERR(controller->dma_rx); 1414 dev_err_probe(dev, ret, "can't get the RX DMA channel!\n"); 1415 controller->dma_rx = NULL; 1416 goto err; 1417 } 1418 1419 init_completion(&spi_imx->dma_rx_completion); 1420 init_completion(&spi_imx->dma_tx_completion); 1421 controller->can_dma = spi_imx_can_dma; 1422 controller->max_dma_len = MAX_SDMA_BD_BYTES; 1423 spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX | 1424 SPI_CONTROLLER_MUST_TX; 1425 1426 return 0; 1427 err: 1428 spi_imx_sdma_exit(spi_imx); 1429 return ret; 1430 } 1431 1432 static void spi_imx_dma_rx_callback(void *cookie) 1433 { 1434 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 1435 1436 complete(&spi_imx->dma_rx_completion); 1437 } 1438 1439 static void spi_imx_dma_tx_callback(void *cookie) 1440 { 1441 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie; 1442 1443 complete(&spi_imx->dma_tx_completion); 1444 } 1445 1446 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size) 1447 { 1448 unsigned long timeout = 0; 1449 1450 /* Time with actual data transfer and CS change delay related to HW */ 1451 timeout = (8 + 4) * size / spi_imx->spi_bus_clk; 1452 1453 /* Add extra second for scheduler related activities */ 1454 timeout += 1; 1455 1456 /* Double calculated timeout */ 1457 return secs_to_jiffies(2 * timeout); 1458 } 1459 1460 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx, 1461 struct spi_transfer *transfer) 1462 { 1463 struct dma_async_tx_descriptor *desc_tx, *desc_rx; 1464 unsigned long transfer_timeout; 1465 unsigned long time_left; 1466 struct spi_controller *controller = spi_imx->controller; 1467 struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg; 1468 struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents); 1469 unsigned int bytes_per_word, i; 1470 int ret; 1471 1472 /* Get the right burst length from the last sg to ensure no tail data */ 1473 bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word); 1474 for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) { 1475 if (!(sg_dma_len(last_sg) % (i * bytes_per_word))) 1476 break; 1477 } 1478 /* Use 1 as wml in case no available burst length got */ 1479 if (i == 0) 1480 i = 1; 1481 1482 spi_imx->wml = i; 1483 1484 ret = spi_imx_dma_configure(controller); 1485 if (ret) 1486 goto dma_failure_no_start; 1487 1488 if (!spi_imx->devtype_data->setup_wml) { 1489 dev_err(spi_imx->dev, "No setup_wml()?\n"); 1490 ret = -EINVAL; 1491 goto dma_failure_no_start; 1492 } 1493 spi_imx->devtype_data->setup_wml(spi_imx); 1494 1495 /* 1496 * The TX DMA setup starts the transfer, so make sure RX is configured 1497 * before TX. 1498 */ 1499 desc_rx = dmaengine_prep_slave_sg(controller->dma_rx, 1500 rx->sgl, rx->nents, DMA_DEV_TO_MEM, 1501 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1502 if (!desc_rx) { 1503 ret = -EINVAL; 1504 goto dma_failure_no_start; 1505 } 1506 1507 desc_rx->callback = spi_imx_dma_rx_callback; 1508 desc_rx->callback_param = (void *)spi_imx; 1509 dmaengine_submit(desc_rx); 1510 reinit_completion(&spi_imx->dma_rx_completion); 1511 dma_async_issue_pending(controller->dma_rx); 1512 1513 desc_tx = dmaengine_prep_slave_sg(controller->dma_tx, 1514 tx->sgl, tx->nents, DMA_MEM_TO_DEV, 1515 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1516 if (!desc_tx) { 1517 dmaengine_terminate_all(controller->dma_tx); 1518 dmaengine_terminate_all(controller->dma_rx); 1519 return -EINVAL; 1520 } 1521 1522 desc_tx->callback = spi_imx_dma_tx_callback; 1523 desc_tx->callback_param = (void *)spi_imx; 1524 dmaengine_submit(desc_tx); 1525 reinit_completion(&spi_imx->dma_tx_completion); 1526 dma_async_issue_pending(controller->dma_tx); 1527 1528 spi_imx->devtype_data->trigger(spi_imx); 1529 1530 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1531 1532 /* Wait SDMA to finish the data transfer.*/ 1533 time_left = wait_for_completion_timeout(&spi_imx->dma_tx_completion, 1534 transfer_timeout); 1535 if (!time_left) { 1536 dev_err(spi_imx->dev, "I/O Error in DMA TX\n"); 1537 dmaengine_terminate_all(controller->dma_tx); 1538 dmaengine_terminate_all(controller->dma_rx); 1539 return -ETIMEDOUT; 1540 } 1541 1542 time_left = wait_for_completion_timeout(&spi_imx->dma_rx_completion, 1543 transfer_timeout); 1544 if (!time_left) { 1545 dev_err(&controller->dev, "I/O Error in DMA RX\n"); 1546 spi_imx->devtype_data->reset(spi_imx); 1547 dmaengine_terminate_all(controller->dma_rx); 1548 return -ETIMEDOUT; 1549 } 1550 1551 return 0; 1552 /* fallback to pio */ 1553 dma_failure_no_start: 1554 transfer->error |= SPI_TRANS_FAIL_NO_START; 1555 return ret; 1556 } 1557 1558 static int spi_imx_pio_transfer(struct spi_device *spi, 1559 struct spi_transfer *transfer) 1560 { 1561 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1562 unsigned long transfer_timeout; 1563 unsigned long time_left; 1564 1565 spi_imx->tx_buf = transfer->tx_buf; 1566 spi_imx->rx_buf = transfer->rx_buf; 1567 spi_imx->count = transfer->len; 1568 spi_imx->txfifo = 0; 1569 spi_imx->remainder = 0; 1570 1571 reinit_completion(&spi_imx->xfer_done); 1572 1573 spi_imx_push(spi_imx); 1574 1575 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE); 1576 1577 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len); 1578 1579 time_left = wait_for_completion_timeout(&spi_imx->xfer_done, 1580 transfer_timeout); 1581 if (!time_left) { 1582 dev_err(&spi->dev, "I/O Error in PIO\n"); 1583 spi_imx->devtype_data->reset(spi_imx); 1584 return -ETIMEDOUT; 1585 } 1586 1587 return 0; 1588 } 1589 1590 static int spi_imx_poll_transfer(struct spi_device *spi, 1591 struct spi_transfer *transfer) 1592 { 1593 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1594 unsigned long timeout; 1595 1596 spi_imx->tx_buf = transfer->tx_buf; 1597 spi_imx->rx_buf = transfer->rx_buf; 1598 spi_imx->count = transfer->len; 1599 spi_imx->txfifo = 0; 1600 spi_imx->remainder = 0; 1601 1602 /* fill in the fifo before timeout calculations if we are 1603 * interrupted here, then the data is getting transferred by 1604 * the HW while we are interrupted 1605 */ 1606 spi_imx_push(spi_imx); 1607 1608 timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies; 1609 while (spi_imx->txfifo) { 1610 /* RX */ 1611 while (spi_imx->txfifo && 1612 spi_imx->devtype_data->rx_available(spi_imx)) { 1613 spi_imx->rx(spi_imx); 1614 spi_imx->txfifo--; 1615 } 1616 1617 /* TX */ 1618 if (spi_imx->count) { 1619 spi_imx_push(spi_imx); 1620 continue; 1621 } 1622 1623 if (spi_imx->txfifo && 1624 time_after(jiffies, timeout)) { 1625 1626 dev_err_ratelimited(&spi->dev, 1627 "timeout period reached: jiffies: %lu- falling back to interrupt mode\n", 1628 jiffies - timeout); 1629 1630 /* fall back to interrupt mode */ 1631 return spi_imx_pio_transfer(spi, transfer); 1632 } 1633 } 1634 1635 return 0; 1636 } 1637 1638 static int spi_imx_pio_transfer_target(struct spi_device *spi, 1639 struct spi_transfer *transfer) 1640 { 1641 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1642 int ret = 0; 1643 1644 if (is_imx53_ecspi(spi_imx) && 1645 transfer->len > MX53_MAX_TRANSFER_BYTES) { 1646 dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n", 1647 MX53_MAX_TRANSFER_BYTES); 1648 return -EMSGSIZE; 1649 } 1650 1651 spi_imx->tx_buf = transfer->tx_buf; 1652 spi_imx->rx_buf = transfer->rx_buf; 1653 spi_imx->count = transfer->len; 1654 spi_imx->txfifo = 0; 1655 spi_imx->remainder = 0; 1656 1657 reinit_completion(&spi_imx->xfer_done); 1658 spi_imx->target_aborted = false; 1659 1660 spi_imx_push(spi_imx); 1661 1662 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR); 1663 1664 if (wait_for_completion_interruptible(&spi_imx->xfer_done) || 1665 spi_imx->target_aborted) { 1666 dev_dbg(&spi->dev, "interrupted\n"); 1667 ret = -EINTR; 1668 } 1669 1670 /* ecspi has a HW issue when works in Target mode, 1671 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty, 1672 * ECSPI_TXDATA keeps shift out the last word data, 1673 * so we have to disable ECSPI when in target mode after the 1674 * transfer completes 1675 */ 1676 if (spi_imx->devtype_data->disable) 1677 spi_imx->devtype_data->disable(spi_imx); 1678 1679 return ret; 1680 } 1681 1682 static unsigned int spi_imx_transfer_estimate_time_us(struct spi_transfer *transfer) 1683 { 1684 u64 result; 1685 1686 result = DIV_U64_ROUND_CLOSEST((u64)USEC_PER_SEC * transfer->len * BITS_PER_BYTE, 1687 transfer->effective_speed_hz); 1688 if (transfer->word_delay.value) { 1689 unsigned int word_delay_us; 1690 unsigned int words; 1691 1692 words = DIV_ROUND_UP(transfer->len * BITS_PER_BYTE, transfer->bits_per_word); 1693 word_delay_us = DIV_ROUND_CLOSEST(spi_delay_to_ns(&transfer->word_delay, transfer), 1694 NSEC_PER_USEC); 1695 result += (u64)words * word_delay_us; 1696 } 1697 1698 return min(result, U32_MAX); 1699 } 1700 1701 static int spi_imx_transfer_one(struct spi_controller *controller, 1702 struct spi_device *spi, 1703 struct spi_transfer *transfer) 1704 { 1705 int ret; 1706 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller); 1707 1708 ret = spi_imx_setupxfer(spi, transfer); 1709 if (ret < 0) 1710 return ret; 1711 transfer->effective_speed_hz = spi_imx->spi_bus_clk; 1712 1713 /* flush rxfifo before transfer */ 1714 while (spi_imx->devtype_data->rx_available(spi_imx)) 1715 readl(spi_imx->base + MXC_CSPIRXDATA); 1716 1717 if (spi_imx->target_mode) 1718 return spi_imx_pio_transfer_target(spi, transfer); 1719 1720 /* 1721 * If we decided in spi_imx_can_dma() that we want to do a DMA 1722 * transfer, the SPI transfer has already been mapped, so we 1723 * have to do the DMA transfer here. 1724 */ 1725 if (spi_imx->usedma) 1726 return spi_imx_dma_transfer(spi_imx, transfer); 1727 1728 /* run in polling mode for short transfers */ 1729 if (transfer->len == 1 || (polling_limit_us && 1730 spi_imx_transfer_estimate_time_us(transfer) < polling_limit_us)) 1731 return spi_imx_poll_transfer(spi, transfer); 1732 1733 return spi_imx_pio_transfer(spi, transfer); 1734 } 1735 1736 static int spi_imx_setup(struct spi_device *spi) 1737 { 1738 dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__, 1739 spi->mode, spi->bits_per_word, spi->max_speed_hz); 1740 1741 return 0; 1742 } 1743 1744 static int 1745 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg) 1746 { 1747 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1748 int ret; 1749 1750 ret = pm_runtime_resume_and_get(spi_imx->dev); 1751 if (ret < 0) { 1752 dev_err(spi_imx->dev, "failed to enable clock\n"); 1753 return ret; 1754 } 1755 1756 ret = spi_imx->devtype_data->prepare_message(spi_imx, msg); 1757 if (ret) { 1758 pm_runtime_put_autosuspend(spi_imx->dev); 1759 } 1760 1761 return ret; 1762 } 1763 1764 static int 1765 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg) 1766 { 1767 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1768 1769 pm_runtime_put_autosuspend(spi_imx->dev); 1770 return 0; 1771 } 1772 1773 static int spi_imx_target_abort(struct spi_controller *controller) 1774 { 1775 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1776 1777 spi_imx->target_aborted = true; 1778 complete(&spi_imx->xfer_done); 1779 1780 return 0; 1781 } 1782 1783 static int spi_imx_probe(struct platform_device *pdev) 1784 { 1785 struct device_node *np = pdev->dev.of_node; 1786 struct spi_controller *controller; 1787 struct spi_imx_data *spi_imx; 1788 struct resource *res; 1789 int ret, irq, spi_drctl; 1790 const struct spi_imx_devtype_data *devtype_data = 1791 of_device_get_match_data(&pdev->dev); 1792 bool target_mode; 1793 u32 val; 1794 1795 target_mode = devtype_data->has_targetmode && 1796 of_property_read_bool(np, "spi-slave"); 1797 if (target_mode) 1798 controller = spi_alloc_target(&pdev->dev, 1799 sizeof(struct spi_imx_data)); 1800 else 1801 controller = spi_alloc_host(&pdev->dev, 1802 sizeof(struct spi_imx_data)); 1803 if (!controller) 1804 return -ENOMEM; 1805 1806 ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl); 1807 if ((ret < 0) || (spi_drctl >= 0x3)) { 1808 /* '11' is reserved */ 1809 spi_drctl = 0; 1810 } 1811 1812 platform_set_drvdata(pdev, controller); 1813 1814 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32); 1815 controller->bus_num = np ? -1 : pdev->id; 1816 controller->use_gpio_descriptors = true; 1817 1818 spi_imx = spi_controller_get_devdata(controller); 1819 spi_imx->controller = controller; 1820 spi_imx->dev = &pdev->dev; 1821 spi_imx->target_mode = target_mode; 1822 1823 spi_imx->devtype_data = devtype_data; 1824 1825 /* 1826 * Get number of chip selects from device properties. This can be 1827 * coming from device tree or boardfiles, if it is not defined, 1828 * a default value of 3 chip selects will be used, as all the legacy 1829 * board files have <= 3 chip selects. 1830 */ 1831 if (!device_property_read_u32(&pdev->dev, "num-cs", &val)) 1832 controller->num_chipselect = val; 1833 else 1834 controller->num_chipselect = 3; 1835 1836 controller->transfer_one = spi_imx_transfer_one; 1837 controller->setup = spi_imx_setup; 1838 controller->prepare_message = spi_imx_prepare_message; 1839 controller->unprepare_message = spi_imx_unprepare_message; 1840 controller->target_abort = spi_imx_target_abort; 1841 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS | 1842 SPI_MOSI_IDLE_LOW; 1843 1844 if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) || 1845 is_imx53_ecspi(spi_imx)) 1846 controller->mode_bits |= SPI_LOOP | SPI_READY; 1847 1848 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) 1849 controller->mode_bits |= SPI_RX_CPHA_FLIP; 1850 1851 if (is_imx51_ecspi(spi_imx) && 1852 device_property_read_u32(&pdev->dev, "cs-gpios", NULL)) 1853 /* 1854 * When using HW-CS implementing SPI_CS_WORD can be done by just 1855 * setting the burst length to the word size. This is 1856 * considerably faster than manually controlling the CS. 1857 */ 1858 controller->mode_bits |= SPI_CS_WORD; 1859 1860 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) { 1861 controller->max_native_cs = 4; 1862 controller->flags |= SPI_CONTROLLER_GPIO_SS; 1863 } 1864 1865 spi_imx->spi_drctl = spi_drctl; 1866 1867 init_completion(&spi_imx->xfer_done); 1868 1869 spi_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1870 if (IS_ERR(spi_imx->base)) { 1871 ret = PTR_ERR(spi_imx->base); 1872 goto out_controller_put; 1873 } 1874 spi_imx->base_phys = res->start; 1875 1876 irq = platform_get_irq(pdev, 0); 1877 if (irq < 0) { 1878 ret = irq; 1879 goto out_controller_put; 1880 } 1881 1882 ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0, 1883 dev_name(&pdev->dev), spi_imx); 1884 if (ret) { 1885 dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret); 1886 goto out_controller_put; 1887 } 1888 1889 spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 1890 if (IS_ERR(spi_imx->clk_ipg)) { 1891 ret = PTR_ERR(spi_imx->clk_ipg); 1892 goto out_controller_put; 1893 } 1894 1895 spi_imx->clk_per = devm_clk_get(&pdev->dev, "per"); 1896 if (IS_ERR(spi_imx->clk_per)) { 1897 ret = PTR_ERR(spi_imx->clk_per); 1898 goto out_controller_put; 1899 } 1900 1901 ret = clk_prepare_enable(spi_imx->clk_per); 1902 if (ret) 1903 goto out_controller_put; 1904 1905 ret = clk_prepare_enable(spi_imx->clk_ipg); 1906 if (ret) 1907 goto out_put_per; 1908 1909 pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT); 1910 pm_runtime_use_autosuspend(spi_imx->dev); 1911 pm_runtime_get_noresume(spi_imx->dev); 1912 pm_runtime_set_active(spi_imx->dev); 1913 pm_runtime_enable(spi_imx->dev); 1914 1915 spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per); 1916 /* 1917 * Only validated on i.mx35 and i.mx6 now, can remove the constraint 1918 * if validated on other chips. 1919 */ 1920 if (spi_imx->devtype_data->has_dmamode) { 1921 ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller); 1922 if (ret == -EPROBE_DEFER) 1923 goto out_runtime_pm_put; 1924 1925 if (ret < 0) 1926 dev_dbg(&pdev->dev, "dma setup error %d, use pio\n", 1927 ret); 1928 } 1929 1930 spi_imx->devtype_data->reset(spi_imx); 1931 1932 spi_imx->devtype_data->intctrl(spi_imx, 0); 1933 1934 controller->dev.of_node = pdev->dev.of_node; 1935 ret = spi_register_controller(controller); 1936 if (ret) { 1937 dev_err_probe(&pdev->dev, ret, "register controller failed\n"); 1938 goto out_register_controller; 1939 } 1940 1941 pm_runtime_put_autosuspend(spi_imx->dev); 1942 1943 return ret; 1944 1945 out_register_controller: 1946 if (spi_imx->devtype_data->has_dmamode) 1947 spi_imx_sdma_exit(spi_imx); 1948 out_runtime_pm_put: 1949 pm_runtime_dont_use_autosuspend(spi_imx->dev); 1950 pm_runtime_disable(spi_imx->dev); 1951 pm_runtime_set_suspended(&pdev->dev); 1952 1953 clk_disable_unprepare(spi_imx->clk_ipg); 1954 out_put_per: 1955 clk_disable_unprepare(spi_imx->clk_per); 1956 out_controller_put: 1957 spi_controller_put(controller); 1958 1959 return ret; 1960 } 1961 1962 static void spi_imx_remove(struct platform_device *pdev) 1963 { 1964 struct spi_controller *controller = platform_get_drvdata(pdev); 1965 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller); 1966 int ret; 1967 1968 spi_unregister_controller(controller); 1969 1970 ret = pm_runtime_get_sync(spi_imx->dev); 1971 if (ret >= 0) 1972 writel(0, spi_imx->base + MXC_CSPICTRL); 1973 else 1974 dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n"); 1975 1976 pm_runtime_dont_use_autosuspend(spi_imx->dev); 1977 pm_runtime_put_sync(spi_imx->dev); 1978 pm_runtime_disable(spi_imx->dev); 1979 1980 spi_imx_sdma_exit(spi_imx); 1981 } 1982 1983 static int spi_imx_runtime_resume(struct device *dev) 1984 { 1985 struct spi_controller *controller = dev_get_drvdata(dev); 1986 struct spi_imx_data *spi_imx; 1987 int ret; 1988 1989 spi_imx = spi_controller_get_devdata(controller); 1990 1991 ret = clk_prepare_enable(spi_imx->clk_per); 1992 if (ret) 1993 return ret; 1994 1995 ret = clk_prepare_enable(spi_imx->clk_ipg); 1996 if (ret) { 1997 clk_disable_unprepare(spi_imx->clk_per); 1998 return ret; 1999 } 2000 2001 return 0; 2002 } 2003 2004 static int spi_imx_runtime_suspend(struct device *dev) 2005 { 2006 struct spi_controller *controller = dev_get_drvdata(dev); 2007 struct spi_imx_data *spi_imx; 2008 2009 spi_imx = spi_controller_get_devdata(controller); 2010 2011 clk_disable_unprepare(spi_imx->clk_per); 2012 clk_disable_unprepare(spi_imx->clk_ipg); 2013 2014 return 0; 2015 } 2016 2017 static int spi_imx_suspend(struct device *dev) 2018 { 2019 pinctrl_pm_select_sleep_state(dev); 2020 return 0; 2021 } 2022 2023 static int spi_imx_resume(struct device *dev) 2024 { 2025 pinctrl_pm_select_default_state(dev); 2026 return 0; 2027 } 2028 2029 static const struct dev_pm_ops imx_spi_pm = { 2030 RUNTIME_PM_OPS(spi_imx_runtime_suspend, spi_imx_runtime_resume, NULL) 2031 SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume) 2032 }; 2033 2034 static struct platform_driver spi_imx_driver = { 2035 .driver = { 2036 .name = DRIVER_NAME, 2037 .of_match_table = spi_imx_dt_ids, 2038 .pm = pm_ptr(&imx_spi_pm), 2039 }, 2040 .probe = spi_imx_probe, 2041 .remove = spi_imx_remove, 2042 }; 2043 module_platform_driver(spi_imx_driver); 2044 2045 MODULE_DESCRIPTION("i.MX SPI Controller driver"); 2046 MODULE_AUTHOR("Sascha Hauer, Pengutronix"); 2047 MODULE_LICENSE("GPL"); 2048 MODULE_ALIAS("platform:" DRIVER_NAME); 2049