xref: /linux/drivers/spi/spi-geni-qcom.c (revision 0969001569e403107c11561d497893a07394d691)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
3 
4 #include <linux/clk.h>
5 #include <linux/dmaengine.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/dma/qcom-gpi-dma.h>
8 #include <linux/interrupt.h>
9 #include <linux/io.h>
10 #include <linux/log2.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/pm_opp.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/soc/qcom/geni-se.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spinlock.h>
18 
19 /* SPI SE specific registers and respective register fields */
20 #define SE_SPI_CPHA		0x224
21 #define CPHA			BIT(0)
22 
23 #define SE_SPI_LOOPBACK		0x22c
24 #define LOOPBACK_ENABLE		0x1
25 #define NORMAL_MODE		0x0
26 #define LOOPBACK_MSK		GENMASK(1, 0)
27 
28 #define SE_SPI_CPOL		0x230
29 #define CPOL			BIT(2)
30 
31 #define SE_SPI_DEMUX_OUTPUT_INV	0x24c
32 #define CS_DEMUX_OUTPUT_INV_MSK	GENMASK(3, 0)
33 
34 #define SE_SPI_DEMUX_SEL	0x250
35 #define CS_DEMUX_OUTPUT_SEL	GENMASK(3, 0)
36 
37 #define SE_SPI_TRANS_CFG	0x25c
38 #define CS_TOGGLE		BIT(1)
39 
40 #define SE_SPI_WORD_LEN		0x268
41 #define WORD_LEN_MSK		GENMASK(9, 0)
42 #define MIN_WORD_LEN		4
43 
44 #define SE_SPI_TX_TRANS_LEN	0x26c
45 #define SE_SPI_RX_TRANS_LEN	0x270
46 #define TRANS_LEN_MSK		GENMASK(23, 0)
47 
48 #define SE_SPI_PRE_POST_CMD_DLY	0x274
49 
50 #define SE_SPI_DELAY_COUNTERS	0x278
51 #define SPI_INTER_WORDS_DELAY_MSK	GENMASK(9, 0)
52 #define SPI_CS_CLK_DELAY_MSK		GENMASK(19, 10)
53 #define SPI_CS_CLK_DELAY_SHFT		10
54 
55 /* M_CMD OP codes for SPI */
56 #define SPI_TX_ONLY		1
57 #define SPI_RX_ONLY		2
58 #define SPI_TX_RX		7
59 #define SPI_CS_ASSERT		8
60 #define SPI_CS_DEASSERT		9
61 #define SPI_SCK_ONLY		10
62 /* M_CMD params for SPI */
63 #define SPI_PRE_CMD_DELAY	BIT(0)
64 #define TIMESTAMP_BEFORE	BIT(1)
65 #define FRAGMENTATION		BIT(2)
66 #define TIMESTAMP_AFTER		BIT(3)
67 #define POST_CMD_DELAY		BIT(4)
68 
69 #define GSI_LOOPBACK_EN		BIT(0)
70 #define GSI_CS_TOGGLE		BIT(3)
71 #define GSI_CPHA		BIT(4)
72 #define GSI_CPOL		BIT(5)
73 
74 struct spi_geni_master {
75 	struct geni_se se;
76 	struct device *dev;
77 	u32 tx_fifo_depth;
78 	u32 fifo_width_bits;
79 	u32 tx_wm;
80 	u32 last_mode;
81 	unsigned long cur_speed_hz;
82 	unsigned long cur_sclk_hz;
83 	unsigned int cur_bits_per_word;
84 	unsigned int tx_rem_bytes;
85 	unsigned int rx_rem_bytes;
86 	const struct spi_transfer *cur_xfer;
87 	struct completion cs_done;
88 	struct completion cancel_done;
89 	struct completion abort_done;
90 	struct completion tx_reset_done;
91 	struct completion rx_reset_done;
92 	unsigned int oversampling;
93 	spinlock_t lock;
94 	int irq;
95 	bool cs_flag;
96 	bool abort_failed;
97 	struct dma_chan *tx;
98 	struct dma_chan *rx;
99 	int cur_xfer_mode;
100 };
101 
102 static int get_spi_clk_cfg(unsigned int speed_hz,
103 			struct spi_geni_master *mas,
104 			unsigned int *clk_idx,
105 			unsigned int *clk_div)
106 {
107 	unsigned long sclk_freq;
108 	unsigned int actual_hz;
109 	int ret;
110 
111 	ret = geni_se_clk_freq_match(&mas->se,
112 				speed_hz * mas->oversampling,
113 				clk_idx, &sclk_freq, false);
114 	if (ret) {
115 		dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n",
116 							ret, speed_hz);
117 		return ret;
118 	}
119 
120 	*clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz);
121 	actual_hz = sclk_freq / (mas->oversampling * *clk_div);
122 
123 	dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz,
124 				actual_hz, sclk_freq, *clk_idx, *clk_div);
125 	ret = dev_pm_opp_set_rate(mas->dev, sclk_freq);
126 	if (ret)
127 		dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret);
128 	else
129 		mas->cur_sclk_hz = sclk_freq;
130 
131 	return ret;
132 }
133 
134 static void handle_se_timeout(struct spi_master *spi,
135 				struct spi_message *msg)
136 {
137 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
138 	unsigned long time_left;
139 	struct geni_se *se = &mas->se;
140 	const struct spi_transfer *xfer;
141 
142 	spin_lock_irq(&mas->lock);
143 	reinit_completion(&mas->cancel_done);
144 	if (mas->cur_xfer_mode == GENI_SE_FIFO)
145 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
146 
147 	xfer = mas->cur_xfer;
148 	mas->cur_xfer = NULL;
149 	geni_se_cancel_m_cmd(se);
150 	spin_unlock_irq(&mas->lock);
151 
152 	time_left = wait_for_completion_timeout(&mas->cancel_done, HZ);
153 	if (time_left)
154 		goto unmap_if_dma;
155 
156 	spin_lock_irq(&mas->lock);
157 	reinit_completion(&mas->abort_done);
158 	geni_se_abort_m_cmd(se);
159 	spin_unlock_irq(&mas->lock);
160 
161 	time_left = wait_for_completion_timeout(&mas->abort_done, HZ);
162 	if (!time_left) {
163 		dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
164 
165 		/*
166 		 * No need for a lock since SPI core has a lock and we never
167 		 * access this from an interrupt.
168 		 */
169 		mas->abort_failed = true;
170 	}
171 
172 unmap_if_dma:
173 	if (mas->cur_xfer_mode == GENI_SE_DMA) {
174 		if (xfer) {
175 			if (xfer->tx_buf) {
176 				spin_lock_irq(&mas->lock);
177 				reinit_completion(&mas->tx_reset_done);
178 				writel(1, se->base + SE_DMA_TX_FSM_RST);
179 				spin_unlock_irq(&mas->lock);
180 				time_left = wait_for_completion_timeout(&mas->tx_reset_done, HZ);
181 				if (!time_left)
182 					dev_err(mas->dev, "DMA TX RESET failed\n");
183 			}
184 			if (xfer->rx_buf) {
185 				spin_lock_irq(&mas->lock);
186 				reinit_completion(&mas->rx_reset_done);
187 				writel(1, se->base + SE_DMA_RX_FSM_RST);
188 				spin_unlock_irq(&mas->lock);
189 				time_left = wait_for_completion_timeout(&mas->rx_reset_done, HZ);
190 				if (!time_left)
191 					dev_err(mas->dev, "DMA RX RESET failed\n");
192 			}
193 		} else {
194 			/*
195 			 * This can happen if a timeout happened and we had to wait
196 			 * for lock in this function because isr was holding the lock
197 			 * and handling transfer completion at that time.
198 			 */
199 			dev_warn(mas->dev, "Cancel/Abort on completed SPI transfer\n");
200 		}
201 	}
202 }
203 
204 static void handle_gpi_timeout(struct spi_master *spi, struct spi_message *msg)
205 {
206 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
207 
208 	dmaengine_terminate_sync(mas->tx);
209 	dmaengine_terminate_sync(mas->rx);
210 }
211 
212 static void spi_geni_handle_err(struct spi_master *spi, struct spi_message *msg)
213 {
214 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
215 
216 	switch (mas->cur_xfer_mode) {
217 	case GENI_SE_FIFO:
218 	case GENI_SE_DMA:
219 		handle_se_timeout(spi, msg);
220 		break;
221 	case GENI_GPI_DMA:
222 		handle_gpi_timeout(spi, msg);
223 		break;
224 	default:
225 		dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode);
226 	}
227 }
228 
229 static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas)
230 {
231 	struct geni_se *se = &mas->se;
232 	u32 m_irq, m_irq_en;
233 
234 	if (!mas->abort_failed)
235 		return false;
236 
237 	/*
238 	 * The only known case where a transfer times out and then a cancel
239 	 * times out then an abort times out is if something is blocking our
240 	 * interrupt handler from running.  Avoid starting any new transfers
241 	 * until that sorts itself out.
242 	 */
243 	spin_lock_irq(&mas->lock);
244 	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
245 	m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN);
246 	spin_unlock_irq(&mas->lock);
247 
248 	if (m_irq & m_irq_en) {
249 		dev_err(mas->dev, "Interrupts pending after abort: %#010x\n",
250 			m_irq & m_irq_en);
251 		return true;
252 	}
253 
254 	/*
255 	 * If we're here the problem resolved itself so no need to check more
256 	 * on future transfers.
257 	 */
258 	mas->abort_failed = false;
259 
260 	return false;
261 }
262 
263 static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
264 {
265 	struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
266 	struct spi_master *spi = dev_get_drvdata(mas->dev);
267 	struct geni_se *se = &mas->se;
268 	unsigned long time_left;
269 
270 	if (!(slv->mode & SPI_CS_HIGH))
271 		set_flag = !set_flag;
272 
273 	if (set_flag == mas->cs_flag)
274 		return;
275 
276 	pm_runtime_get_sync(mas->dev);
277 
278 	if (spi_geni_is_abort_still_pending(mas)) {
279 		dev_err(mas->dev, "Can't set chip select\n");
280 		goto exit;
281 	}
282 
283 	spin_lock_irq(&mas->lock);
284 	if (mas->cur_xfer) {
285 		dev_err(mas->dev, "Can't set CS when prev xfer running\n");
286 		spin_unlock_irq(&mas->lock);
287 		goto exit;
288 	}
289 
290 	mas->cs_flag = set_flag;
291 	/* set xfer_mode to FIFO to complete cs_done in isr */
292 	mas->cur_xfer_mode = GENI_SE_FIFO;
293 	geni_se_select_mode(se, mas->cur_xfer_mode);
294 
295 	reinit_completion(&mas->cs_done);
296 	if (set_flag)
297 		geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0);
298 	else
299 		geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
300 	spin_unlock_irq(&mas->lock);
301 
302 	time_left = wait_for_completion_timeout(&mas->cs_done, HZ);
303 	if (!time_left) {
304 		dev_warn(mas->dev, "Timeout setting chip select\n");
305 		handle_se_timeout(spi, NULL);
306 	}
307 
308 exit:
309 	pm_runtime_put(mas->dev);
310 }
311 
312 static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode,
313 					unsigned int bits_per_word)
314 {
315 	unsigned int pack_words;
316 	bool msb_first = (mode & SPI_LSB_FIRST) ? false : true;
317 	struct geni_se *se = &mas->se;
318 	u32 word_len;
319 
320 	/*
321 	 * If bits_per_word isn't a byte aligned value, set the packing to be
322 	 * 1 SPI word per FIFO word.
323 	 */
324 	if (!(mas->fifo_width_bits % bits_per_word))
325 		pack_words = mas->fifo_width_bits / bits_per_word;
326 	else
327 		pack_words = 1;
328 	geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first,
329 								true, true);
330 	word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK;
331 	writel(word_len, se->base + SE_SPI_WORD_LEN);
332 }
333 
334 static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas,
335 					unsigned long clk_hz)
336 {
337 	u32 clk_sel, m_clk_cfg, idx, div;
338 	struct geni_se *se = &mas->se;
339 	int ret;
340 
341 	if (clk_hz == mas->cur_speed_hz)
342 		return 0;
343 
344 	ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div);
345 	if (ret) {
346 		dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret);
347 		return ret;
348 	}
349 
350 	/*
351 	 * SPI core clock gets configured with the requested frequency
352 	 * or the frequency closer to the requested frequency.
353 	 * For that reason requested frequency is stored in the
354 	 * cur_speed_hz and referred in the consecutive transfer instead
355 	 * of calling clk_get_rate() API.
356 	 */
357 	mas->cur_speed_hz = clk_hz;
358 
359 	clk_sel = idx & CLK_SEL_MSK;
360 	m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
361 	writel(clk_sel, se->base + SE_GENI_CLK_SEL);
362 	writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG);
363 
364 	/* Set BW quota for CPU as driver supports FIFO mode only. */
365 	se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz);
366 	ret = geni_icc_set_bw(se);
367 	if (ret)
368 		return ret;
369 
370 	return 0;
371 }
372 
373 static int setup_fifo_params(struct spi_device *spi_slv,
374 					struct spi_master *spi)
375 {
376 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
377 	struct geni_se *se = &mas->se;
378 	u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0;
379 	u32 demux_sel;
380 
381 	if (mas->last_mode != spi_slv->mode) {
382 		if (spi_slv->mode & SPI_LOOP)
383 			loopback_cfg = LOOPBACK_ENABLE;
384 
385 		if (spi_slv->mode & SPI_CPOL)
386 			cpol = CPOL;
387 
388 		if (spi_slv->mode & SPI_CPHA)
389 			cpha = CPHA;
390 
391 		if (spi_slv->mode & SPI_CS_HIGH)
392 			demux_output_inv = BIT(spi_get_chipselect(spi_slv, 0));
393 
394 		demux_sel = spi_get_chipselect(spi_slv, 0);
395 		mas->cur_bits_per_word = spi_slv->bits_per_word;
396 
397 		spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word);
398 		writel(loopback_cfg, se->base + SE_SPI_LOOPBACK);
399 		writel(demux_sel, se->base + SE_SPI_DEMUX_SEL);
400 		writel(cpha, se->base + SE_SPI_CPHA);
401 		writel(cpol, se->base + SE_SPI_CPOL);
402 		writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV);
403 
404 		mas->last_mode = spi_slv->mode;
405 	}
406 
407 	return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz);
408 }
409 
410 static void
411 spi_gsi_callback_result(void *cb, const struct dmaengine_result *result)
412 {
413 	struct spi_master *spi = cb;
414 
415 	spi->cur_msg->status = -EIO;
416 	if (result->result != DMA_TRANS_NOERROR) {
417 		dev_err(&spi->dev, "DMA txn failed: %d\n", result->result);
418 		spi_finalize_current_transfer(spi);
419 		return;
420 	}
421 
422 	if (!result->residue) {
423 		spi->cur_msg->status = 0;
424 		dev_dbg(&spi->dev, "DMA txn completed\n");
425 	} else {
426 		dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue);
427 	}
428 
429 	spi_finalize_current_transfer(spi);
430 }
431 
432 static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas,
433 			  struct spi_device *spi_slv, struct spi_master *spi)
434 {
435 	unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
436 	struct dma_slave_config config = {};
437 	struct gpi_spi_config peripheral = {};
438 	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
439 	int ret;
440 
441 	config.peripheral_config = &peripheral;
442 	config.peripheral_size = sizeof(peripheral);
443 	peripheral.set_config = true;
444 
445 	if (xfer->bits_per_word != mas->cur_bits_per_word ||
446 	    xfer->speed_hz != mas->cur_speed_hz) {
447 		mas->cur_bits_per_word = xfer->bits_per_word;
448 		mas->cur_speed_hz = xfer->speed_hz;
449 	}
450 
451 	if (xfer->tx_buf && xfer->rx_buf) {
452 		peripheral.cmd = SPI_DUPLEX;
453 	} else if (xfer->tx_buf) {
454 		peripheral.cmd = SPI_TX;
455 		peripheral.rx_len = 0;
456 	} else if (xfer->rx_buf) {
457 		peripheral.cmd = SPI_RX;
458 		if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) {
459 			peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word);
460 		} else {
461 			int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1;
462 
463 			peripheral.rx_len = (xfer->len / bytes_per_word);
464 		}
465 	}
466 
467 	peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP);
468 	peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL);
469 	peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA);
470 	peripheral.cs = spi_get_chipselect(spi_slv, 0);
471 	peripheral.pack_en = true;
472 	peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN;
473 
474 	ret = get_spi_clk_cfg(mas->cur_speed_hz, mas,
475 			      &peripheral.clk_src, &peripheral.clk_div);
476 	if (ret) {
477 		dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret);
478 		return ret;
479 	}
480 
481 	if (!xfer->cs_change) {
482 		if (!list_is_last(&xfer->transfer_list, &spi->cur_msg->transfers))
483 			peripheral.fragmentation = FRAGMENTATION;
484 	}
485 
486 	if (peripheral.cmd & SPI_RX) {
487 		dmaengine_slave_config(mas->rx, &config);
488 		rx_desc = dmaengine_prep_slave_sg(mas->rx, xfer->rx_sg.sgl, xfer->rx_sg.nents,
489 						  DMA_DEV_TO_MEM, flags);
490 		if (!rx_desc) {
491 			dev_err(mas->dev, "Err setting up rx desc\n");
492 			return -EIO;
493 		}
494 	}
495 
496 	/*
497 	 * Prepare the TX always, even for RX or tx_buf being null, we would
498 	 * need TX to be prepared per GSI spec
499 	 */
500 	dmaengine_slave_config(mas->tx, &config);
501 	tx_desc = dmaengine_prep_slave_sg(mas->tx, xfer->tx_sg.sgl, xfer->tx_sg.nents,
502 					  DMA_MEM_TO_DEV, flags);
503 	if (!tx_desc) {
504 		dev_err(mas->dev, "Err setting up tx desc\n");
505 		return -EIO;
506 	}
507 
508 	tx_desc->callback_result = spi_gsi_callback_result;
509 	tx_desc->callback_param = spi;
510 
511 	if (peripheral.cmd & SPI_RX)
512 		dmaengine_submit(rx_desc);
513 	dmaengine_submit(tx_desc);
514 
515 	if (peripheral.cmd & SPI_RX)
516 		dma_async_issue_pending(mas->rx);
517 
518 	dma_async_issue_pending(mas->tx);
519 	return 1;
520 }
521 
522 static u32 get_xfer_len_in_words(struct spi_transfer *xfer,
523 				struct spi_geni_master *mas)
524 {
525 	u32 len;
526 
527 	if (!(mas->cur_bits_per_word % MIN_WORD_LEN))
528 		len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word;
529 	else
530 		len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1);
531 	len &= TRANS_LEN_MSK;
532 
533 	return len;
534 }
535 
536 static bool geni_can_dma(struct spi_controller *ctlr,
537 			 struct spi_device *slv, struct spi_transfer *xfer)
538 {
539 	struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
540 	u32 len, fifo_size;
541 
542 	if (mas->cur_xfer_mode == GENI_GPI_DMA)
543 		return true;
544 
545 	len = get_xfer_len_in_words(xfer, mas);
546 	fifo_size = mas->tx_fifo_depth * mas->fifo_width_bits / mas->cur_bits_per_word;
547 
548 	if (len > fifo_size)
549 		return true;
550 	else
551 		return false;
552 }
553 
554 static int spi_geni_prepare_message(struct spi_master *spi,
555 					struct spi_message *spi_msg)
556 {
557 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
558 	int ret;
559 
560 	switch (mas->cur_xfer_mode) {
561 	case GENI_SE_FIFO:
562 	case GENI_SE_DMA:
563 		if (spi_geni_is_abort_still_pending(mas))
564 			return -EBUSY;
565 		ret = setup_fifo_params(spi_msg->spi, spi);
566 		if (ret)
567 			dev_err(mas->dev, "Couldn't select mode %d\n", ret);
568 		return ret;
569 
570 	case GENI_GPI_DMA:
571 		/* nothing to do for GPI DMA */
572 		return 0;
573 	}
574 
575 	dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode);
576 	return -EINVAL;
577 }
578 
579 static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas)
580 {
581 	int ret;
582 
583 	mas->tx = dma_request_chan(mas->dev, "tx");
584 	if (IS_ERR(mas->tx)) {
585 		ret = dev_err_probe(mas->dev, PTR_ERR(mas->tx),
586 				    "Failed to get tx DMA ch\n");
587 		goto err_tx;
588 	}
589 
590 	mas->rx = dma_request_chan(mas->dev, "rx");
591 	if (IS_ERR(mas->rx)) {
592 		ret = dev_err_probe(mas->dev, PTR_ERR(mas->rx),
593 				    "Failed to get rx DMA ch\n");
594 		goto err_rx;
595 	}
596 
597 	return 0;
598 
599 err_rx:
600 	mas->rx = NULL;
601 	dma_release_channel(mas->tx);
602 err_tx:
603 	mas->tx = NULL;
604 	return ret;
605 }
606 
607 static void spi_geni_release_dma_chan(struct spi_geni_master *mas)
608 {
609 	if (mas->rx) {
610 		dma_release_channel(mas->rx);
611 		mas->rx = NULL;
612 	}
613 
614 	if (mas->tx) {
615 		dma_release_channel(mas->tx);
616 		mas->tx = NULL;
617 	}
618 }
619 
620 static int spi_geni_init(struct spi_geni_master *mas)
621 {
622 	struct geni_se *se = &mas->se;
623 	unsigned int proto, major, minor, ver;
624 	u32 spi_tx_cfg, fifo_disable;
625 	int ret = -ENXIO;
626 
627 	pm_runtime_get_sync(mas->dev);
628 
629 	proto = geni_se_read_proto(se);
630 	if (proto != GENI_SE_SPI) {
631 		dev_err(mas->dev, "Invalid proto %d\n", proto);
632 		goto out_pm;
633 	}
634 	mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se);
635 
636 	/* Width of Tx and Rx FIFO is same */
637 	mas->fifo_width_bits = geni_se_get_tx_fifo_width(se);
638 
639 	/*
640 	 * Hardware programming guide suggests to configure
641 	 * RX FIFO RFR level to fifo_depth-2.
642 	 */
643 	geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2);
644 	/* Transmit an entire FIFO worth of data per IRQ */
645 	mas->tx_wm = 1;
646 	ver = geni_se_get_qup_hw_version(se);
647 	major = GENI_SE_VERSION_MAJOR(ver);
648 	minor = GENI_SE_VERSION_MINOR(ver);
649 
650 	if (major == 1 && minor == 0)
651 		mas->oversampling = 2;
652 	else
653 		mas->oversampling = 1;
654 
655 	fifo_disable = readl(se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE;
656 	switch (fifo_disable) {
657 	case 1:
658 		ret = spi_geni_grab_gpi_chan(mas);
659 		if (!ret) { /* success case */
660 			mas->cur_xfer_mode = GENI_GPI_DMA;
661 			geni_se_select_mode(se, GENI_GPI_DMA);
662 			dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n");
663 			break;
664 		} else if (ret == -EPROBE_DEFER) {
665 			goto out_pm;
666 		}
667 		/*
668 		 * in case of failure to get gpi dma channel, we can still do the
669 		 * FIFO mode, so fallthrough
670 		 */
671 		dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n");
672 		fallthrough;
673 
674 	case 0:
675 		mas->cur_xfer_mode = GENI_SE_FIFO;
676 		geni_se_select_mode(se, GENI_SE_FIFO);
677 		ret = 0;
678 		break;
679 	}
680 
681 	/* We always control CS manually */
682 	spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG);
683 	spi_tx_cfg &= ~CS_TOGGLE;
684 	writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG);
685 
686 out_pm:
687 	pm_runtime_put(mas->dev);
688 	return ret;
689 }
690 
691 static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas)
692 {
693 	/*
694 	 * Calculate how many bytes we'll put in each FIFO word.  If the
695 	 * transfer words don't pack cleanly into a FIFO word we'll just put
696 	 * one transfer word in each FIFO word.  If they do pack we'll pack 'em.
697 	 */
698 	if (mas->fifo_width_bits % mas->cur_bits_per_word)
699 		return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word,
700 						       BITS_PER_BYTE));
701 
702 	return mas->fifo_width_bits / BITS_PER_BYTE;
703 }
704 
705 static bool geni_spi_handle_tx(struct spi_geni_master *mas)
706 {
707 	struct geni_se *se = &mas->se;
708 	unsigned int max_bytes;
709 	const u8 *tx_buf;
710 	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
711 	unsigned int i = 0;
712 
713 	/* Stop the watermark IRQ if nothing to send */
714 	if (!mas->cur_xfer) {
715 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
716 		return false;
717 	}
718 
719 	max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word;
720 	if (mas->tx_rem_bytes < max_bytes)
721 		max_bytes = mas->tx_rem_bytes;
722 
723 	tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes;
724 	while (i < max_bytes) {
725 		unsigned int j;
726 		unsigned int bytes_to_write;
727 		u32 fifo_word = 0;
728 		u8 *fifo_byte = (u8 *)&fifo_word;
729 
730 		bytes_to_write = min(bytes_per_fifo_word, max_bytes - i);
731 		for (j = 0; j < bytes_to_write; j++)
732 			fifo_byte[j] = tx_buf[i++];
733 		iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1);
734 	}
735 	mas->tx_rem_bytes -= max_bytes;
736 	if (!mas->tx_rem_bytes) {
737 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
738 		return false;
739 	}
740 	return true;
741 }
742 
743 static void geni_spi_handle_rx(struct spi_geni_master *mas)
744 {
745 	struct geni_se *se = &mas->se;
746 	u32 rx_fifo_status;
747 	unsigned int rx_bytes;
748 	unsigned int rx_last_byte_valid;
749 	u8 *rx_buf;
750 	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
751 	unsigned int i = 0;
752 
753 	rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS);
754 	rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word;
755 	if (rx_fifo_status & RX_LAST) {
756 		rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK;
757 		rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT;
758 		if (rx_last_byte_valid && rx_last_byte_valid < 4)
759 			rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid;
760 	}
761 
762 	/* Clear out the FIFO and bail if nowhere to put it */
763 	if (!mas->cur_xfer) {
764 		for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++)
765 			readl(se->base + SE_GENI_RX_FIFOn);
766 		return;
767 	}
768 
769 	if (mas->rx_rem_bytes < rx_bytes)
770 		rx_bytes = mas->rx_rem_bytes;
771 
772 	rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes;
773 	while (i < rx_bytes) {
774 		u32 fifo_word = 0;
775 		u8 *fifo_byte = (u8 *)&fifo_word;
776 		unsigned int bytes_to_read;
777 		unsigned int j;
778 
779 		bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i);
780 		ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1);
781 		for (j = 0; j < bytes_to_read; j++)
782 			rx_buf[i++] = fifo_byte[j];
783 	}
784 	mas->rx_rem_bytes -= rx_bytes;
785 }
786 
787 static int setup_se_xfer(struct spi_transfer *xfer,
788 				struct spi_geni_master *mas,
789 				u16 mode, struct spi_master *spi)
790 {
791 	u32 m_cmd = 0;
792 	u32 len;
793 	struct geni_se *se = &mas->se;
794 	int ret;
795 
796 	/*
797 	 * Ensure that our interrupt handler isn't still running from some
798 	 * prior command before we start messing with the hardware behind
799 	 * its back.  We don't need to _keep_ the lock here since we're only
800 	 * worried about racing with out interrupt handler.  The SPI core
801 	 * already handles making sure that we're not trying to do two
802 	 * transfers at once or setting a chip select and doing a transfer
803 	 * concurrently.
804 	 *
805 	 * NOTE: we actually _can't_ hold the lock here because possibly we
806 	 * might call clk_set_rate() which needs to be able to sleep.
807 	 */
808 	spin_lock_irq(&mas->lock);
809 	spin_unlock_irq(&mas->lock);
810 
811 	if (xfer->bits_per_word != mas->cur_bits_per_word) {
812 		spi_setup_word_len(mas, mode, xfer->bits_per_word);
813 		mas->cur_bits_per_word = xfer->bits_per_word;
814 	}
815 
816 	/* Speed and bits per word can be overridden per transfer */
817 	ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz);
818 	if (ret)
819 		return ret;
820 
821 	mas->tx_rem_bytes = 0;
822 	mas->rx_rem_bytes = 0;
823 
824 	len = get_xfer_len_in_words(xfer, mas);
825 
826 	mas->cur_xfer = xfer;
827 	if (xfer->tx_buf) {
828 		m_cmd |= SPI_TX_ONLY;
829 		mas->tx_rem_bytes = xfer->len;
830 		writel(len, se->base + SE_SPI_TX_TRANS_LEN);
831 	}
832 
833 	if (xfer->rx_buf) {
834 		m_cmd |= SPI_RX_ONLY;
835 		writel(len, se->base + SE_SPI_RX_TRANS_LEN);
836 		mas->rx_rem_bytes = xfer->len;
837 	}
838 
839 	/*
840 	 * Select DMA mode if sgt are present; and with only 1 entry
841 	 * This is not a serious limitation because the xfer buffers are
842 	 * expected to fit into in 1 entry almost always, and if any
843 	 * doesn't for any reason we fall back to FIFO mode anyway
844 	 */
845 	if (!xfer->tx_sg.nents && !xfer->rx_sg.nents)
846 		mas->cur_xfer_mode = GENI_SE_FIFO;
847 	else if (xfer->tx_sg.nents > 1 || xfer->rx_sg.nents > 1) {
848 		dev_warn_once(mas->dev, "Doing FIFO, cannot handle tx_nents-%d, rx_nents-%d\n",
849 			xfer->tx_sg.nents, xfer->rx_sg.nents);
850 		mas->cur_xfer_mode = GENI_SE_FIFO;
851 	} else
852 		mas->cur_xfer_mode = GENI_SE_DMA;
853 	geni_se_select_mode(se, mas->cur_xfer_mode);
854 
855 	/*
856 	 * Lock around right before we start the transfer since our
857 	 * interrupt could come in at any time now.
858 	 */
859 	spin_lock_irq(&mas->lock);
860 	geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION);
861 
862 	if (mas->cur_xfer_mode == GENI_SE_DMA) {
863 		if (m_cmd & SPI_RX_ONLY)
864 			geni_se_rx_init_dma(se, sg_dma_address(xfer->rx_sg.sgl),
865 				sg_dma_len(xfer->rx_sg.sgl));
866 		if (m_cmd & SPI_TX_ONLY)
867 			geni_se_tx_init_dma(se, sg_dma_address(xfer->tx_sg.sgl),
868 				sg_dma_len(xfer->tx_sg.sgl));
869 	} else if (m_cmd & SPI_TX_ONLY) {
870 		if (geni_spi_handle_tx(mas))
871 			writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG);
872 	}
873 
874 	spin_unlock_irq(&mas->lock);
875 	return ret;
876 }
877 
878 static int spi_geni_transfer_one(struct spi_master *spi,
879 				struct spi_device *slv,
880 				struct spi_transfer *xfer)
881 {
882 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
883 	int ret;
884 
885 	if (spi_geni_is_abort_still_pending(mas))
886 		return -EBUSY;
887 
888 	/* Terminate and return success for 0 byte length transfer */
889 	if (!xfer->len)
890 		return 0;
891 
892 	if (mas->cur_xfer_mode == GENI_SE_FIFO || mas->cur_xfer_mode == GENI_SE_DMA) {
893 		ret = setup_se_xfer(xfer, mas, slv->mode, spi);
894 		/* SPI framework expects +ve ret code to wait for transfer complete */
895 		if (!ret)
896 			ret = 1;
897 		return ret;
898 	}
899 	return setup_gsi_xfer(xfer, mas, slv, spi);
900 }
901 
902 static irqreturn_t geni_spi_isr(int irq, void *data)
903 {
904 	struct spi_master *spi = data;
905 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
906 	struct geni_se *se = &mas->se;
907 	u32 m_irq;
908 
909 	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
910 	if (!m_irq)
911 		return IRQ_NONE;
912 
913 	if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |
914 		     M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN |
915 		     M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN))
916 		dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq);
917 
918 	spin_lock(&mas->lock);
919 
920 	if (mas->cur_xfer_mode == GENI_SE_FIFO) {
921 		if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
922 			geni_spi_handle_rx(mas);
923 
924 		if (m_irq & M_TX_FIFO_WATERMARK_EN)
925 			geni_spi_handle_tx(mas);
926 
927 		if (m_irq & M_CMD_DONE_EN) {
928 			if (mas->cur_xfer) {
929 				spi_finalize_current_transfer(spi);
930 				mas->cur_xfer = NULL;
931 				/*
932 				 * If this happens, then a CMD_DONE came before all the
933 				 * Tx buffer bytes were sent out. This is unusual, log
934 				 * this condition and disable the WM interrupt to
935 				 * prevent the system from stalling due an interrupt
936 				 * storm.
937 				 *
938 				 * If this happens when all Rx bytes haven't been
939 				 * received, log the condition. The only known time
940 				 * this can happen is if bits_per_word != 8 and some
941 				 * registers that expect xfer lengths in num spi_words
942 				 * weren't written correctly.
943 				 */
944 				if (mas->tx_rem_bytes) {
945 					writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
946 					dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
947 						mas->tx_rem_bytes, mas->cur_bits_per_word);
948 				}
949 				if (mas->rx_rem_bytes)
950 					dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
951 						mas->rx_rem_bytes, mas->cur_bits_per_word);
952 			} else {
953 				complete(&mas->cs_done);
954 			}
955 		}
956 	} else if (mas->cur_xfer_mode == GENI_SE_DMA) {
957 		const struct spi_transfer *xfer = mas->cur_xfer;
958 		u32 dma_tx_status = readl_relaxed(se->base + SE_DMA_TX_IRQ_STAT);
959 		u32 dma_rx_status = readl_relaxed(se->base + SE_DMA_RX_IRQ_STAT);
960 
961 		if (dma_tx_status)
962 			writel(dma_tx_status, se->base + SE_DMA_TX_IRQ_CLR);
963 		if (dma_rx_status)
964 			writel(dma_rx_status, se->base + SE_DMA_RX_IRQ_CLR);
965 		if (dma_tx_status & TX_DMA_DONE)
966 			mas->tx_rem_bytes = 0;
967 		if (dma_rx_status & RX_DMA_DONE)
968 			mas->rx_rem_bytes = 0;
969 		if (dma_tx_status & TX_RESET_DONE)
970 			complete(&mas->tx_reset_done);
971 		if (dma_rx_status & RX_RESET_DONE)
972 			complete(&mas->rx_reset_done);
973 		if (!mas->tx_rem_bytes && !mas->rx_rem_bytes && xfer) {
974 			spi_finalize_current_transfer(spi);
975 			mas->cur_xfer = NULL;
976 		}
977 	}
978 
979 	if (m_irq & M_CMD_CANCEL_EN)
980 		complete(&mas->cancel_done);
981 	if (m_irq & M_CMD_ABORT_EN)
982 		complete(&mas->abort_done);
983 
984 	/*
985 	 * It's safe or a good idea to Ack all of our interrupts at the end
986 	 * of the function. Specifically:
987 	 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
988 	 *   clearing Acks. Clearing at the end relies on nobody else having
989 	 *   started a new transfer yet or else we could be clearing _their_
990 	 *   done bit, but everyone grabs the spinlock before starting a new
991 	 *   transfer.
992 	 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
993 	 *   to be "latched level" interrupts so it's important to clear them
994 	 *   _after_ you've handled the condition and always safe to do so
995 	 *   since they'll re-assert if they're still happening.
996 	 */
997 	writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
998 
999 	spin_unlock(&mas->lock);
1000 
1001 	return IRQ_HANDLED;
1002 }
1003 
1004 static int spi_geni_probe(struct platform_device *pdev)
1005 {
1006 	int ret, irq;
1007 	struct spi_master *spi;
1008 	struct spi_geni_master *mas;
1009 	void __iomem *base;
1010 	struct clk *clk;
1011 	struct device *dev = &pdev->dev;
1012 
1013 	irq = platform_get_irq(pdev, 0);
1014 	if (irq < 0)
1015 		return irq;
1016 
1017 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
1018 	if (ret)
1019 		return dev_err_probe(dev, ret, "could not set DMA mask\n");
1020 
1021 	base = devm_platform_ioremap_resource(pdev, 0);
1022 	if (IS_ERR(base))
1023 		return PTR_ERR(base);
1024 
1025 	clk = devm_clk_get(dev, "se");
1026 	if (IS_ERR(clk))
1027 		return PTR_ERR(clk);
1028 
1029 	spi = devm_spi_alloc_master(dev, sizeof(*mas));
1030 	if (!spi)
1031 		return -ENOMEM;
1032 
1033 	platform_set_drvdata(pdev, spi);
1034 	mas = spi_master_get_devdata(spi);
1035 	mas->irq = irq;
1036 	mas->dev = dev;
1037 	mas->se.dev = dev;
1038 	mas->se.wrapper = dev_get_drvdata(dev->parent);
1039 	mas->se.base = base;
1040 	mas->se.clk = clk;
1041 
1042 	ret = devm_pm_opp_set_clkname(&pdev->dev, "se");
1043 	if (ret)
1044 		return ret;
1045 	/* OPP table is optional */
1046 	ret = devm_pm_opp_of_add_table(&pdev->dev);
1047 	if (ret && ret != -ENODEV) {
1048 		dev_err(&pdev->dev, "invalid OPP table in device tree\n");
1049 		return ret;
1050 	}
1051 
1052 	spi->bus_num = -1;
1053 	spi->dev.of_node = dev->of_node;
1054 	spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
1055 	spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1056 	spi->num_chipselect = 4;
1057 	spi->max_speed_hz = 50000000;
1058 	spi->max_dma_len = 0xffff0; /* 24 bits for tx/rx dma length */
1059 	spi->prepare_message = spi_geni_prepare_message;
1060 	spi->transfer_one = spi_geni_transfer_one;
1061 	spi->can_dma = geni_can_dma;
1062 	spi->dma_map_dev = dev->parent;
1063 	spi->auto_runtime_pm = true;
1064 	spi->handle_err = spi_geni_handle_err;
1065 	spi->use_gpio_descriptors = true;
1066 
1067 	init_completion(&mas->cs_done);
1068 	init_completion(&mas->cancel_done);
1069 	init_completion(&mas->abort_done);
1070 	init_completion(&mas->tx_reset_done);
1071 	init_completion(&mas->rx_reset_done);
1072 	spin_lock_init(&mas->lock);
1073 	pm_runtime_use_autosuspend(&pdev->dev);
1074 	pm_runtime_set_autosuspend_delay(&pdev->dev, 250);
1075 	pm_runtime_enable(dev);
1076 
1077 	ret = geni_icc_get(&mas->se, NULL);
1078 	if (ret)
1079 		goto spi_geni_probe_runtime_disable;
1080 	/* Set the bus quota to a reasonable value for register access */
1081 	mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ);
1082 	mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW;
1083 
1084 	ret = geni_icc_set_bw(&mas->se);
1085 	if (ret)
1086 		goto spi_geni_probe_runtime_disable;
1087 
1088 	ret = spi_geni_init(mas);
1089 	if (ret)
1090 		goto spi_geni_probe_runtime_disable;
1091 
1092 	/*
1093 	 * check the mode supported and set_cs for fifo mode only
1094 	 * for dma (gsi) mode, the gsi will set cs based on params passed in
1095 	 * TRE
1096 	 */
1097 	if (mas->cur_xfer_mode == GENI_SE_FIFO)
1098 		spi->set_cs = spi_geni_set_cs;
1099 
1100 	/*
1101 	 * TX is required per GSI spec, see setup_gsi_xfer().
1102 	 */
1103 	if (mas->cur_xfer_mode == GENI_GPI_DMA)
1104 		spi->flags = SPI_CONTROLLER_MUST_TX;
1105 
1106 	ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi);
1107 	if (ret)
1108 		goto spi_geni_release_dma;
1109 
1110 	ret = spi_register_master(spi);
1111 	if (ret)
1112 		goto spi_geni_probe_free_irq;
1113 
1114 	return 0;
1115 spi_geni_probe_free_irq:
1116 	free_irq(mas->irq, spi);
1117 spi_geni_release_dma:
1118 	spi_geni_release_dma_chan(mas);
1119 spi_geni_probe_runtime_disable:
1120 	pm_runtime_disable(dev);
1121 	return ret;
1122 }
1123 
1124 static void spi_geni_remove(struct platform_device *pdev)
1125 {
1126 	struct spi_master *spi = platform_get_drvdata(pdev);
1127 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
1128 
1129 	/* Unregister _before_ disabling pm_runtime() so we stop transfers */
1130 	spi_unregister_master(spi);
1131 
1132 	spi_geni_release_dma_chan(mas);
1133 
1134 	free_irq(mas->irq, spi);
1135 	pm_runtime_disable(&pdev->dev);
1136 }
1137 
1138 static int __maybe_unused spi_geni_runtime_suspend(struct device *dev)
1139 {
1140 	struct spi_master *spi = dev_get_drvdata(dev);
1141 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
1142 	int ret;
1143 
1144 	/* Drop the performance state vote */
1145 	dev_pm_opp_set_rate(dev, 0);
1146 
1147 	ret = geni_se_resources_off(&mas->se);
1148 	if (ret)
1149 		return ret;
1150 
1151 	return geni_icc_disable(&mas->se);
1152 }
1153 
1154 static int __maybe_unused spi_geni_runtime_resume(struct device *dev)
1155 {
1156 	struct spi_master *spi = dev_get_drvdata(dev);
1157 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
1158 	int ret;
1159 
1160 	ret = geni_icc_enable(&mas->se);
1161 	if (ret)
1162 		return ret;
1163 
1164 	ret = geni_se_resources_on(&mas->se);
1165 	if (ret)
1166 		return ret;
1167 
1168 	return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz);
1169 }
1170 
1171 static int __maybe_unused spi_geni_suspend(struct device *dev)
1172 {
1173 	struct spi_master *spi = dev_get_drvdata(dev);
1174 	int ret;
1175 
1176 	ret = spi_master_suspend(spi);
1177 	if (ret)
1178 		return ret;
1179 
1180 	ret = pm_runtime_force_suspend(dev);
1181 	if (ret)
1182 		spi_master_resume(spi);
1183 
1184 	return ret;
1185 }
1186 
1187 static int __maybe_unused spi_geni_resume(struct device *dev)
1188 {
1189 	struct spi_master *spi = dev_get_drvdata(dev);
1190 	int ret;
1191 
1192 	ret = pm_runtime_force_resume(dev);
1193 	if (ret)
1194 		return ret;
1195 
1196 	ret = spi_master_resume(spi);
1197 	if (ret)
1198 		pm_runtime_force_suspend(dev);
1199 
1200 	return ret;
1201 }
1202 
1203 static const struct dev_pm_ops spi_geni_pm_ops = {
1204 	SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend,
1205 					spi_geni_runtime_resume, NULL)
1206 	SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume)
1207 };
1208 
1209 static const struct of_device_id spi_geni_dt_match[] = {
1210 	{ .compatible = "qcom,geni-spi" },
1211 	{}
1212 };
1213 MODULE_DEVICE_TABLE(of, spi_geni_dt_match);
1214 
1215 static struct platform_driver spi_geni_driver = {
1216 	.probe  = spi_geni_probe,
1217 	.remove_new = spi_geni_remove,
1218 	.driver = {
1219 		.name = "geni_spi",
1220 		.pm = &spi_geni_pm_ops,
1221 		.of_match_table = spi_geni_dt_match,
1222 	},
1223 };
1224 module_platform_driver(spi_geni_driver);
1225 
1226 MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
1227 MODULE_LICENSE("GPL v2");
1228