1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Freescale eSPI controller driver. 4 * 5 * Copyright 2010 Freescale Semiconductor, Inc. 6 */ 7 #include <linux/delay.h> 8 #include <linux/err.h> 9 #include <linux/fsl_devices.h> 10 #include <linux/interrupt.h> 11 #include <linux/module.h> 12 #include <linux/mm.h> 13 #include <linux/of.h> 14 #include <linux/of_address.h> 15 #include <linux/of_irq.h> 16 #include <linux/of_platform.h> 17 #include <linux/platform_device.h> 18 #include <linux/spi/spi.h> 19 #include <linux/pm_runtime.h> 20 #include <sysdev/fsl_soc.h> 21 22 /* eSPI Controller registers */ 23 #define ESPI_SPMODE 0x00 /* eSPI mode register */ 24 #define ESPI_SPIE 0x04 /* eSPI event register */ 25 #define ESPI_SPIM 0x08 /* eSPI mask register */ 26 #define ESPI_SPCOM 0x0c /* eSPI command register */ 27 #define ESPI_SPITF 0x10 /* eSPI transmit FIFO access register*/ 28 #define ESPI_SPIRF 0x14 /* eSPI receive FIFO access register*/ 29 #define ESPI_SPMODE0 0x20 /* eSPI cs0 mode register */ 30 31 #define ESPI_SPMODEx(x) (ESPI_SPMODE0 + (x) * 4) 32 33 /* eSPI Controller mode register definitions */ 34 #define SPMODE_ENABLE BIT(31) 35 #define SPMODE_LOOP BIT(30) 36 #define SPMODE_TXTHR(x) ((x) << 8) 37 #define SPMODE_RXTHR(x) ((x) << 0) 38 39 /* eSPI Controller CS mode register definitions */ 40 #define CSMODE_CI_INACTIVEHIGH BIT(31) 41 #define CSMODE_CP_BEGIN_EDGECLK BIT(30) 42 #define CSMODE_REV BIT(29) 43 #define CSMODE_DIV16 BIT(28) 44 #define CSMODE_PM(x) ((x) << 24) 45 #define CSMODE_POL_1 BIT(20) 46 #define CSMODE_LEN(x) ((x) << 16) 47 #define CSMODE_BEF(x) ((x) << 12) 48 #define CSMODE_AFT(x) ((x) << 8) 49 #define CSMODE_CG(x) ((x) << 3) 50 51 #define FSL_ESPI_FIFO_SIZE 32 52 #define FSL_ESPI_RXTHR 15 53 54 /* Default mode/csmode for eSPI controller */ 55 #define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR)) 56 #define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \ 57 | CSMODE_AFT(0) | CSMODE_CG(1)) 58 59 /* SPIE register values */ 60 #define SPIE_RXCNT(reg) ((reg >> 24) & 0x3F) 61 #define SPIE_TXCNT(reg) ((reg >> 16) & 0x3F) 62 #define SPIE_TXE BIT(15) /* TX FIFO empty */ 63 #define SPIE_DON BIT(14) /* TX done */ 64 #define SPIE_RXT BIT(13) /* RX FIFO threshold */ 65 #define SPIE_RXF BIT(12) /* RX FIFO full */ 66 #define SPIE_TXT BIT(11) /* TX FIFO threshold*/ 67 #define SPIE_RNE BIT(9) /* RX FIFO not empty */ 68 #define SPIE_TNF BIT(8) /* TX FIFO not full */ 69 70 /* SPIM register values */ 71 #define SPIM_TXE BIT(15) /* TX FIFO empty */ 72 #define SPIM_DON BIT(14) /* TX done */ 73 #define SPIM_RXT BIT(13) /* RX FIFO threshold */ 74 #define SPIM_RXF BIT(12) /* RX FIFO full */ 75 #define SPIM_TXT BIT(11) /* TX FIFO threshold*/ 76 #define SPIM_RNE BIT(9) /* RX FIFO not empty */ 77 #define SPIM_TNF BIT(8) /* TX FIFO not full */ 78 79 /* SPCOM register values */ 80 #define SPCOM_CS(x) ((x) << 30) 81 #define SPCOM_DO BIT(28) /* Dual output */ 82 #define SPCOM_TO BIT(27) /* TX only */ 83 #define SPCOM_RXSKIP(x) ((x) << 16) 84 #define SPCOM_TRANLEN(x) ((x) << 0) 85 86 #define SPCOM_TRANLEN_MAX 0x10000 /* Max transaction length */ 87 88 #define AUTOSUSPEND_TIMEOUT 2000 89 90 struct fsl_espi { 91 struct device *dev; 92 void __iomem *reg_base; 93 94 struct list_head *m_transfers; 95 struct spi_transfer *tx_t; 96 unsigned int tx_pos; 97 bool tx_done; 98 struct spi_transfer *rx_t; 99 unsigned int rx_pos; 100 bool rx_done; 101 102 bool swab; 103 unsigned int rxskip; 104 105 spinlock_t lock; 106 107 u32 spibrg; /* SPIBRG input clock */ 108 109 struct completion done; 110 }; 111 112 struct fsl_espi_cs { 113 u32 hw_mode; 114 }; 115 116 static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset) 117 { 118 return ioread32be(espi->reg_base + offset); 119 } 120 121 static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset) 122 { 123 return ioread16be(espi->reg_base + offset); 124 } 125 126 static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset) 127 { 128 return ioread8(espi->reg_base + offset); 129 } 130 131 static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset, 132 u32 val) 133 { 134 iowrite32be(val, espi->reg_base + offset); 135 } 136 137 static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset, 138 u16 val) 139 { 140 iowrite16be(val, espi->reg_base + offset); 141 } 142 143 static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset, 144 u8 val) 145 { 146 iowrite8(val, espi->reg_base + offset); 147 } 148 149 static int fsl_espi_check_message(struct spi_message *m) 150 { 151 struct fsl_espi *espi = spi_controller_get_devdata(m->spi->controller); 152 struct spi_transfer *t, *first; 153 154 if (m->frame_length > SPCOM_TRANLEN_MAX) { 155 dev_err(espi->dev, "message too long, size is %u bytes\n", 156 m->frame_length); 157 return -EMSGSIZE; 158 } 159 160 first = list_first_entry(&m->transfers, struct spi_transfer, 161 transfer_list); 162 163 list_for_each_entry(t, &m->transfers, transfer_list) { 164 if (first->bits_per_word != t->bits_per_word || 165 first->speed_hz != t->speed_hz) { 166 dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n"); 167 return -EINVAL; 168 } 169 } 170 171 /* ESPI supports MSB-first transfers for word size 8 / 16 only */ 172 if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 && 173 first->bits_per_word != 16) { 174 dev_err(espi->dev, 175 "MSB-first transfer not supported for wordsize %u\n", 176 first->bits_per_word); 177 return -EINVAL; 178 } 179 180 return 0; 181 } 182 183 static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m) 184 { 185 struct spi_transfer *t; 186 unsigned int i = 0, rxskip = 0; 187 188 /* 189 * prerequisites for ESPI rxskip mode: 190 * - message has two transfers 191 * - first transfer is a write and second is a read 192 * 193 * In addition the current low-level transfer mechanism requires 194 * that the rxskip bytes fit into the TX FIFO. Else the transfer 195 * would hang because after the first FSL_ESPI_FIFO_SIZE bytes 196 * the TX FIFO isn't re-filled. 197 */ 198 list_for_each_entry(t, &m->transfers, transfer_list) { 199 if (i == 0) { 200 if (!t->tx_buf || t->rx_buf || 201 t->len > FSL_ESPI_FIFO_SIZE) 202 return 0; 203 rxskip = t->len; 204 } else if (i == 1) { 205 if (t->tx_buf || !t->rx_buf) 206 return 0; 207 } 208 i++; 209 } 210 211 return i == 2 ? rxskip : 0; 212 } 213 214 static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events) 215 { 216 u32 tx_fifo_avail; 217 unsigned int tx_left; 218 const void *tx_buf; 219 220 /* if events is zero transfer has not started and tx fifo is empty */ 221 tx_fifo_avail = events ? SPIE_TXCNT(events) : FSL_ESPI_FIFO_SIZE; 222 start: 223 tx_left = espi->tx_t->len - espi->tx_pos; 224 tx_buf = espi->tx_t->tx_buf; 225 while (tx_fifo_avail >= min(4U, tx_left) && tx_left) { 226 if (tx_left >= 4) { 227 if (!tx_buf) 228 fsl_espi_write_reg(espi, ESPI_SPITF, 0); 229 else if (espi->swab) 230 fsl_espi_write_reg(espi, ESPI_SPITF, 231 swahb32p(tx_buf + espi->tx_pos)); 232 else 233 fsl_espi_write_reg(espi, ESPI_SPITF, 234 *(u32 *)(tx_buf + espi->tx_pos)); 235 espi->tx_pos += 4; 236 tx_left -= 4; 237 tx_fifo_avail -= 4; 238 } else if (tx_left >= 2 && tx_buf && espi->swab) { 239 fsl_espi_write_reg16(espi, ESPI_SPITF, 240 swab16p(tx_buf + espi->tx_pos)); 241 espi->tx_pos += 2; 242 tx_left -= 2; 243 tx_fifo_avail -= 2; 244 } else { 245 if (!tx_buf) 246 fsl_espi_write_reg8(espi, ESPI_SPITF, 0); 247 else 248 fsl_espi_write_reg8(espi, ESPI_SPITF, 249 *(u8 *)(tx_buf + espi->tx_pos)); 250 espi->tx_pos += 1; 251 tx_left -= 1; 252 tx_fifo_avail -= 1; 253 } 254 } 255 256 if (!tx_left) { 257 /* Last transfer finished, in rxskip mode only one is needed */ 258 if (list_is_last(&espi->tx_t->transfer_list, 259 espi->m_transfers) || espi->rxskip) { 260 espi->tx_done = true; 261 return; 262 } 263 espi->tx_t = list_next_entry(espi->tx_t, transfer_list); 264 espi->tx_pos = 0; 265 /* continue with next transfer if tx fifo is not full */ 266 if (tx_fifo_avail) 267 goto start; 268 } 269 } 270 271 static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events) 272 { 273 u32 rx_fifo_avail = SPIE_RXCNT(events); 274 unsigned int rx_left; 275 void *rx_buf; 276 277 start: 278 rx_left = espi->rx_t->len - espi->rx_pos; 279 rx_buf = espi->rx_t->rx_buf; 280 while (rx_fifo_avail >= min(4U, rx_left) && rx_left) { 281 if (rx_left >= 4) { 282 u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF); 283 284 if (rx_buf && espi->swab) 285 *(u32 *)(rx_buf + espi->rx_pos) = swahb32(val); 286 else if (rx_buf) 287 *(u32 *)(rx_buf + espi->rx_pos) = val; 288 espi->rx_pos += 4; 289 rx_left -= 4; 290 rx_fifo_avail -= 4; 291 } else if (rx_left >= 2 && rx_buf && espi->swab) { 292 u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF); 293 294 *(u16 *)(rx_buf + espi->rx_pos) = swab16(val); 295 espi->rx_pos += 2; 296 rx_left -= 2; 297 rx_fifo_avail -= 2; 298 } else { 299 u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF); 300 301 if (rx_buf) 302 *(u8 *)(rx_buf + espi->rx_pos) = val; 303 espi->rx_pos += 1; 304 rx_left -= 1; 305 rx_fifo_avail -= 1; 306 } 307 } 308 309 if (!rx_left) { 310 if (list_is_last(&espi->rx_t->transfer_list, 311 espi->m_transfers)) { 312 espi->rx_done = true; 313 return; 314 } 315 espi->rx_t = list_next_entry(espi->rx_t, transfer_list); 316 espi->rx_pos = 0; 317 /* continue with next transfer if rx fifo is not empty */ 318 if (rx_fifo_avail) 319 goto start; 320 } 321 } 322 323 static void fsl_espi_setup_transfer(struct spi_device *spi, 324 struct spi_transfer *t) 325 { 326 struct fsl_espi *espi = spi_controller_get_devdata(spi->controller); 327 int bits_per_word = t ? t->bits_per_word : spi->bits_per_word; 328 u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz; 329 struct fsl_espi_cs *cs = spi_get_ctldata(spi); 330 u32 hw_mode_old = cs->hw_mode; 331 332 /* mask out bits we are going to set */ 333 cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF)); 334 335 cs->hw_mode |= CSMODE_LEN(bits_per_word - 1); 336 337 pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1; 338 339 if (pm > 15) { 340 cs->hw_mode |= CSMODE_DIV16; 341 pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1; 342 } 343 344 cs->hw_mode |= CSMODE_PM(pm); 345 346 /* don't write the mode register if the mode doesn't change */ 347 if (cs->hw_mode != hw_mode_old) 348 fsl_espi_write_reg(espi, ESPI_SPMODEx(spi_get_chipselect(spi, 0)), 349 cs->hw_mode); 350 } 351 352 static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t) 353 { 354 struct fsl_espi *espi = spi_controller_get_devdata(spi->controller); 355 unsigned int rx_len = t->len; 356 u32 mask, spcom; 357 int ret; 358 359 reinit_completion(&espi->done); 360 361 /* Set SPCOM[CS] and SPCOM[TRANLEN] field */ 362 spcom = SPCOM_CS(spi_get_chipselect(spi, 0)); 363 spcom |= SPCOM_TRANLEN(t->len - 1); 364 365 /* configure RXSKIP mode */ 366 if (espi->rxskip) { 367 spcom |= SPCOM_RXSKIP(espi->rxskip); 368 rx_len = t->len - espi->rxskip; 369 if (t->rx_nbits == SPI_NBITS_DUAL) 370 spcom |= SPCOM_DO; 371 } 372 373 fsl_espi_write_reg(espi, ESPI_SPCOM, spcom); 374 375 /* enable interrupts */ 376 mask = SPIM_DON; 377 if (rx_len > FSL_ESPI_FIFO_SIZE) 378 mask |= SPIM_RXT; 379 fsl_espi_write_reg(espi, ESPI_SPIM, mask); 380 381 /* Prevent filling the fifo from getting interrupted */ 382 spin_lock_irq(&espi->lock); 383 fsl_espi_fill_tx_fifo(espi, 0); 384 spin_unlock_irq(&espi->lock); 385 386 /* Won't hang up forever, SPI bus sometimes got lost interrupts... */ 387 ret = wait_for_completion_timeout(&espi->done, 2 * HZ); 388 if (ret == 0) 389 dev_err(espi->dev, "Transfer timed out!\n"); 390 391 /* disable rx ints */ 392 fsl_espi_write_reg(espi, ESPI_SPIM, 0); 393 394 return ret == 0 ? -ETIMEDOUT : 0; 395 } 396 397 static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans) 398 { 399 struct fsl_espi *espi = spi_controller_get_devdata(m->spi->controller); 400 struct spi_device *spi = m->spi; 401 int ret; 402 403 /* In case of LSB-first and bits_per_word > 8 byte-swap all words */ 404 espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8; 405 406 espi->m_transfers = &m->transfers; 407 espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer, 408 transfer_list); 409 espi->tx_pos = 0; 410 espi->tx_done = false; 411 espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer, 412 transfer_list); 413 espi->rx_pos = 0; 414 espi->rx_done = false; 415 416 espi->rxskip = fsl_espi_check_rxskip_mode(m); 417 if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) { 418 dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n"); 419 return -EINVAL; 420 } 421 422 /* In RXSKIP mode skip first transfer for reads */ 423 if (espi->rxskip) 424 espi->rx_t = list_next_entry(espi->rx_t, transfer_list); 425 426 fsl_espi_setup_transfer(spi, trans); 427 428 ret = fsl_espi_bufs(spi, trans); 429 430 spi_transfer_delay_exec(trans); 431 432 return ret; 433 } 434 435 static int fsl_espi_do_one_msg(struct spi_controller *host, 436 struct spi_message *m) 437 { 438 unsigned int rx_nbits = 0, delay_nsecs = 0; 439 struct spi_transfer *t, trans = {}; 440 int ret; 441 442 ret = fsl_espi_check_message(m); 443 if (ret) 444 goto out; 445 446 list_for_each_entry(t, &m->transfers, transfer_list) { 447 unsigned int delay = spi_delay_to_ns(&t->delay, t); 448 449 if (delay > delay_nsecs) 450 delay_nsecs = delay; 451 if (t->rx_nbits > rx_nbits) 452 rx_nbits = t->rx_nbits; 453 } 454 455 t = list_first_entry(&m->transfers, struct spi_transfer, 456 transfer_list); 457 458 trans.len = m->frame_length; 459 trans.speed_hz = t->speed_hz; 460 trans.bits_per_word = t->bits_per_word; 461 trans.delay.value = delay_nsecs; 462 trans.delay.unit = SPI_DELAY_UNIT_NSECS; 463 trans.rx_nbits = rx_nbits; 464 465 if (trans.len) 466 ret = fsl_espi_trans(m, &trans); 467 468 m->actual_length = ret ? 0 : trans.len; 469 out: 470 if (m->status == -EINPROGRESS) 471 m->status = ret; 472 473 spi_finalize_current_message(host); 474 475 return ret; 476 } 477 478 static int fsl_espi_setup(struct spi_device *spi) 479 { 480 struct fsl_espi *espi; 481 u32 loop_mode; 482 struct fsl_espi_cs *cs = spi_get_ctldata(spi); 483 484 if (!cs) { 485 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 486 if (!cs) 487 return -ENOMEM; 488 spi_set_ctldata(spi, cs); 489 } 490 491 espi = spi_controller_get_devdata(spi->controller); 492 493 pm_runtime_get_sync(espi->dev); 494 495 cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi_get_chipselect(spi, 0))); 496 /* mask out bits we are going to set */ 497 cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH 498 | CSMODE_REV); 499 500 if (spi->mode & SPI_CPHA) 501 cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK; 502 if (spi->mode & SPI_CPOL) 503 cs->hw_mode |= CSMODE_CI_INACTIVEHIGH; 504 if (!(spi->mode & SPI_LSB_FIRST)) 505 cs->hw_mode |= CSMODE_REV; 506 507 /* Handle the loop mode */ 508 loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE); 509 loop_mode &= ~SPMODE_LOOP; 510 if (spi->mode & SPI_LOOP) 511 loop_mode |= SPMODE_LOOP; 512 fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode); 513 514 fsl_espi_setup_transfer(spi, NULL); 515 516 pm_runtime_mark_last_busy(espi->dev); 517 pm_runtime_put_autosuspend(espi->dev); 518 519 return 0; 520 } 521 522 static void fsl_espi_cleanup(struct spi_device *spi) 523 { 524 struct fsl_espi_cs *cs = spi_get_ctldata(spi); 525 526 kfree(cs); 527 spi_set_ctldata(spi, NULL); 528 } 529 530 static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events) 531 { 532 if (!espi->rx_done) 533 fsl_espi_read_rx_fifo(espi, events); 534 535 if (!espi->tx_done) 536 fsl_espi_fill_tx_fifo(espi, events); 537 538 if (!espi->tx_done || !espi->rx_done) 539 return; 540 541 /* we're done, but check for errors before returning */ 542 events = fsl_espi_read_reg(espi, ESPI_SPIE); 543 544 if (!(events & SPIE_DON)) 545 dev_err(espi->dev, 546 "Transfer done but SPIE_DON isn't set!\n"); 547 548 if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE) { 549 dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n"); 550 dev_err(espi->dev, "SPIE_RXCNT = %d, SPIE_TXCNT = %d\n", 551 SPIE_RXCNT(events), SPIE_TXCNT(events)); 552 } 553 554 complete(&espi->done); 555 } 556 557 static irqreturn_t fsl_espi_irq(s32 irq, void *context_data) 558 { 559 struct fsl_espi *espi = context_data; 560 u32 events, mask; 561 562 spin_lock(&espi->lock); 563 564 /* Get interrupt events(tx/rx) */ 565 events = fsl_espi_read_reg(espi, ESPI_SPIE); 566 mask = fsl_espi_read_reg(espi, ESPI_SPIM); 567 if (!(events & mask)) { 568 spin_unlock(&espi->lock); 569 return IRQ_NONE; 570 } 571 572 dev_vdbg(espi->dev, "%s: events %x\n", __func__, events); 573 574 fsl_espi_cpu_irq(espi, events); 575 576 /* Clear the events */ 577 fsl_espi_write_reg(espi, ESPI_SPIE, events); 578 579 spin_unlock(&espi->lock); 580 581 return IRQ_HANDLED; 582 } 583 584 #ifdef CONFIG_PM 585 static int fsl_espi_runtime_suspend(struct device *dev) 586 { 587 struct spi_controller *host = dev_get_drvdata(dev); 588 struct fsl_espi *espi = spi_controller_get_devdata(host); 589 u32 regval; 590 591 regval = fsl_espi_read_reg(espi, ESPI_SPMODE); 592 regval &= ~SPMODE_ENABLE; 593 fsl_espi_write_reg(espi, ESPI_SPMODE, regval); 594 595 return 0; 596 } 597 598 static int fsl_espi_runtime_resume(struct device *dev) 599 { 600 struct spi_controller *host = dev_get_drvdata(dev); 601 struct fsl_espi *espi = spi_controller_get_devdata(host); 602 u32 regval; 603 604 regval = fsl_espi_read_reg(espi, ESPI_SPMODE); 605 regval |= SPMODE_ENABLE; 606 fsl_espi_write_reg(espi, ESPI_SPMODE, regval); 607 608 return 0; 609 } 610 #endif 611 612 static size_t fsl_espi_max_message_size(struct spi_device *spi) 613 { 614 return SPCOM_TRANLEN_MAX; 615 } 616 617 static void fsl_espi_init_regs(struct device *dev, bool initial) 618 { 619 struct spi_controller *host = dev_get_drvdata(dev); 620 struct fsl_espi *espi = spi_controller_get_devdata(host); 621 struct device_node *nc; 622 u32 csmode, cs, prop; 623 int ret; 624 625 /* SPI controller initializations */ 626 fsl_espi_write_reg(espi, ESPI_SPMODE, 0); 627 fsl_espi_write_reg(espi, ESPI_SPIM, 0); 628 fsl_espi_write_reg(espi, ESPI_SPCOM, 0); 629 fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff); 630 631 /* Init eSPI CS mode register */ 632 for_each_available_child_of_node(host->dev.of_node, nc) { 633 /* get chip select */ 634 ret = of_property_read_u32(nc, "reg", &cs); 635 if (ret || cs >= host->num_chipselect) 636 continue; 637 638 csmode = CSMODE_INIT_VAL; 639 640 /* check if CSBEF is set in device tree */ 641 ret = of_property_read_u32(nc, "fsl,csbef", &prop); 642 if (!ret) { 643 csmode &= ~(CSMODE_BEF(0xf)); 644 csmode |= CSMODE_BEF(prop); 645 } 646 647 /* check if CSAFT is set in device tree */ 648 ret = of_property_read_u32(nc, "fsl,csaft", &prop); 649 if (!ret) { 650 csmode &= ~(CSMODE_AFT(0xf)); 651 csmode |= CSMODE_AFT(prop); 652 } 653 654 fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode); 655 656 if (initial) 657 dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode); 658 } 659 660 /* Enable SPI interface */ 661 fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE); 662 } 663 664 static int fsl_espi_probe(struct device *dev, struct resource *mem, 665 unsigned int irq, unsigned int num_cs) 666 { 667 struct spi_controller *host; 668 struct fsl_espi *espi; 669 int ret; 670 671 host = spi_alloc_host(dev, sizeof(struct fsl_espi)); 672 if (!host) 673 return -ENOMEM; 674 675 dev_set_drvdata(dev, host); 676 677 host->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | 678 SPI_LSB_FIRST | SPI_LOOP; 679 host->dev.of_node = dev->of_node; 680 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 681 host->setup = fsl_espi_setup; 682 host->cleanup = fsl_espi_cleanup; 683 host->transfer_one_message = fsl_espi_do_one_msg; 684 host->auto_runtime_pm = true; 685 host->max_message_size = fsl_espi_max_message_size; 686 host->num_chipselect = num_cs; 687 688 espi = spi_controller_get_devdata(host); 689 spin_lock_init(&espi->lock); 690 691 espi->dev = dev; 692 espi->spibrg = fsl_get_sys_freq(); 693 if (espi->spibrg == -1) { 694 dev_err(dev, "Can't get sys frequency!\n"); 695 ret = -EINVAL; 696 goto err_probe; 697 } 698 /* determined by clock divider fields DIV16/PM in register SPMODEx */ 699 host->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16); 700 host->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4); 701 702 init_completion(&espi->done); 703 704 espi->reg_base = devm_ioremap_resource(dev, mem); 705 if (IS_ERR(espi->reg_base)) { 706 ret = PTR_ERR(espi->reg_base); 707 goto err_probe; 708 } 709 710 /* Register for SPI Interrupt */ 711 ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi); 712 if (ret) 713 goto err_probe; 714 715 fsl_espi_init_regs(dev, true); 716 717 pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT); 718 pm_runtime_use_autosuspend(dev); 719 pm_runtime_set_active(dev); 720 pm_runtime_enable(dev); 721 pm_runtime_get_sync(dev); 722 723 ret = devm_spi_register_controller(dev, host); 724 if (ret < 0) 725 goto err_pm; 726 727 dev_info(dev, "irq = %u\n", irq); 728 729 pm_runtime_mark_last_busy(dev); 730 pm_runtime_put_autosuspend(dev); 731 732 return 0; 733 734 err_pm: 735 pm_runtime_put_noidle(dev); 736 pm_runtime_disable(dev); 737 pm_runtime_set_suspended(dev); 738 err_probe: 739 spi_controller_put(host); 740 return ret; 741 } 742 743 static int of_fsl_espi_get_chipselects(struct device *dev) 744 { 745 struct device_node *np = dev->of_node; 746 u32 num_cs; 747 int ret; 748 749 ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs); 750 if (ret) { 751 dev_err(dev, "No 'fsl,espi-num-chipselects' property\n"); 752 return 0; 753 } 754 755 return num_cs; 756 } 757 758 static int of_fsl_espi_probe(struct platform_device *ofdev) 759 { 760 struct device *dev = &ofdev->dev; 761 struct device_node *np = ofdev->dev.of_node; 762 struct resource mem; 763 unsigned int irq, num_cs; 764 int ret; 765 766 if (of_property_read_bool(np, "mode")) { 767 dev_err(dev, "mode property is not supported on ESPI!\n"); 768 return -EINVAL; 769 } 770 771 num_cs = of_fsl_espi_get_chipselects(dev); 772 if (!num_cs) 773 return -EINVAL; 774 775 ret = of_address_to_resource(np, 0, &mem); 776 if (ret) 777 return ret; 778 779 irq = irq_of_parse_and_map(np, 0); 780 if (!irq) 781 return -EINVAL; 782 783 return fsl_espi_probe(dev, &mem, irq, num_cs); 784 } 785 786 static void of_fsl_espi_remove(struct platform_device *dev) 787 { 788 pm_runtime_disable(&dev->dev); 789 } 790 791 #ifdef CONFIG_PM_SLEEP 792 static int of_fsl_espi_suspend(struct device *dev) 793 { 794 struct spi_controller *host = dev_get_drvdata(dev); 795 int ret; 796 797 ret = spi_controller_suspend(host); 798 if (ret) 799 return ret; 800 801 return pm_runtime_force_suspend(dev); 802 } 803 804 static int of_fsl_espi_resume(struct device *dev) 805 { 806 struct spi_controller *host = dev_get_drvdata(dev); 807 int ret; 808 809 fsl_espi_init_regs(dev, false); 810 811 ret = pm_runtime_force_resume(dev); 812 if (ret < 0) 813 return ret; 814 815 return spi_controller_resume(host); 816 } 817 #endif /* CONFIG_PM_SLEEP */ 818 819 static const struct dev_pm_ops espi_pm = { 820 SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend, 821 fsl_espi_runtime_resume, NULL) 822 SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume) 823 }; 824 825 static const struct of_device_id of_fsl_espi_match[] = { 826 { .compatible = "fsl,mpc8536-espi" }, 827 {} 828 }; 829 MODULE_DEVICE_TABLE(of, of_fsl_espi_match); 830 831 static struct platform_driver fsl_espi_driver = { 832 .driver = { 833 .name = "fsl_espi", 834 .of_match_table = of_fsl_espi_match, 835 .pm = &espi_pm, 836 }, 837 .probe = of_fsl_espi_probe, 838 .remove = of_fsl_espi_remove, 839 }; 840 module_platform_driver(fsl_espi_driver); 841 842 MODULE_AUTHOR("Mingkai Hu"); 843 MODULE_DESCRIPTION("Enhanced Freescale SPI Driver"); 844 MODULE_LICENSE("GPL"); 845