1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (c) 2017-2018, The Linux foundation. All rights reserved. 3 4 #include <linux/clk.h> 5 #include <linux/dmaengine.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/dma/qcom-gpi-dma.h> 8 #include <linux/interrupt.h> 9 #include <linux/io.h> 10 #include <linux/log2.h> 11 #include <linux/module.h> 12 #include <linux/platform_device.h> 13 #include <linux/pm_opp.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/property.h> 16 #include <linux/soc/qcom/geni-se.h> 17 #include <linux/spi/spi.h> 18 #include <linux/spinlock.h> 19 20 /* SPI SE specific registers and respective register fields */ 21 #define SE_SPI_CPHA 0x224 22 #define CPHA BIT(0) 23 24 #define SE_SPI_LOOPBACK 0x22c 25 #define LOOPBACK_ENABLE 0x1 26 #define NORMAL_MODE 0x0 27 #define LOOPBACK_MSK GENMASK(1, 0) 28 29 #define SE_SPI_CPOL 0x230 30 #define CPOL BIT(2) 31 32 #define SE_SPI_DEMUX_OUTPUT_INV 0x24c 33 #define CS_DEMUX_OUTPUT_INV_MSK GENMASK(3, 0) 34 35 #define SE_SPI_DEMUX_SEL 0x250 36 #define CS_DEMUX_OUTPUT_SEL GENMASK(3, 0) 37 38 #define SE_SPI_TRANS_CFG 0x25c 39 #define CS_TOGGLE BIT(1) 40 41 #define SE_SPI_WORD_LEN 0x268 42 #define WORD_LEN_MSK GENMASK(9, 0) 43 #define MIN_WORD_LEN 4 44 45 #define SE_SPI_TX_TRANS_LEN 0x26c 46 #define SE_SPI_RX_TRANS_LEN 0x270 47 #define TRANS_LEN_MSK GENMASK(23, 0) 48 49 #define SE_SPI_PRE_POST_CMD_DLY 0x274 50 51 #define SE_SPI_DELAY_COUNTERS 0x278 52 #define SPI_INTER_WORDS_DELAY_MSK GENMASK(9, 0) 53 #define SPI_CS_CLK_DELAY_MSK GENMASK(19, 10) 54 #define SPI_CS_CLK_DELAY_SHFT 10 55 56 #define SE_SPI_SLAVE_EN (0x2BC) 57 #define SPI_SLAVE_EN BIT(0) 58 59 /* M_CMD OP codes for SPI */ 60 #define SPI_TX_ONLY 1 61 #define SPI_RX_ONLY 2 62 #define SPI_TX_RX 7 63 #define SPI_CS_ASSERT 8 64 #define SPI_CS_DEASSERT 9 65 #define SPI_SCK_ONLY 10 66 /* M_CMD params for SPI */ 67 #define SPI_PRE_CMD_DELAY BIT(0) 68 #define TIMESTAMP_BEFORE BIT(1) 69 #define FRAGMENTATION BIT(2) 70 #define TIMESTAMP_AFTER BIT(3) 71 #define POST_CMD_DELAY BIT(4) 72 73 #define GSI_LOOPBACK_EN BIT(0) 74 #define GSI_CS_TOGGLE BIT(3) 75 #define GSI_CPHA BIT(4) 76 #define GSI_CPOL BIT(5) 77 78 struct spi_geni_master { 79 struct geni_se se; 80 struct device *dev; 81 u32 tx_fifo_depth; 82 u32 fifo_width_bits; 83 u32 tx_wm; 84 u32 last_mode; 85 unsigned long cur_speed_hz; 86 unsigned long cur_sclk_hz; 87 unsigned int cur_bits_per_word; 88 unsigned int tx_rem_bytes; 89 unsigned int rx_rem_bytes; 90 const struct spi_transfer *cur_xfer; 91 struct completion cs_done; 92 struct completion cancel_done; 93 struct completion abort_done; 94 struct completion tx_reset_done; 95 struct completion rx_reset_done; 96 unsigned int oversampling; 97 spinlock_t lock; 98 int irq; 99 bool cs_flag; 100 bool abort_failed; 101 struct dma_chan *tx; 102 struct dma_chan *rx; 103 int cur_xfer_mode; 104 }; 105 106 static void spi_slv_setup(struct spi_geni_master *mas) 107 { 108 struct geni_se *se = &mas->se; 109 110 writel(SPI_SLAVE_EN, se->base + SE_SPI_SLAVE_EN); 111 writel(GENI_IO_MUX_0_EN, se->base + GENI_OUTPUT_CTRL); 112 writel(START_TRIGGER, se->base + SE_GENI_CFG_SEQ_START); 113 dev_dbg(mas->dev, "spi slave setup done\n"); 114 } 115 116 static int get_spi_clk_cfg(unsigned int speed_hz, 117 struct spi_geni_master *mas, 118 unsigned int *clk_idx, 119 unsigned int *clk_div) 120 { 121 unsigned long sclk_freq; 122 unsigned int actual_hz; 123 int ret; 124 125 ret = geni_se_clk_freq_match(&mas->se, 126 speed_hz * mas->oversampling, 127 clk_idx, &sclk_freq, false); 128 if (ret) { 129 dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n", 130 ret, speed_hz); 131 return ret; 132 } 133 134 *clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz); 135 actual_hz = sclk_freq / (mas->oversampling * *clk_div); 136 137 dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz, 138 actual_hz, sclk_freq, *clk_idx, *clk_div); 139 ret = dev_pm_opp_set_rate(mas->dev, sclk_freq); 140 if (ret) 141 dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret); 142 else 143 mas->cur_sclk_hz = sclk_freq; 144 145 return ret; 146 } 147 148 static void handle_se_timeout(struct spi_controller *spi, 149 struct spi_message *msg) 150 { 151 struct spi_geni_master *mas = spi_controller_get_devdata(spi); 152 unsigned long time_left; 153 struct geni_se *se = &mas->se; 154 const struct spi_transfer *xfer; 155 156 spin_lock_irq(&mas->lock); 157 if (mas->cur_xfer_mode == GENI_SE_FIFO) 158 writel(0, se->base + SE_GENI_TX_WATERMARK_REG); 159 160 xfer = mas->cur_xfer; 161 mas->cur_xfer = NULL; 162 163 if (spi->target) { 164 /* 165 * skip CMD Cancel sequnece since spi target 166 * doesn`t support CMD Cancel sequnece 167 */ 168 spin_unlock_irq(&mas->lock); 169 goto reset_if_dma; 170 } 171 172 reinit_completion(&mas->cancel_done); 173 geni_se_cancel_m_cmd(se); 174 spin_unlock_irq(&mas->lock); 175 176 time_left = wait_for_completion_timeout(&mas->cancel_done, HZ); 177 if (time_left) 178 goto reset_if_dma; 179 180 spin_lock_irq(&mas->lock); 181 reinit_completion(&mas->abort_done); 182 geni_se_abort_m_cmd(se); 183 spin_unlock_irq(&mas->lock); 184 185 time_left = wait_for_completion_timeout(&mas->abort_done, HZ); 186 if (!time_left) { 187 dev_err(mas->dev, "Failed to cancel/abort m_cmd\n"); 188 189 /* 190 * No need for a lock since SPI core has a lock and we never 191 * access this from an interrupt. 192 */ 193 mas->abort_failed = true; 194 } 195 196 reset_if_dma: 197 if (mas->cur_xfer_mode == GENI_SE_DMA) { 198 if (xfer) { 199 if (xfer->tx_buf) { 200 spin_lock_irq(&mas->lock); 201 reinit_completion(&mas->tx_reset_done); 202 writel(1, se->base + SE_DMA_TX_FSM_RST); 203 spin_unlock_irq(&mas->lock); 204 time_left = wait_for_completion_timeout(&mas->tx_reset_done, HZ); 205 if (!time_left) 206 dev_err(mas->dev, "DMA TX RESET failed\n"); 207 } 208 if (xfer->rx_buf) { 209 spin_lock_irq(&mas->lock); 210 reinit_completion(&mas->rx_reset_done); 211 writel(1, se->base + SE_DMA_RX_FSM_RST); 212 spin_unlock_irq(&mas->lock); 213 time_left = wait_for_completion_timeout(&mas->rx_reset_done, HZ); 214 if (!time_left) 215 dev_err(mas->dev, "DMA RX RESET failed\n"); 216 } 217 } else { 218 /* 219 * This can happen if a timeout happened and we had to wait 220 * for lock in this function because isr was holding the lock 221 * and handling transfer completion at that time. 222 */ 223 dev_warn(mas->dev, "Cancel/Abort on completed SPI transfer\n"); 224 } 225 } 226 } 227 228 static void handle_gpi_timeout(struct spi_controller *spi, struct spi_message *msg) 229 { 230 struct spi_geni_master *mas = spi_controller_get_devdata(spi); 231 232 dmaengine_terminate_sync(mas->tx); 233 dmaengine_terminate_sync(mas->rx); 234 } 235 236 static void spi_geni_handle_err(struct spi_controller *spi, struct spi_message *msg) 237 { 238 struct spi_geni_master *mas = spi_controller_get_devdata(spi); 239 240 switch (mas->cur_xfer_mode) { 241 case GENI_SE_FIFO: 242 case GENI_SE_DMA: 243 handle_se_timeout(spi, msg); 244 break; 245 case GENI_GPI_DMA: 246 handle_gpi_timeout(spi, msg); 247 break; 248 default: 249 dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode); 250 } 251 } 252 253 static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas) 254 { 255 struct geni_se *se = &mas->se; 256 u32 m_irq, m_irq_en; 257 258 if (!mas->abort_failed) 259 return false; 260 261 /* 262 * The only known case where a transfer times out and then a cancel 263 * times out then an abort times out is if something is blocking our 264 * interrupt handler from running. Avoid starting any new transfers 265 * until that sorts itself out. 266 */ 267 spin_lock_irq(&mas->lock); 268 m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS); 269 m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN); 270 spin_unlock_irq(&mas->lock); 271 272 if (m_irq & m_irq_en) { 273 dev_err(mas->dev, "Interrupts pending after abort: %#010x\n", 274 m_irq & m_irq_en); 275 return true; 276 } 277 278 /* 279 * If we're here the problem resolved itself so no need to check more 280 * on future transfers. 281 */ 282 mas->abort_failed = false; 283 284 return false; 285 } 286 287 static void spi_geni_set_cs(struct spi_device *slv, bool set_flag) 288 { 289 struct spi_geni_master *mas = spi_controller_get_devdata(slv->controller); 290 struct spi_controller *spi = dev_get_drvdata(mas->dev); 291 struct geni_se *se = &mas->se; 292 unsigned long time_left; 293 294 if (!(slv->mode & SPI_CS_HIGH)) 295 set_flag = !set_flag; 296 297 if (set_flag == mas->cs_flag) 298 return; 299 300 pm_runtime_get_sync(mas->dev); 301 302 if (spi_geni_is_abort_still_pending(mas)) { 303 dev_err(mas->dev, "Can't set chip select\n"); 304 goto exit; 305 } 306 307 spin_lock_irq(&mas->lock); 308 if (mas->cur_xfer) { 309 dev_err(mas->dev, "Can't set CS when prev xfer running\n"); 310 spin_unlock_irq(&mas->lock); 311 goto exit; 312 } 313 314 mas->cs_flag = set_flag; 315 /* set xfer_mode to FIFO to complete cs_done in isr */ 316 mas->cur_xfer_mode = GENI_SE_FIFO; 317 geni_se_select_mode(se, mas->cur_xfer_mode); 318 319 reinit_completion(&mas->cs_done); 320 if (set_flag) 321 geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0); 322 else 323 geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0); 324 spin_unlock_irq(&mas->lock); 325 326 time_left = wait_for_completion_timeout(&mas->cs_done, HZ); 327 if (!time_left) { 328 dev_warn(mas->dev, "Timeout setting chip select\n"); 329 handle_se_timeout(spi, NULL); 330 } 331 332 exit: 333 pm_runtime_put(mas->dev); 334 } 335 336 static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode, 337 unsigned int bits_per_word) 338 { 339 unsigned int pack_words; 340 bool msb_first = (mode & SPI_LSB_FIRST) ? false : true; 341 struct geni_se *se = &mas->se; 342 u32 word_len; 343 344 /* 345 * If bits_per_word isn't a byte aligned value, set the packing to be 346 * 1 SPI word per FIFO word. 347 */ 348 if (!(mas->fifo_width_bits % bits_per_word)) 349 pack_words = mas->fifo_width_bits / bits_per_word; 350 else 351 pack_words = 1; 352 geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first, 353 true, true); 354 word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK; 355 writel(word_len, se->base + SE_SPI_WORD_LEN); 356 } 357 358 static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas, 359 unsigned long clk_hz) 360 { 361 u32 clk_sel, m_clk_cfg, idx, div; 362 struct geni_se *se = &mas->se; 363 int ret; 364 365 if (clk_hz == mas->cur_speed_hz) 366 return 0; 367 368 ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div); 369 if (ret) { 370 dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret); 371 return ret; 372 } 373 374 /* 375 * SPI core clock gets configured with the requested frequency 376 * or the frequency closer to the requested frequency. 377 * For that reason requested frequency is stored in the 378 * cur_speed_hz and referred in the consecutive transfer instead 379 * of calling clk_get_rate() API. 380 */ 381 mas->cur_speed_hz = clk_hz; 382 383 clk_sel = idx & CLK_SEL_MSK; 384 m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN; 385 writel(clk_sel, se->base + SE_GENI_CLK_SEL); 386 writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG); 387 388 /* Set BW quota for CPU as driver supports FIFO mode only. */ 389 se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz); 390 ret = geni_icc_set_bw(se); 391 if (ret) 392 return ret; 393 394 return 0; 395 } 396 397 static int setup_fifo_params(struct spi_device *spi_slv, 398 struct spi_controller *spi) 399 { 400 struct spi_geni_master *mas = spi_controller_get_devdata(spi); 401 struct geni_se *se = &mas->se; 402 u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0; 403 u32 demux_sel; 404 405 if (mas->last_mode != spi_slv->mode) { 406 if (spi_slv->mode & SPI_LOOP) 407 loopback_cfg = LOOPBACK_ENABLE; 408 409 if (spi_slv->mode & SPI_CPOL) 410 cpol = CPOL; 411 412 if (spi_slv->mode & SPI_CPHA) 413 cpha = CPHA; 414 415 if (spi_slv->mode & SPI_CS_HIGH) 416 demux_output_inv = BIT(spi_get_chipselect(spi_slv, 0)); 417 418 demux_sel = spi_get_chipselect(spi_slv, 0); 419 mas->cur_bits_per_word = spi_slv->bits_per_word; 420 421 spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word); 422 writel(loopback_cfg, se->base + SE_SPI_LOOPBACK); 423 writel(demux_sel, se->base + SE_SPI_DEMUX_SEL); 424 writel(cpha, se->base + SE_SPI_CPHA); 425 writel(cpol, se->base + SE_SPI_CPOL); 426 writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV); 427 428 mas->last_mode = spi_slv->mode; 429 } 430 431 return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz); 432 } 433 434 static void 435 spi_gsi_callback_result(void *cb, const struct dmaengine_result *result) 436 { 437 struct spi_controller *spi = cb; 438 439 spi->cur_msg->status = -EIO; 440 if (result->result != DMA_TRANS_NOERROR) { 441 dev_err(&spi->dev, "DMA txn failed: %d\n", result->result); 442 spi_finalize_current_transfer(spi); 443 return; 444 } 445 446 if (!result->residue) { 447 spi->cur_msg->status = 0; 448 dev_dbg(&spi->dev, "DMA txn completed\n"); 449 } else { 450 dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue); 451 } 452 453 spi_finalize_current_transfer(spi); 454 } 455 456 static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas, 457 struct spi_device *spi_slv, struct spi_controller *spi) 458 { 459 unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK; 460 struct dma_slave_config config = {}; 461 struct gpi_spi_config peripheral = {}; 462 struct dma_async_tx_descriptor *tx_desc, *rx_desc; 463 int ret; 464 465 config.peripheral_config = &peripheral; 466 config.peripheral_size = sizeof(peripheral); 467 peripheral.set_config = true; 468 469 if (xfer->bits_per_word != mas->cur_bits_per_word || 470 xfer->speed_hz != mas->cur_speed_hz) { 471 mas->cur_bits_per_word = xfer->bits_per_word; 472 mas->cur_speed_hz = xfer->speed_hz; 473 } 474 475 if (xfer->tx_buf && xfer->rx_buf) { 476 peripheral.cmd = SPI_DUPLEX; 477 } else if (xfer->tx_buf) { 478 peripheral.cmd = SPI_TX; 479 peripheral.rx_len = 0; 480 } else if (xfer->rx_buf) { 481 peripheral.cmd = SPI_RX; 482 if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) { 483 peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word); 484 } else { 485 int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1; 486 487 peripheral.rx_len = (xfer->len / bytes_per_word); 488 } 489 } 490 491 peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP); 492 peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL); 493 peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA); 494 peripheral.cs = spi_get_chipselect(spi_slv, 0); 495 peripheral.pack_en = true; 496 peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN; 497 498 ret = get_spi_clk_cfg(mas->cur_speed_hz, mas, 499 &peripheral.clk_src, &peripheral.clk_div); 500 if (ret) { 501 dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret); 502 return ret; 503 } 504 505 if (!xfer->cs_change) { 506 if (!list_is_last(&xfer->transfer_list, &spi->cur_msg->transfers)) 507 peripheral.fragmentation = FRAGMENTATION; 508 } 509 510 if (peripheral.cmd & SPI_RX) { 511 dmaengine_slave_config(mas->rx, &config); 512 rx_desc = dmaengine_prep_slave_sg(mas->rx, xfer->rx_sg.sgl, xfer->rx_sg.nents, 513 DMA_DEV_TO_MEM, flags); 514 if (!rx_desc) { 515 dev_err(mas->dev, "Err setting up rx desc\n"); 516 return -EIO; 517 } 518 } 519 520 /* 521 * Prepare the TX always, even for RX or tx_buf being null, we would 522 * need TX to be prepared per GSI spec 523 */ 524 dmaengine_slave_config(mas->tx, &config); 525 tx_desc = dmaengine_prep_slave_sg(mas->tx, xfer->tx_sg.sgl, xfer->tx_sg.nents, 526 DMA_MEM_TO_DEV, flags); 527 if (!tx_desc) { 528 dev_err(mas->dev, "Err setting up tx desc\n"); 529 return -EIO; 530 } 531 532 tx_desc->callback_result = spi_gsi_callback_result; 533 tx_desc->callback_param = spi; 534 535 if (peripheral.cmd & SPI_RX) 536 dmaengine_submit(rx_desc); 537 dmaengine_submit(tx_desc); 538 539 if (peripheral.cmd & SPI_RX) 540 dma_async_issue_pending(mas->rx); 541 542 dma_async_issue_pending(mas->tx); 543 return 1; 544 } 545 546 static u32 get_xfer_len_in_words(struct spi_transfer *xfer, 547 struct spi_geni_master *mas) 548 { 549 u32 len; 550 551 if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) 552 len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word; 553 else 554 len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1); 555 len &= TRANS_LEN_MSK; 556 557 return len; 558 } 559 560 static bool geni_can_dma(struct spi_controller *ctlr, 561 struct spi_device *slv, struct spi_transfer *xfer) 562 { 563 struct spi_geni_master *mas = spi_controller_get_devdata(slv->controller); 564 u32 len, fifo_size; 565 566 if (mas->cur_xfer_mode == GENI_GPI_DMA) 567 return true; 568 569 /* Set SE DMA mode for SPI target. */ 570 if (ctlr->target) 571 return true; 572 573 len = get_xfer_len_in_words(xfer, mas); 574 fifo_size = mas->tx_fifo_depth * mas->fifo_width_bits / mas->cur_bits_per_word; 575 576 if (len > fifo_size) 577 return true; 578 else 579 return false; 580 } 581 582 static int spi_geni_prepare_message(struct spi_controller *spi, 583 struct spi_message *spi_msg) 584 { 585 struct spi_geni_master *mas = spi_controller_get_devdata(spi); 586 int ret; 587 588 switch (mas->cur_xfer_mode) { 589 case GENI_SE_FIFO: 590 case GENI_SE_DMA: 591 if (spi_geni_is_abort_still_pending(mas)) 592 return -EBUSY; 593 ret = setup_fifo_params(spi_msg->spi, spi); 594 if (ret) 595 dev_err(mas->dev, "Couldn't select mode %d\n", ret); 596 return ret; 597 598 case GENI_GPI_DMA: 599 /* nothing to do for GPI DMA */ 600 return 0; 601 } 602 603 dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode); 604 return -EINVAL; 605 } 606 607 static void spi_geni_release_dma_chan(void *data) 608 { 609 struct spi_geni_master *mas = data; 610 611 if (mas->rx) { 612 dma_release_channel(mas->rx); 613 mas->rx = NULL; 614 } 615 616 if (mas->tx) { 617 dma_release_channel(mas->tx); 618 mas->tx = NULL; 619 } 620 } 621 622 static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas) 623 { 624 int ret; 625 626 mas->tx = dma_request_chan(mas->dev, "tx"); 627 if (IS_ERR(mas->tx)) { 628 ret = dev_err_probe(mas->dev, PTR_ERR(mas->tx), 629 "Failed to get tx DMA ch\n"); 630 goto err_tx; 631 } 632 633 mas->rx = dma_request_chan(mas->dev, "rx"); 634 if (IS_ERR(mas->rx)) { 635 ret = dev_err_probe(mas->dev, PTR_ERR(mas->rx), 636 "Failed to get rx DMA ch\n"); 637 goto err_rx; 638 } 639 640 ret = devm_add_action_or_reset(mas->dev, spi_geni_release_dma_chan, mas); 641 if (ret) { 642 dev_err(mas->dev, "Unable to add action.\n"); 643 return ret; 644 } 645 646 return 0; 647 648 err_rx: 649 mas->rx = NULL; 650 dma_release_channel(mas->tx); 651 err_tx: 652 mas->tx = NULL; 653 return ret; 654 } 655 656 static int spi_geni_init(struct spi_geni_master *mas) 657 { 658 struct spi_controller *spi = dev_get_drvdata(mas->dev); 659 struct geni_se *se = &mas->se; 660 unsigned int proto, major, minor, ver; 661 u32 spi_tx_cfg, fifo_disable; 662 int ret = -ENXIO; 663 664 pm_runtime_get_sync(mas->dev); 665 666 proto = geni_se_read_proto(se); 667 668 if (spi->target) { 669 if (proto != GENI_SE_SPI_SLAVE) { 670 dev_err(mas->dev, "Invalid proto %d\n", proto); 671 goto out_pm; 672 } 673 spi_slv_setup(mas); 674 } else if (proto != GENI_SE_SPI) { 675 dev_err(mas->dev, "Invalid proto %d\n", proto); 676 goto out_pm; 677 } 678 mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se); 679 680 /* Width of Tx and Rx FIFO is same */ 681 mas->fifo_width_bits = geni_se_get_tx_fifo_width(se); 682 683 /* 684 * Hardware programming guide suggests to configure 685 * RX FIFO RFR level to fifo_depth-2. 686 */ 687 geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2); 688 /* Transmit an entire FIFO worth of data per IRQ */ 689 mas->tx_wm = 1; 690 ver = geni_se_get_qup_hw_version(se); 691 major = GENI_SE_VERSION_MAJOR(ver); 692 minor = GENI_SE_VERSION_MINOR(ver); 693 694 if (major == 1 && minor == 0) 695 mas->oversampling = 2; 696 else 697 mas->oversampling = 1; 698 699 fifo_disable = readl(se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE; 700 switch (fifo_disable) { 701 case 1: 702 ret = spi_geni_grab_gpi_chan(mas); 703 if (!ret) { /* success case */ 704 mas->cur_xfer_mode = GENI_GPI_DMA; 705 geni_se_select_mode(se, GENI_GPI_DMA); 706 dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n"); 707 break; 708 } else if (ret == -EPROBE_DEFER) { 709 goto out_pm; 710 } 711 /* 712 * in case of failure to get gpi dma channel, we can still do the 713 * FIFO mode, so fallthrough 714 */ 715 dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n"); 716 fallthrough; 717 718 case 0: 719 mas->cur_xfer_mode = GENI_SE_FIFO; 720 geni_se_select_mode(se, GENI_SE_FIFO); 721 ret = 0; 722 break; 723 } 724 725 /* We always control CS manually */ 726 if (!spi->target) { 727 spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG); 728 spi_tx_cfg &= ~CS_TOGGLE; 729 writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG); 730 } 731 732 out_pm: 733 pm_runtime_put(mas->dev); 734 return ret; 735 } 736 737 static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas) 738 { 739 /* 740 * Calculate how many bytes we'll put in each FIFO word. If the 741 * transfer words don't pack cleanly into a FIFO word we'll just put 742 * one transfer word in each FIFO word. If they do pack we'll pack 'em. 743 */ 744 if (mas->fifo_width_bits % mas->cur_bits_per_word) 745 return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word, 746 BITS_PER_BYTE)); 747 748 return mas->fifo_width_bits / BITS_PER_BYTE; 749 } 750 751 static bool geni_spi_handle_tx(struct spi_geni_master *mas) 752 { 753 struct geni_se *se = &mas->se; 754 unsigned int max_bytes; 755 const u8 *tx_buf; 756 unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas); 757 unsigned int i = 0; 758 759 /* Stop the watermark IRQ if nothing to send */ 760 if (!mas->cur_xfer) { 761 writel(0, se->base + SE_GENI_TX_WATERMARK_REG); 762 return false; 763 } 764 765 max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word; 766 if (mas->tx_rem_bytes < max_bytes) 767 max_bytes = mas->tx_rem_bytes; 768 769 tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes; 770 while (i < max_bytes) { 771 unsigned int j; 772 unsigned int bytes_to_write; 773 u32 fifo_word = 0; 774 u8 *fifo_byte = (u8 *)&fifo_word; 775 776 bytes_to_write = min(bytes_per_fifo_word, max_bytes - i); 777 for (j = 0; j < bytes_to_write; j++) 778 fifo_byte[j] = tx_buf[i++]; 779 iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1); 780 } 781 mas->tx_rem_bytes -= max_bytes; 782 if (!mas->tx_rem_bytes) { 783 writel(0, se->base + SE_GENI_TX_WATERMARK_REG); 784 return false; 785 } 786 return true; 787 } 788 789 static void geni_spi_handle_rx(struct spi_geni_master *mas) 790 { 791 struct geni_se *se = &mas->se; 792 u32 rx_fifo_status; 793 unsigned int rx_bytes; 794 unsigned int rx_last_byte_valid; 795 u8 *rx_buf; 796 unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas); 797 unsigned int i = 0; 798 799 rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS); 800 rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word; 801 if (rx_fifo_status & RX_LAST) { 802 rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK; 803 rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT; 804 if (rx_last_byte_valid && rx_last_byte_valid < 4) 805 rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid; 806 } 807 808 /* Clear out the FIFO and bail if nowhere to put it */ 809 if (!mas->cur_xfer) { 810 for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++) 811 readl(se->base + SE_GENI_RX_FIFOn); 812 return; 813 } 814 815 if (mas->rx_rem_bytes < rx_bytes) 816 rx_bytes = mas->rx_rem_bytes; 817 818 rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes; 819 while (i < rx_bytes) { 820 u32 fifo_word = 0; 821 u8 *fifo_byte = (u8 *)&fifo_word; 822 unsigned int bytes_to_read; 823 unsigned int j; 824 825 bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i); 826 ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1); 827 for (j = 0; j < bytes_to_read; j++) 828 rx_buf[i++] = fifo_byte[j]; 829 } 830 mas->rx_rem_bytes -= rx_bytes; 831 } 832 833 static int setup_se_xfer(struct spi_transfer *xfer, 834 struct spi_geni_master *mas, 835 u16 mode, struct spi_controller *spi) 836 { 837 u32 m_cmd = 0; 838 u32 len; 839 struct geni_se *se = &mas->se; 840 int ret; 841 842 /* 843 * Ensure that our interrupt handler isn't still running from some 844 * prior command before we start messing with the hardware behind 845 * its back. We don't need to _keep_ the lock here since we're only 846 * worried about racing with out interrupt handler. The SPI core 847 * already handles making sure that we're not trying to do two 848 * transfers at once or setting a chip select and doing a transfer 849 * concurrently. 850 * 851 * NOTE: we actually _can't_ hold the lock here because possibly we 852 * might call clk_set_rate() which needs to be able to sleep. 853 */ 854 spin_lock_irq(&mas->lock); 855 spin_unlock_irq(&mas->lock); 856 857 if (xfer->bits_per_word != mas->cur_bits_per_word) { 858 spi_setup_word_len(mas, mode, xfer->bits_per_word); 859 mas->cur_bits_per_word = xfer->bits_per_word; 860 } 861 862 /* Speed and bits per word can be overridden per transfer */ 863 ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz); 864 if (ret) 865 return ret; 866 867 mas->tx_rem_bytes = 0; 868 mas->rx_rem_bytes = 0; 869 870 len = get_xfer_len_in_words(xfer, mas); 871 872 mas->cur_xfer = xfer; 873 if (xfer->tx_buf) { 874 m_cmd |= SPI_TX_ONLY; 875 mas->tx_rem_bytes = xfer->len; 876 writel(len, se->base + SE_SPI_TX_TRANS_LEN); 877 } 878 879 if (xfer->rx_buf) { 880 m_cmd |= SPI_RX_ONLY; 881 writel(len, se->base + SE_SPI_RX_TRANS_LEN); 882 mas->rx_rem_bytes = xfer->len; 883 } 884 885 /* 886 * Select DMA mode if sgt are present; and with only 1 entry 887 * This is not a serious limitation because the xfer buffers are 888 * expected to fit into in 1 entry almost always, and if any 889 * doesn't for any reason we fall back to FIFO mode anyway 890 */ 891 if (!xfer->tx_sg.nents && !xfer->rx_sg.nents) 892 mas->cur_xfer_mode = GENI_SE_FIFO; 893 else if (xfer->tx_sg.nents > 1 || xfer->rx_sg.nents > 1) { 894 dev_warn_once(mas->dev, "Doing FIFO, cannot handle tx_nents-%d, rx_nents-%d\n", 895 xfer->tx_sg.nents, xfer->rx_sg.nents); 896 mas->cur_xfer_mode = GENI_SE_FIFO; 897 } else 898 mas->cur_xfer_mode = GENI_SE_DMA; 899 geni_se_select_mode(se, mas->cur_xfer_mode); 900 901 /* 902 * Lock around right before we start the transfer since our 903 * interrupt could come in at any time now. 904 */ 905 spin_lock_irq(&mas->lock); 906 geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION); 907 908 if (mas->cur_xfer_mode == GENI_SE_DMA) { 909 if (m_cmd & SPI_RX_ONLY) 910 geni_se_rx_init_dma(se, sg_dma_address(xfer->rx_sg.sgl), 911 sg_dma_len(xfer->rx_sg.sgl)); 912 if (m_cmd & SPI_TX_ONLY) 913 geni_se_tx_init_dma(se, sg_dma_address(xfer->tx_sg.sgl), 914 sg_dma_len(xfer->tx_sg.sgl)); 915 } else if (m_cmd & SPI_TX_ONLY) { 916 if (geni_spi_handle_tx(mas)) 917 writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG); 918 } 919 920 spin_unlock_irq(&mas->lock); 921 return ret; 922 } 923 924 static int spi_geni_transfer_one(struct spi_controller *spi, 925 struct spi_device *slv, 926 struct spi_transfer *xfer) 927 { 928 struct spi_geni_master *mas = spi_controller_get_devdata(spi); 929 int ret; 930 931 if (spi_geni_is_abort_still_pending(mas)) 932 return -EBUSY; 933 934 /* Terminate and return success for 0 byte length transfer */ 935 if (!xfer->len) 936 return 0; 937 938 if (mas->cur_xfer_mode == GENI_SE_FIFO || mas->cur_xfer_mode == GENI_SE_DMA) { 939 ret = setup_se_xfer(xfer, mas, slv->mode, spi); 940 /* SPI framework expects +ve ret code to wait for transfer complete */ 941 if (!ret) 942 ret = 1; 943 return ret; 944 } 945 return setup_gsi_xfer(xfer, mas, slv, spi); 946 } 947 948 static irqreturn_t geni_spi_isr(int irq, void *data) 949 { 950 struct spi_controller *spi = data; 951 struct spi_geni_master *mas = spi_controller_get_devdata(spi); 952 struct geni_se *se = &mas->se; 953 u32 m_irq; 954 955 m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS); 956 if (!m_irq) 957 return IRQ_NONE; 958 959 if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN | 960 M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN | 961 M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN)) 962 dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq); 963 964 spin_lock(&mas->lock); 965 966 if (mas->cur_xfer_mode == GENI_SE_FIFO) { 967 if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN)) 968 geni_spi_handle_rx(mas); 969 970 if (m_irq & M_TX_FIFO_WATERMARK_EN) 971 geni_spi_handle_tx(mas); 972 973 if (m_irq & M_CMD_DONE_EN) { 974 if (mas->cur_xfer) { 975 spi_finalize_current_transfer(spi); 976 mas->cur_xfer = NULL; 977 /* 978 * If this happens, then a CMD_DONE came before all the 979 * Tx buffer bytes were sent out. This is unusual, log 980 * this condition and disable the WM interrupt to 981 * prevent the system from stalling due an interrupt 982 * storm. 983 * 984 * If this happens when all Rx bytes haven't been 985 * received, log the condition. The only known time 986 * this can happen is if bits_per_word != 8 and some 987 * registers that expect xfer lengths in num spi_words 988 * weren't written correctly. 989 */ 990 if (mas->tx_rem_bytes) { 991 writel(0, se->base + SE_GENI_TX_WATERMARK_REG); 992 dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n", 993 mas->tx_rem_bytes, mas->cur_bits_per_word); 994 } 995 if (mas->rx_rem_bytes) 996 dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n", 997 mas->rx_rem_bytes, mas->cur_bits_per_word); 998 } else { 999 complete(&mas->cs_done); 1000 } 1001 } 1002 } else if (mas->cur_xfer_mode == GENI_SE_DMA) { 1003 const struct spi_transfer *xfer = mas->cur_xfer; 1004 u32 dma_tx_status = readl_relaxed(se->base + SE_DMA_TX_IRQ_STAT); 1005 u32 dma_rx_status = readl_relaxed(se->base + SE_DMA_RX_IRQ_STAT); 1006 1007 if (dma_tx_status) 1008 writel(dma_tx_status, se->base + SE_DMA_TX_IRQ_CLR); 1009 if (dma_rx_status) 1010 writel(dma_rx_status, se->base + SE_DMA_RX_IRQ_CLR); 1011 if (dma_tx_status & TX_DMA_DONE) 1012 mas->tx_rem_bytes = 0; 1013 if (dma_rx_status & RX_DMA_DONE) 1014 mas->rx_rem_bytes = 0; 1015 if (dma_tx_status & TX_RESET_DONE) 1016 complete(&mas->tx_reset_done); 1017 if (dma_rx_status & RX_RESET_DONE) 1018 complete(&mas->rx_reset_done); 1019 if (!mas->tx_rem_bytes && !mas->rx_rem_bytes && xfer) { 1020 spi_finalize_current_transfer(spi); 1021 mas->cur_xfer = NULL; 1022 } 1023 } 1024 1025 if (m_irq & M_CMD_CANCEL_EN) 1026 complete(&mas->cancel_done); 1027 if (m_irq & M_CMD_ABORT_EN) 1028 complete(&mas->abort_done); 1029 1030 /* 1031 * It's safe or a good idea to Ack all of our interrupts at the end 1032 * of the function. Specifically: 1033 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and 1034 * clearing Acks. Clearing at the end relies on nobody else having 1035 * started a new transfer yet or else we could be clearing _their_ 1036 * done bit, but everyone grabs the spinlock before starting a new 1037 * transfer. 1038 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear 1039 * to be "latched level" interrupts so it's important to clear them 1040 * _after_ you've handled the condition and always safe to do so 1041 * since they'll re-assert if they're still happening. 1042 */ 1043 writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR); 1044 1045 spin_unlock(&mas->lock); 1046 1047 return IRQ_HANDLED; 1048 } 1049 1050 static int spi_geni_probe(struct platform_device *pdev) 1051 { 1052 int ret, irq; 1053 struct spi_controller *spi; 1054 struct spi_geni_master *mas; 1055 void __iomem *base; 1056 struct clk *clk; 1057 struct device *dev = &pdev->dev; 1058 1059 irq = platform_get_irq(pdev, 0); 1060 if (irq < 0) 1061 return irq; 1062 1063 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 1064 if (ret) 1065 return dev_err_probe(dev, ret, "could not set DMA mask\n"); 1066 1067 base = devm_platform_ioremap_resource(pdev, 0); 1068 if (IS_ERR(base)) 1069 return PTR_ERR(base); 1070 1071 clk = devm_clk_get(dev, "se"); 1072 if (IS_ERR(clk)) 1073 return PTR_ERR(clk); 1074 1075 spi = devm_spi_alloc_host(dev, sizeof(*mas)); 1076 if (!spi) 1077 return -ENOMEM; 1078 1079 platform_set_drvdata(pdev, spi); 1080 mas = spi_controller_get_devdata(spi); 1081 mas->irq = irq; 1082 mas->dev = dev; 1083 mas->se.dev = dev; 1084 mas->se.wrapper = dev_get_drvdata(dev->parent); 1085 mas->se.base = base; 1086 mas->se.clk = clk; 1087 1088 ret = devm_pm_opp_set_clkname(&pdev->dev, "se"); 1089 if (ret) 1090 return ret; 1091 /* OPP table is optional */ 1092 ret = devm_pm_opp_of_add_table(&pdev->dev); 1093 if (ret && ret != -ENODEV) { 1094 dev_err(&pdev->dev, "invalid OPP table in device tree\n"); 1095 return ret; 1096 } 1097 1098 spi->bus_num = -1; 1099 spi->dev.of_node = dev->of_node; 1100 spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH; 1101 spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1102 spi->num_chipselect = 4; 1103 spi->max_speed_hz = 50000000; 1104 spi->max_dma_len = 0xffff0; /* 24 bits for tx/rx dma length */ 1105 spi->prepare_message = spi_geni_prepare_message; 1106 spi->transfer_one = spi_geni_transfer_one; 1107 spi->can_dma = geni_can_dma; 1108 spi->dma_map_dev = dev->parent; 1109 spi->auto_runtime_pm = true; 1110 spi->handle_err = spi_geni_handle_err; 1111 spi->use_gpio_descriptors = true; 1112 1113 init_completion(&mas->cs_done); 1114 init_completion(&mas->cancel_done); 1115 init_completion(&mas->abort_done); 1116 init_completion(&mas->tx_reset_done); 1117 init_completion(&mas->rx_reset_done); 1118 spin_lock_init(&mas->lock); 1119 1120 ret = geni_icc_get(&mas->se, NULL); 1121 if (ret) 1122 return ret; 1123 1124 pm_runtime_use_autosuspend(&pdev->dev); 1125 pm_runtime_set_autosuspend_delay(&pdev->dev, 250); 1126 ret = devm_pm_runtime_enable(dev); 1127 if (ret) 1128 return ret; 1129 1130 if (device_property_read_bool(&pdev->dev, "spi-slave")) 1131 spi->target = true; 1132 1133 /* Set the bus quota to a reasonable value for register access */ 1134 mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ); 1135 mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW; 1136 1137 ret = geni_icc_set_bw(&mas->se); 1138 if (ret) 1139 return ret; 1140 1141 ret = spi_geni_init(mas); 1142 if (ret) 1143 return ret; 1144 1145 /* 1146 * check the mode supported and set_cs for fifo mode only 1147 * for dma (gsi) mode, the gsi will set cs based on params passed in 1148 * TRE 1149 */ 1150 if (!spi->target && mas->cur_xfer_mode == GENI_SE_FIFO) 1151 spi->set_cs = spi_geni_set_cs; 1152 1153 /* 1154 * TX is required per GSI spec, see setup_gsi_xfer(). 1155 */ 1156 if (mas->cur_xfer_mode == GENI_GPI_DMA) 1157 spi->flags = SPI_CONTROLLER_MUST_TX; 1158 1159 ret = devm_request_irq(dev, mas->irq, geni_spi_isr, 0, dev_name(dev), spi); 1160 if (ret) 1161 return ret; 1162 1163 return devm_spi_register_controller(dev, spi); 1164 } 1165 1166 static int __maybe_unused spi_geni_runtime_suspend(struct device *dev) 1167 { 1168 struct spi_controller *spi = dev_get_drvdata(dev); 1169 struct spi_geni_master *mas = spi_controller_get_devdata(spi); 1170 int ret; 1171 1172 /* Drop the performance state vote */ 1173 dev_pm_opp_set_rate(dev, 0); 1174 1175 ret = geni_se_resources_off(&mas->se); 1176 if (ret) 1177 return ret; 1178 1179 return geni_icc_disable(&mas->se); 1180 } 1181 1182 static int __maybe_unused spi_geni_runtime_resume(struct device *dev) 1183 { 1184 struct spi_controller *spi = dev_get_drvdata(dev); 1185 struct spi_geni_master *mas = spi_controller_get_devdata(spi); 1186 int ret; 1187 1188 ret = geni_icc_enable(&mas->se); 1189 if (ret) 1190 return ret; 1191 1192 ret = geni_se_resources_on(&mas->se); 1193 if (ret) 1194 return ret; 1195 1196 return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz); 1197 } 1198 1199 static int __maybe_unused spi_geni_suspend(struct device *dev) 1200 { 1201 struct spi_controller *spi = dev_get_drvdata(dev); 1202 int ret; 1203 1204 ret = spi_controller_suspend(spi); 1205 if (ret) 1206 return ret; 1207 1208 ret = pm_runtime_force_suspend(dev); 1209 if (ret) 1210 spi_controller_resume(spi); 1211 1212 return ret; 1213 } 1214 1215 static int __maybe_unused spi_geni_resume(struct device *dev) 1216 { 1217 struct spi_controller *spi = dev_get_drvdata(dev); 1218 int ret; 1219 1220 ret = pm_runtime_force_resume(dev); 1221 if (ret) 1222 return ret; 1223 1224 ret = spi_controller_resume(spi); 1225 if (ret) 1226 pm_runtime_force_suspend(dev); 1227 1228 return ret; 1229 } 1230 1231 static const struct dev_pm_ops spi_geni_pm_ops = { 1232 SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend, 1233 spi_geni_runtime_resume, NULL) 1234 SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume) 1235 }; 1236 1237 static const struct of_device_id spi_geni_dt_match[] = { 1238 { .compatible = "qcom,geni-spi" }, 1239 {} 1240 }; 1241 MODULE_DEVICE_TABLE(of, spi_geni_dt_match); 1242 1243 static struct platform_driver spi_geni_driver = { 1244 .probe = spi_geni_probe, 1245 .driver = { 1246 .name = "geni_spi", 1247 .pm = &spi_geni_pm_ops, 1248 .of_match_table = spi_geni_dt_match, 1249 }, 1250 }; 1251 module_platform_driver(spi_geni_driver); 1252 1253 MODULE_DESCRIPTION("SPI driver for GENI based QUP cores"); 1254 MODULE_LICENSE("GPL v2"); 1255