xref: /linux/drivers/spi/spi-fsl-dspi.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 // Copyright 2020 NXP
5 //
6 // Freescale DSPI driver
7 // This file contains a driver for the Freescale DSPI
8 
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of_device.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/regmap.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-fsl-dspi.h>
21 
22 #define DRIVER_NAME			"fsl-dspi"
23 
24 #define SPI_MCR				0x00
25 #define SPI_MCR_MASTER			BIT(31)
26 #define SPI_MCR_PCSIS(x)		((x) << 16)
27 #define SPI_MCR_CLR_TXF			BIT(11)
28 #define SPI_MCR_CLR_RXF			BIT(10)
29 #define SPI_MCR_XSPI			BIT(3)
30 #define SPI_MCR_DIS_TXF			BIT(13)
31 #define SPI_MCR_DIS_RXF			BIT(12)
32 #define SPI_MCR_HALT			BIT(0)
33 
34 #define SPI_TCR				0x08
35 #define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
36 
37 #define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
38 #define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
39 #define SPI_CTAR_CPOL			BIT(26)
40 #define SPI_CTAR_CPHA			BIT(25)
41 #define SPI_CTAR_LSBFE			BIT(24)
42 #define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
43 #define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
44 #define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
45 #define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
46 #define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
47 #define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
48 #define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
49 #define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
50 #define SPI_CTAR_SCALE_BITS		0xf
51 
52 #define SPI_CTAR0_SLAVE			0x0c
53 
54 #define SPI_SR				0x2c
55 #define SPI_SR_TCFQF			BIT(31)
56 #define SPI_SR_TFUF			BIT(27)
57 #define SPI_SR_TFFF			BIT(25)
58 #define SPI_SR_CMDTCF			BIT(23)
59 #define SPI_SR_SPEF			BIT(21)
60 #define SPI_SR_RFOF			BIT(19)
61 #define SPI_SR_TFIWF			BIT(18)
62 #define SPI_SR_RFDF			BIT(17)
63 #define SPI_SR_CMDFFF			BIT(16)
64 #define SPI_SR_CLEAR			(SPI_SR_TCFQF | \
65 					SPI_SR_TFUF | SPI_SR_TFFF | \
66 					SPI_SR_CMDTCF | SPI_SR_SPEF | \
67 					SPI_SR_RFOF | SPI_SR_TFIWF | \
68 					SPI_SR_RFDF | SPI_SR_CMDFFF)
69 
70 #define SPI_RSER_TFFFE			BIT(25)
71 #define SPI_RSER_TFFFD			BIT(24)
72 #define SPI_RSER_RFDFE			BIT(17)
73 #define SPI_RSER_RFDFD			BIT(16)
74 
75 #define SPI_RSER			0x30
76 #define SPI_RSER_TCFQE			BIT(31)
77 #define SPI_RSER_CMDTCFE		BIT(23)
78 
79 #define SPI_PUSHR			0x34
80 #define SPI_PUSHR_CMD_CONT		BIT(15)
81 #define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
82 #define SPI_PUSHR_CMD_EOQ		BIT(11)
83 #define SPI_PUSHR_CMD_CTCNT		BIT(10)
84 #define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
85 
86 #define SPI_PUSHR_SLAVE			0x34
87 
88 #define SPI_POPR			0x38
89 
90 #define SPI_TXFR0			0x3c
91 #define SPI_TXFR1			0x40
92 #define SPI_TXFR2			0x44
93 #define SPI_TXFR3			0x48
94 #define SPI_RXFR0			0x7c
95 #define SPI_RXFR1			0x80
96 #define SPI_RXFR2			0x84
97 #define SPI_RXFR3			0x88
98 
99 #define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
100 #define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
101 #define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
102 
103 #define SPI_SREX			0x13c
104 
105 #define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
106 #define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
107 
108 #define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
109 
110 struct chip_data {
111 	u32			ctar_val;
112 };
113 
114 enum dspi_trans_mode {
115 	DSPI_XSPI_MODE,
116 	DSPI_DMA_MODE,
117 };
118 
119 struct fsl_dspi_devtype_data {
120 	enum dspi_trans_mode	trans_mode;
121 	u8			max_clock_factor;
122 	int			fifo_size;
123 };
124 
125 enum {
126 	LS1021A,
127 	LS1012A,
128 	LS1028A,
129 	LS1043A,
130 	LS1046A,
131 	LS2080A,
132 	LS2085A,
133 	LX2160A,
134 	MCF5441X,
135 	VF610,
136 };
137 
138 static const struct fsl_dspi_devtype_data devtype_data[] = {
139 	[VF610] = {
140 		.trans_mode		= DSPI_DMA_MODE,
141 		.max_clock_factor	= 2,
142 		.fifo_size		= 4,
143 	},
144 	[LS1021A] = {
145 		/* Has A-011218 DMA erratum */
146 		.trans_mode		= DSPI_XSPI_MODE,
147 		.max_clock_factor	= 8,
148 		.fifo_size		= 4,
149 	},
150 	[LS1012A] = {
151 		/* Has A-011218 DMA erratum */
152 		.trans_mode		= DSPI_XSPI_MODE,
153 		.max_clock_factor	= 8,
154 		.fifo_size		= 16,
155 	},
156 	[LS1028A] = {
157 		.trans_mode		= DSPI_XSPI_MODE,
158 		.max_clock_factor	= 8,
159 		.fifo_size		= 4,
160 	},
161 	[LS1043A] = {
162 		/* Has A-011218 DMA erratum */
163 		.trans_mode		= DSPI_XSPI_MODE,
164 		.max_clock_factor	= 8,
165 		.fifo_size		= 16,
166 	},
167 	[LS1046A] = {
168 		/* Has A-011218 DMA erratum */
169 		.trans_mode		= DSPI_XSPI_MODE,
170 		.max_clock_factor	= 8,
171 		.fifo_size		= 16,
172 	},
173 	[LS2080A] = {
174 		.trans_mode		= DSPI_XSPI_MODE,
175 		.max_clock_factor	= 8,
176 		.fifo_size		= 4,
177 	},
178 	[LS2085A] = {
179 		.trans_mode		= DSPI_XSPI_MODE,
180 		.max_clock_factor	= 8,
181 		.fifo_size		= 4,
182 	},
183 	[LX2160A] = {
184 		.trans_mode		= DSPI_XSPI_MODE,
185 		.max_clock_factor	= 8,
186 		.fifo_size		= 4,
187 	},
188 	[MCF5441X] = {
189 		.trans_mode		= DSPI_DMA_MODE,
190 		.max_clock_factor	= 8,
191 		.fifo_size		= 16,
192 	},
193 };
194 
195 struct fsl_dspi_dma {
196 	u32					*tx_dma_buf;
197 	struct dma_chan				*chan_tx;
198 	dma_addr_t				tx_dma_phys;
199 	struct completion			cmd_tx_complete;
200 	struct dma_async_tx_descriptor		*tx_desc;
201 
202 	u32					*rx_dma_buf;
203 	struct dma_chan				*chan_rx;
204 	dma_addr_t				rx_dma_phys;
205 	struct completion			cmd_rx_complete;
206 	struct dma_async_tx_descriptor		*rx_desc;
207 };
208 
209 struct fsl_dspi {
210 	struct spi_controller			*ctlr;
211 	struct platform_device			*pdev;
212 
213 	struct regmap				*regmap;
214 	struct regmap				*regmap_pushr;
215 	int					irq;
216 	struct clk				*clk;
217 
218 	struct spi_transfer			*cur_transfer;
219 	struct spi_message			*cur_msg;
220 	struct chip_data			*cur_chip;
221 	size_t					progress;
222 	size_t					len;
223 	const void				*tx;
224 	void					*rx;
225 	u16					tx_cmd;
226 	const struct fsl_dspi_devtype_data	*devtype_data;
227 
228 	struct completion			xfer_done;
229 
230 	struct fsl_dspi_dma			*dma;
231 
232 	int					oper_word_size;
233 	int					oper_bits_per_word;
234 
235 	int					words_in_flight;
236 
237 	/*
238 	 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
239 	 * individually (in XSPI mode)
240 	 */
241 	int					pushr_cmd;
242 	int					pushr_tx;
243 
244 	void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
245 	void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
246 };
247 
248 static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
249 {
250 	switch (dspi->oper_word_size) {
251 	case 1:
252 		*txdata = *(u8 *)dspi->tx;
253 		break;
254 	case 2:
255 		*txdata = *(u16 *)dspi->tx;
256 		break;
257 	case 4:
258 		*txdata = *(u32 *)dspi->tx;
259 		break;
260 	}
261 	dspi->tx += dspi->oper_word_size;
262 }
263 
264 static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
265 {
266 	switch (dspi->oper_word_size) {
267 	case 1:
268 		*(u8 *)dspi->rx = rxdata;
269 		break;
270 	case 2:
271 		*(u16 *)dspi->rx = rxdata;
272 		break;
273 	case 4:
274 		*(u32 *)dspi->rx = rxdata;
275 		break;
276 	}
277 	dspi->rx += dspi->oper_word_size;
278 }
279 
280 static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
281 {
282 	*txdata = cpu_to_be32(*(u32 *)dspi->tx);
283 	dspi->tx += sizeof(u32);
284 }
285 
286 static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
287 {
288 	*(u32 *)dspi->rx = be32_to_cpu(rxdata);
289 	dspi->rx += sizeof(u32);
290 }
291 
292 static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
293 {
294 	*txdata = cpu_to_be16(*(u16 *)dspi->tx);
295 	dspi->tx += sizeof(u16);
296 }
297 
298 static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
299 {
300 	*(u16 *)dspi->rx = be16_to_cpu(rxdata);
301 	dspi->rx += sizeof(u16);
302 }
303 
304 static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
305 {
306 	u16 hi = *(u16 *)dspi->tx;
307 	u16 lo = *(u16 *)(dspi->tx + 2);
308 
309 	*txdata = (u32)hi << 16 | lo;
310 	dspi->tx += sizeof(u32);
311 }
312 
313 static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
314 {
315 	u16 hi = rxdata & 0xffff;
316 	u16 lo = rxdata >> 16;
317 
318 	*(u16 *)dspi->rx = lo;
319 	*(u16 *)(dspi->rx + 2) = hi;
320 	dspi->rx += sizeof(u32);
321 }
322 
323 /*
324  * Pop one word from the TX buffer for pushing into the
325  * PUSHR register (TX FIFO)
326  */
327 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
328 {
329 	u32 txdata = 0;
330 
331 	if (dspi->tx)
332 		dspi->host_to_dev(dspi, &txdata);
333 	dspi->len -= dspi->oper_word_size;
334 	return txdata;
335 }
336 
337 /* Prepare one TX FIFO entry (txdata plus cmd) */
338 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
339 {
340 	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
341 
342 	if (spi_controller_is_slave(dspi->ctlr))
343 		return data;
344 
345 	if (dspi->len > 0)
346 		cmd |= SPI_PUSHR_CMD_CONT;
347 	return cmd << 16 | data;
348 }
349 
350 /* Push one word to the RX buffer from the POPR register (RX FIFO) */
351 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
352 {
353 	if (!dspi->rx)
354 		return;
355 	dspi->dev_to_host(dspi, rxdata);
356 }
357 
358 static void dspi_tx_dma_callback(void *arg)
359 {
360 	struct fsl_dspi *dspi = arg;
361 	struct fsl_dspi_dma *dma = dspi->dma;
362 
363 	complete(&dma->cmd_tx_complete);
364 }
365 
366 static void dspi_rx_dma_callback(void *arg)
367 {
368 	struct fsl_dspi *dspi = arg;
369 	struct fsl_dspi_dma *dma = dspi->dma;
370 	int i;
371 
372 	if (dspi->rx) {
373 		for (i = 0; i < dspi->words_in_flight; i++)
374 			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
375 	}
376 
377 	complete(&dma->cmd_rx_complete);
378 }
379 
380 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
381 {
382 	struct device *dev = &dspi->pdev->dev;
383 	struct fsl_dspi_dma *dma = dspi->dma;
384 	int time_left;
385 	int i;
386 
387 	for (i = 0; i < dspi->words_in_flight; i++)
388 		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
389 
390 	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
391 					dma->tx_dma_phys,
392 					dspi->words_in_flight *
393 					DMA_SLAVE_BUSWIDTH_4_BYTES,
394 					DMA_MEM_TO_DEV,
395 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
396 	if (!dma->tx_desc) {
397 		dev_err(dev, "Not able to get desc for DMA xfer\n");
398 		return -EIO;
399 	}
400 
401 	dma->tx_desc->callback = dspi_tx_dma_callback;
402 	dma->tx_desc->callback_param = dspi;
403 	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
404 		dev_err(dev, "DMA submit failed\n");
405 		return -EINVAL;
406 	}
407 
408 	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
409 					dma->rx_dma_phys,
410 					dspi->words_in_flight *
411 					DMA_SLAVE_BUSWIDTH_4_BYTES,
412 					DMA_DEV_TO_MEM,
413 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
414 	if (!dma->rx_desc) {
415 		dev_err(dev, "Not able to get desc for DMA xfer\n");
416 		return -EIO;
417 	}
418 
419 	dma->rx_desc->callback = dspi_rx_dma_callback;
420 	dma->rx_desc->callback_param = dspi;
421 	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
422 		dev_err(dev, "DMA submit failed\n");
423 		return -EINVAL;
424 	}
425 
426 	reinit_completion(&dspi->dma->cmd_rx_complete);
427 	reinit_completion(&dspi->dma->cmd_tx_complete);
428 
429 	dma_async_issue_pending(dma->chan_rx);
430 	dma_async_issue_pending(dma->chan_tx);
431 
432 	if (spi_controller_is_slave(dspi->ctlr)) {
433 		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
434 		return 0;
435 	}
436 
437 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
438 						DMA_COMPLETION_TIMEOUT);
439 	if (time_left == 0) {
440 		dev_err(dev, "DMA tx timeout\n");
441 		dmaengine_terminate_all(dma->chan_tx);
442 		dmaengine_terminate_all(dma->chan_rx);
443 		return -ETIMEDOUT;
444 	}
445 
446 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
447 						DMA_COMPLETION_TIMEOUT);
448 	if (time_left == 0) {
449 		dev_err(dev, "DMA rx timeout\n");
450 		dmaengine_terminate_all(dma->chan_tx);
451 		dmaengine_terminate_all(dma->chan_rx);
452 		return -ETIMEDOUT;
453 	}
454 
455 	return 0;
456 }
457 
458 static void dspi_setup_accel(struct fsl_dspi *dspi);
459 
460 static int dspi_dma_xfer(struct fsl_dspi *dspi)
461 {
462 	struct spi_message *message = dspi->cur_msg;
463 	struct device *dev = &dspi->pdev->dev;
464 	int ret = 0;
465 
466 	/*
467 	 * dspi->len gets decremented by dspi_pop_tx_pushr in
468 	 * dspi_next_xfer_dma_submit
469 	 */
470 	while (dspi->len) {
471 		/* Figure out operational bits-per-word for this chunk */
472 		dspi_setup_accel(dspi);
473 
474 		dspi->words_in_flight = dspi->len / dspi->oper_word_size;
475 		if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
476 			dspi->words_in_flight = dspi->devtype_data->fifo_size;
477 
478 		message->actual_length += dspi->words_in_flight *
479 					  dspi->oper_word_size;
480 
481 		ret = dspi_next_xfer_dma_submit(dspi);
482 		if (ret) {
483 			dev_err(dev, "DMA transfer failed\n");
484 			break;
485 		}
486 	}
487 
488 	return ret;
489 }
490 
491 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
492 {
493 	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
494 	struct device *dev = &dspi->pdev->dev;
495 	struct dma_slave_config cfg;
496 	struct fsl_dspi_dma *dma;
497 	int ret;
498 
499 	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
500 	if (!dma)
501 		return -ENOMEM;
502 
503 	dma->chan_rx = dma_request_chan(dev, "rx");
504 	if (IS_ERR(dma->chan_rx)) {
505 		dev_err(dev, "rx dma channel not available\n");
506 		ret = PTR_ERR(dma->chan_rx);
507 		return ret;
508 	}
509 
510 	dma->chan_tx = dma_request_chan(dev, "tx");
511 	if (IS_ERR(dma->chan_tx)) {
512 		dev_err(dev, "tx dma channel not available\n");
513 		ret = PTR_ERR(dma->chan_tx);
514 		goto err_tx_channel;
515 	}
516 
517 	dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
518 					     dma_bufsize, &dma->tx_dma_phys,
519 					     GFP_KERNEL);
520 	if (!dma->tx_dma_buf) {
521 		ret = -ENOMEM;
522 		goto err_tx_dma_buf;
523 	}
524 
525 	dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
526 					     dma_bufsize, &dma->rx_dma_phys,
527 					     GFP_KERNEL);
528 	if (!dma->rx_dma_buf) {
529 		ret = -ENOMEM;
530 		goto err_rx_dma_buf;
531 	}
532 
533 	cfg.src_addr = phy_addr + SPI_POPR;
534 	cfg.dst_addr = phy_addr + SPI_PUSHR;
535 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
536 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
537 	cfg.src_maxburst = 1;
538 	cfg.dst_maxburst = 1;
539 
540 	cfg.direction = DMA_DEV_TO_MEM;
541 	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
542 	if (ret) {
543 		dev_err(dev, "can't configure rx dma channel\n");
544 		ret = -EINVAL;
545 		goto err_slave_config;
546 	}
547 
548 	cfg.direction = DMA_MEM_TO_DEV;
549 	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
550 	if (ret) {
551 		dev_err(dev, "can't configure tx dma channel\n");
552 		ret = -EINVAL;
553 		goto err_slave_config;
554 	}
555 
556 	dspi->dma = dma;
557 	init_completion(&dma->cmd_tx_complete);
558 	init_completion(&dma->cmd_rx_complete);
559 
560 	return 0;
561 
562 err_slave_config:
563 	dma_free_coherent(dma->chan_rx->device->dev,
564 			  dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
565 err_rx_dma_buf:
566 	dma_free_coherent(dma->chan_tx->device->dev,
567 			  dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
568 err_tx_dma_buf:
569 	dma_release_channel(dma->chan_tx);
570 err_tx_channel:
571 	dma_release_channel(dma->chan_rx);
572 
573 	devm_kfree(dev, dma);
574 	dspi->dma = NULL;
575 
576 	return ret;
577 }
578 
579 static void dspi_release_dma(struct fsl_dspi *dspi)
580 {
581 	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
582 	struct fsl_dspi_dma *dma = dspi->dma;
583 
584 	if (!dma)
585 		return;
586 
587 	if (dma->chan_tx) {
588 		dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
589 				  dma->tx_dma_buf, dma->tx_dma_phys);
590 		dma_release_channel(dma->chan_tx);
591 	}
592 
593 	if (dma->chan_rx) {
594 		dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
595 				  dma->rx_dma_buf, dma->rx_dma_phys);
596 		dma_release_channel(dma->chan_rx);
597 	}
598 }
599 
600 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
601 			   unsigned long clkrate)
602 {
603 	/* Valid baud rate pre-scaler values */
604 	int pbr_tbl[4] = {2, 3, 5, 7};
605 	int brs[16] = {	2,	4,	6,	8,
606 			16,	32,	64,	128,
607 			256,	512,	1024,	2048,
608 			4096,	8192,	16384,	32768 };
609 	int scale_needed, scale, minscale = INT_MAX;
610 	int i, j;
611 
612 	scale_needed = clkrate / speed_hz;
613 	if (clkrate % speed_hz)
614 		scale_needed++;
615 
616 	for (i = 0; i < ARRAY_SIZE(brs); i++)
617 		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
618 			scale = brs[i] * pbr_tbl[j];
619 			if (scale >= scale_needed) {
620 				if (scale < minscale) {
621 					minscale = scale;
622 					*br = i;
623 					*pbr = j;
624 				}
625 				break;
626 			}
627 		}
628 
629 	if (minscale == INT_MAX) {
630 		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
631 			speed_hz, clkrate);
632 		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
633 		*br =  ARRAY_SIZE(brs) - 1;
634 	}
635 }
636 
637 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
638 			   unsigned long clkrate)
639 {
640 	int scale_needed, scale, minscale = INT_MAX;
641 	int pscale_tbl[4] = {1, 3, 5, 7};
642 	u32 remainder;
643 	int i, j;
644 
645 	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
646 				   &remainder);
647 	if (remainder)
648 		scale_needed++;
649 
650 	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
651 		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
652 			scale = pscale_tbl[i] * (2 << j);
653 			if (scale >= scale_needed) {
654 				if (scale < minscale) {
655 					minscale = scale;
656 					*psc = i;
657 					*sc = j;
658 				}
659 				break;
660 			}
661 		}
662 
663 	if (minscale == INT_MAX) {
664 		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
665 			delay_ns, clkrate);
666 		*psc = ARRAY_SIZE(pscale_tbl) - 1;
667 		*sc = SPI_CTAR_SCALE_BITS;
668 	}
669 }
670 
671 static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
672 {
673 	/*
674 	 * The only time when the PCS doesn't need continuation after this word
675 	 * is when it's last. We need to look ahead, because we actually call
676 	 * dspi_pop_tx (the function that decrements dspi->len) _after_
677 	 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
678 	 * word is enough. If there's more to transmit than that,
679 	 * dspi_xspi_write will know to split the FIFO writes in 2, and
680 	 * generate a new PUSHR command with the final word that will have PCS
681 	 * deasserted (not continued) here.
682 	 */
683 	if (dspi->len > dspi->oper_word_size)
684 		cmd |= SPI_PUSHR_CMD_CONT;
685 	regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
686 }
687 
688 static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
689 {
690 	regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
691 }
692 
693 static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
694 {
695 	int num_bytes = num_words * dspi->oper_word_size;
696 	u16 tx_cmd = dspi->tx_cmd;
697 
698 	/*
699 	 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
700 	 * and cs_change does not want the PCS to stay on), then we need a new
701 	 * PUSHR command, since this one (for the body of the buffer)
702 	 * necessarily has the CONT bit set.
703 	 * So send one word less during this go, to force a split and a command
704 	 * with a single word next time, when CONT will be unset.
705 	 */
706 	if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
707 		tx_cmd |= SPI_PUSHR_CMD_EOQ;
708 
709 	/* Update CTARE */
710 	regmap_write(dspi->regmap, SPI_CTARE(0),
711 		     SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
712 		     SPI_CTARE_DTCP(num_words));
713 
714 	/*
715 	 * Write the CMD FIFO entry first, and then the two
716 	 * corresponding TX FIFO entries (or one...).
717 	 */
718 	dspi_pushr_cmd_write(dspi, tx_cmd);
719 
720 	/* Fill TX FIFO with as many transfers as possible */
721 	while (num_words--) {
722 		u32 data = dspi_pop_tx(dspi);
723 
724 		dspi_pushr_txdata_write(dspi, data & 0xFFFF);
725 		if (dspi->oper_bits_per_word > 16)
726 			dspi_pushr_txdata_write(dspi, data >> 16);
727 	}
728 }
729 
730 static u32 dspi_popr_read(struct fsl_dspi *dspi)
731 {
732 	u32 rxdata = 0;
733 
734 	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
735 	return rxdata;
736 }
737 
738 static void dspi_fifo_read(struct fsl_dspi *dspi)
739 {
740 	int num_fifo_entries = dspi->words_in_flight;
741 
742 	/* Read one FIFO entry and push to rx buffer */
743 	while (num_fifo_entries--)
744 		dspi_push_rx(dspi, dspi_popr_read(dspi));
745 }
746 
747 static void dspi_setup_accel(struct fsl_dspi *dspi)
748 {
749 	struct spi_transfer *xfer = dspi->cur_transfer;
750 	bool odd = !!(dspi->len & 1);
751 
752 	/* No accel for frames not multiple of 8 bits at the moment */
753 	if (xfer->bits_per_word % 8)
754 		goto no_accel;
755 
756 	if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
757 		dspi->oper_bits_per_word = 16;
758 	} else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
759 		dspi->oper_bits_per_word = 8;
760 	} else {
761 		/* Start off with maximum supported by hardware */
762 		if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
763 			dspi->oper_bits_per_word = 32;
764 		else
765 			dspi->oper_bits_per_word = 16;
766 
767 		/*
768 		 * And go down only if the buffer can't be sent with
769 		 * words this big
770 		 */
771 		do {
772 			if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
773 				break;
774 
775 			dspi->oper_bits_per_word /= 2;
776 		} while (dspi->oper_bits_per_word > 8);
777 	}
778 
779 	if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
780 		dspi->dev_to_host = dspi_8on32_dev_to_host;
781 		dspi->host_to_dev = dspi_8on32_host_to_dev;
782 	} else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
783 		dspi->dev_to_host = dspi_8on16_dev_to_host;
784 		dspi->host_to_dev = dspi_8on16_host_to_dev;
785 	} else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
786 		dspi->dev_to_host = dspi_16on32_dev_to_host;
787 		dspi->host_to_dev = dspi_16on32_host_to_dev;
788 	} else {
789 no_accel:
790 		dspi->dev_to_host = dspi_native_dev_to_host;
791 		dspi->host_to_dev = dspi_native_host_to_dev;
792 		dspi->oper_bits_per_word = xfer->bits_per_word;
793 	}
794 
795 	dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
796 
797 	/*
798 	 * Update CTAR here (code is common for XSPI and DMA modes).
799 	 * We will update CTARE in the portion specific to XSPI, when we
800 	 * also know the preload value (DTCP).
801 	 */
802 	regmap_write(dspi->regmap, SPI_CTAR(0),
803 		     dspi->cur_chip->ctar_val |
804 		     SPI_FRAME_BITS(dspi->oper_bits_per_word));
805 }
806 
807 static void dspi_fifo_write(struct fsl_dspi *dspi)
808 {
809 	int num_fifo_entries = dspi->devtype_data->fifo_size;
810 	struct spi_transfer *xfer = dspi->cur_transfer;
811 	struct spi_message *msg = dspi->cur_msg;
812 	int num_words, num_bytes;
813 
814 	dspi_setup_accel(dspi);
815 
816 	/* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
817 	if (dspi->oper_word_size == 4)
818 		num_fifo_entries /= 2;
819 
820 	/*
821 	 * Integer division intentionally trims off odd (or non-multiple of 4)
822 	 * numbers of bytes at the end of the buffer, which will be sent next
823 	 * time using a smaller oper_word_size.
824 	 */
825 	num_words = dspi->len / dspi->oper_word_size;
826 	if (num_words > num_fifo_entries)
827 		num_words = num_fifo_entries;
828 
829 	/* Update total number of bytes that were transferred */
830 	num_bytes = num_words * dspi->oper_word_size;
831 	msg->actual_length += num_bytes;
832 	dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
833 
834 	/*
835 	 * Update shared variable for use in the next interrupt (both in
836 	 * dspi_fifo_read and in dspi_fifo_write).
837 	 */
838 	dspi->words_in_flight = num_words;
839 
840 	spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
841 
842 	dspi_xspi_fifo_write(dspi, num_words);
843 	/*
844 	 * Everything after this point is in a potential race with the next
845 	 * interrupt, so we must never use dspi->words_in_flight again since it
846 	 * might already be modified by the next dspi_fifo_write.
847 	 */
848 
849 	spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
850 				dspi->progress, !dspi->irq);
851 }
852 
853 static int dspi_rxtx(struct fsl_dspi *dspi)
854 {
855 	dspi_fifo_read(dspi);
856 
857 	if (!dspi->len)
858 		/* Success! */
859 		return 0;
860 
861 	dspi_fifo_write(dspi);
862 
863 	return -EINPROGRESS;
864 }
865 
866 static int dspi_poll(struct fsl_dspi *dspi)
867 {
868 	int tries = 1000;
869 	u32 spi_sr;
870 
871 	do {
872 		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
873 		regmap_write(dspi->regmap, SPI_SR, spi_sr);
874 
875 		if (spi_sr & SPI_SR_CMDTCF)
876 			break;
877 	} while (--tries);
878 
879 	if (!tries)
880 		return -ETIMEDOUT;
881 
882 	return dspi_rxtx(dspi);
883 }
884 
885 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
886 {
887 	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
888 	u32 spi_sr;
889 
890 	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
891 	regmap_write(dspi->regmap, SPI_SR, spi_sr);
892 
893 	if (!(spi_sr & SPI_SR_CMDTCF))
894 		return IRQ_NONE;
895 
896 	if (dspi_rxtx(dspi) == 0)
897 		complete(&dspi->xfer_done);
898 
899 	return IRQ_HANDLED;
900 }
901 
902 static int dspi_transfer_one_message(struct spi_controller *ctlr,
903 				     struct spi_message *message)
904 {
905 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
906 	struct spi_device *spi = message->spi;
907 	struct spi_transfer *transfer;
908 	int status = 0;
909 
910 	message->actual_length = 0;
911 
912 	list_for_each_entry(transfer, &message->transfers, transfer_list) {
913 		dspi->cur_transfer = transfer;
914 		dspi->cur_msg = message;
915 		dspi->cur_chip = spi_get_ctldata(spi);
916 		/* Prepare command word for CMD FIFO */
917 		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
918 			       SPI_PUSHR_CMD_PCS(spi->chip_select);
919 		if (list_is_last(&dspi->cur_transfer->transfer_list,
920 				 &dspi->cur_msg->transfers)) {
921 			/* Leave PCS activated after last transfer when
922 			 * cs_change is set.
923 			 */
924 			if (transfer->cs_change)
925 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
926 		} else {
927 			/* Keep PCS active between transfers in same message
928 			 * when cs_change is not set, and de-activate PCS
929 			 * between transfers in the same message when
930 			 * cs_change is set.
931 			 */
932 			if (!transfer->cs_change)
933 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
934 		}
935 
936 		dspi->tx = transfer->tx_buf;
937 		dspi->rx = transfer->rx_buf;
938 		dspi->len = transfer->len;
939 		dspi->progress = 0;
940 
941 		regmap_update_bits(dspi->regmap, SPI_MCR,
942 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
943 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
944 
945 		spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
946 				       dspi->progress, !dspi->irq);
947 
948 		if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
949 			status = dspi_dma_xfer(dspi);
950 		} else {
951 			dspi_fifo_write(dspi);
952 
953 			if (dspi->irq) {
954 				wait_for_completion(&dspi->xfer_done);
955 				reinit_completion(&dspi->xfer_done);
956 			} else {
957 				do {
958 					status = dspi_poll(dspi);
959 				} while (status == -EINPROGRESS);
960 			}
961 		}
962 		if (status)
963 			break;
964 
965 		spi_transfer_delay_exec(transfer);
966 	}
967 
968 	message->status = status;
969 	spi_finalize_current_message(ctlr);
970 
971 	return status;
972 }
973 
974 static int dspi_setup(struct spi_device *spi)
975 {
976 	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
977 	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
978 	u32 cs_sck_delay = 0, sck_cs_delay = 0;
979 	struct fsl_dspi_platform_data *pdata;
980 	unsigned char pasc = 0, asc = 0;
981 	struct chip_data *chip;
982 	unsigned long clkrate;
983 
984 	/* Only alloc on first setup */
985 	chip = spi_get_ctldata(spi);
986 	if (chip == NULL) {
987 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
988 		if (!chip)
989 			return -ENOMEM;
990 	}
991 
992 	pdata = dev_get_platdata(&dspi->pdev->dev);
993 
994 	if (!pdata) {
995 		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
996 				     &cs_sck_delay);
997 
998 		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
999 				     &sck_cs_delay);
1000 	} else {
1001 		cs_sck_delay = pdata->cs_sck_delay;
1002 		sck_cs_delay = pdata->sck_cs_delay;
1003 	}
1004 
1005 	clkrate = clk_get_rate(dspi->clk);
1006 	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1007 
1008 	/* Set PCS to SCK delay scale values */
1009 	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1010 
1011 	/* Set After SCK delay scale values */
1012 	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1013 
1014 	chip->ctar_val = 0;
1015 	if (spi->mode & SPI_CPOL)
1016 		chip->ctar_val |= SPI_CTAR_CPOL;
1017 	if (spi->mode & SPI_CPHA)
1018 		chip->ctar_val |= SPI_CTAR_CPHA;
1019 
1020 	if (!spi_controller_is_slave(dspi->ctlr)) {
1021 		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1022 				  SPI_CTAR_CSSCK(cssck) |
1023 				  SPI_CTAR_PASC(pasc) |
1024 				  SPI_CTAR_ASC(asc) |
1025 				  SPI_CTAR_PBR(pbr) |
1026 				  SPI_CTAR_BR(br);
1027 
1028 		if (spi->mode & SPI_LSB_FIRST)
1029 			chip->ctar_val |= SPI_CTAR_LSBFE;
1030 	}
1031 
1032 	spi_set_ctldata(spi, chip);
1033 
1034 	return 0;
1035 }
1036 
1037 static void dspi_cleanup(struct spi_device *spi)
1038 {
1039 	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
1040 
1041 	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1042 		spi->controller->bus_num, spi->chip_select);
1043 
1044 	kfree(chip);
1045 }
1046 
1047 static const struct of_device_id fsl_dspi_dt_ids[] = {
1048 	{
1049 		.compatible = "fsl,vf610-dspi",
1050 		.data = &devtype_data[VF610],
1051 	}, {
1052 		.compatible = "fsl,ls1021a-v1.0-dspi",
1053 		.data = &devtype_data[LS1021A],
1054 	}, {
1055 		.compatible = "fsl,ls1012a-dspi",
1056 		.data = &devtype_data[LS1012A],
1057 	}, {
1058 		.compatible = "fsl,ls1028a-dspi",
1059 		.data = &devtype_data[LS1028A],
1060 	}, {
1061 		.compatible = "fsl,ls1043a-dspi",
1062 		.data = &devtype_data[LS1043A],
1063 	}, {
1064 		.compatible = "fsl,ls1046a-dspi",
1065 		.data = &devtype_data[LS1046A],
1066 	}, {
1067 		.compatible = "fsl,ls2080a-dspi",
1068 		.data = &devtype_data[LS2080A],
1069 	}, {
1070 		.compatible = "fsl,ls2085a-dspi",
1071 		.data = &devtype_data[LS2085A],
1072 	}, {
1073 		.compatible = "fsl,lx2160a-dspi",
1074 		.data = &devtype_data[LX2160A],
1075 	},
1076 	{ /* sentinel */ }
1077 };
1078 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1079 
1080 #ifdef CONFIG_PM_SLEEP
1081 static int dspi_suspend(struct device *dev)
1082 {
1083 	struct fsl_dspi *dspi = dev_get_drvdata(dev);
1084 
1085 	if (dspi->irq)
1086 		disable_irq(dspi->irq);
1087 	spi_controller_suspend(dspi->ctlr);
1088 	clk_disable_unprepare(dspi->clk);
1089 
1090 	pinctrl_pm_select_sleep_state(dev);
1091 
1092 	return 0;
1093 }
1094 
1095 static int dspi_resume(struct device *dev)
1096 {
1097 	struct fsl_dspi *dspi = dev_get_drvdata(dev);
1098 	int ret;
1099 
1100 	pinctrl_pm_select_default_state(dev);
1101 
1102 	ret = clk_prepare_enable(dspi->clk);
1103 	if (ret)
1104 		return ret;
1105 	spi_controller_resume(dspi->ctlr);
1106 	if (dspi->irq)
1107 		enable_irq(dspi->irq);
1108 
1109 	return 0;
1110 }
1111 #endif /* CONFIG_PM_SLEEP */
1112 
1113 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1114 
1115 static const struct regmap_range dspi_volatile_ranges[] = {
1116 	regmap_reg_range(SPI_MCR, SPI_TCR),
1117 	regmap_reg_range(SPI_SR, SPI_SR),
1118 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1119 };
1120 
1121 static const struct regmap_access_table dspi_volatile_table = {
1122 	.yes_ranges	= dspi_volatile_ranges,
1123 	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
1124 };
1125 
1126 static const struct regmap_config dspi_regmap_config = {
1127 	.reg_bits	= 32,
1128 	.val_bits	= 32,
1129 	.reg_stride	= 4,
1130 	.max_register	= 0x88,
1131 	.volatile_table	= &dspi_volatile_table,
1132 };
1133 
1134 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1135 	regmap_reg_range(SPI_MCR, SPI_TCR),
1136 	regmap_reg_range(SPI_SR, SPI_SR),
1137 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1138 	regmap_reg_range(SPI_SREX, SPI_SREX),
1139 };
1140 
1141 static const struct regmap_access_table dspi_xspi_volatile_table = {
1142 	.yes_ranges	= dspi_xspi_volatile_ranges,
1143 	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
1144 };
1145 
1146 static const struct regmap_config dspi_xspi_regmap_config[] = {
1147 	{
1148 		.reg_bits	= 32,
1149 		.val_bits	= 32,
1150 		.reg_stride	= 4,
1151 		.max_register	= 0x13c,
1152 		.volatile_table	= &dspi_xspi_volatile_table,
1153 	},
1154 	{
1155 		.name		= "pushr",
1156 		.reg_bits	= 16,
1157 		.val_bits	= 16,
1158 		.reg_stride	= 2,
1159 		.max_register	= 0x2,
1160 	},
1161 };
1162 
1163 static int dspi_init(struct fsl_dspi *dspi)
1164 {
1165 	unsigned int mcr;
1166 
1167 	/* Set idle states for all chip select signals to high */
1168 	mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
1169 
1170 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1171 		mcr |= SPI_MCR_XSPI;
1172 	if (!spi_controller_is_slave(dspi->ctlr))
1173 		mcr |= SPI_MCR_MASTER;
1174 
1175 	regmap_write(dspi->regmap, SPI_MCR, mcr);
1176 	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1177 
1178 	switch (dspi->devtype_data->trans_mode) {
1179 	case DSPI_XSPI_MODE:
1180 		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1181 		break;
1182 	case DSPI_DMA_MODE:
1183 		regmap_write(dspi->regmap, SPI_RSER,
1184 			     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1185 			     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1186 		break;
1187 	default:
1188 		dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1189 			dspi->devtype_data->trans_mode);
1190 		return -EINVAL;
1191 	}
1192 
1193 	return 0;
1194 }
1195 
1196 static int dspi_slave_abort(struct spi_master *master)
1197 {
1198 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
1199 
1200 	/*
1201 	 * Terminate all pending DMA transactions for the SPI working
1202 	 * in SLAVE mode.
1203 	 */
1204 	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1205 		dmaengine_terminate_sync(dspi->dma->chan_rx);
1206 		dmaengine_terminate_sync(dspi->dma->chan_tx);
1207 	}
1208 
1209 	/* Clear the internal DSPI RX and TX FIFO buffers */
1210 	regmap_update_bits(dspi->regmap, SPI_MCR,
1211 			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1212 			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1213 
1214 	return 0;
1215 }
1216 
1217 static int dspi_probe(struct platform_device *pdev)
1218 {
1219 	struct device_node *np = pdev->dev.of_node;
1220 	const struct regmap_config *regmap_config;
1221 	struct fsl_dspi_platform_data *pdata;
1222 	struct spi_controller *ctlr;
1223 	int ret, cs_num, bus_num = -1;
1224 	struct fsl_dspi *dspi;
1225 	struct resource *res;
1226 	void __iomem *base;
1227 	bool big_endian;
1228 
1229 	dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
1230 	if (!dspi)
1231 		return -ENOMEM;
1232 
1233 	ctlr = spi_alloc_master(&pdev->dev, 0);
1234 	if (!ctlr)
1235 		return -ENOMEM;
1236 
1237 	spi_controller_set_devdata(ctlr, dspi);
1238 	platform_set_drvdata(pdev, dspi);
1239 
1240 	dspi->pdev = pdev;
1241 	dspi->ctlr = ctlr;
1242 
1243 	ctlr->setup = dspi_setup;
1244 	ctlr->transfer_one_message = dspi_transfer_one_message;
1245 	ctlr->dev.of_node = pdev->dev.of_node;
1246 
1247 	ctlr->cleanup = dspi_cleanup;
1248 	ctlr->slave_abort = dspi_slave_abort;
1249 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1250 
1251 	pdata = dev_get_platdata(&pdev->dev);
1252 	if (pdata) {
1253 		ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
1254 		ctlr->bus_num = pdata->bus_num;
1255 
1256 		/* Only Coldfire uses platform data */
1257 		dspi->devtype_data = &devtype_data[MCF5441X];
1258 		big_endian = true;
1259 	} else {
1260 
1261 		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1262 		if (ret < 0) {
1263 			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1264 			goto out_ctlr_put;
1265 		}
1266 		ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
1267 
1268 		of_property_read_u32(np, "bus-num", &bus_num);
1269 		ctlr->bus_num = bus_num;
1270 
1271 		if (of_property_read_bool(np, "spi-slave"))
1272 			ctlr->slave = true;
1273 
1274 		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1275 		if (!dspi->devtype_data) {
1276 			dev_err(&pdev->dev, "can't get devtype_data\n");
1277 			ret = -EFAULT;
1278 			goto out_ctlr_put;
1279 		}
1280 
1281 		big_endian = of_device_is_big_endian(np);
1282 	}
1283 	if (big_endian) {
1284 		dspi->pushr_cmd = 0;
1285 		dspi->pushr_tx = 2;
1286 	} else {
1287 		dspi->pushr_cmd = 2;
1288 		dspi->pushr_tx = 0;
1289 	}
1290 
1291 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1292 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1293 	else
1294 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1295 
1296 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1297 	base = devm_ioremap_resource(&pdev->dev, res);
1298 	if (IS_ERR(base)) {
1299 		ret = PTR_ERR(base);
1300 		goto out_ctlr_put;
1301 	}
1302 
1303 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1304 		regmap_config = &dspi_xspi_regmap_config[0];
1305 	else
1306 		regmap_config = &dspi_regmap_config;
1307 	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1308 	if (IS_ERR(dspi->regmap)) {
1309 		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1310 				PTR_ERR(dspi->regmap));
1311 		ret = PTR_ERR(dspi->regmap);
1312 		goto out_ctlr_put;
1313 	}
1314 
1315 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1316 		dspi->regmap_pushr = devm_regmap_init_mmio(
1317 			&pdev->dev, base + SPI_PUSHR,
1318 			&dspi_xspi_regmap_config[1]);
1319 		if (IS_ERR(dspi->regmap_pushr)) {
1320 			dev_err(&pdev->dev,
1321 				"failed to init pushr regmap: %ld\n",
1322 				PTR_ERR(dspi->regmap_pushr));
1323 			ret = PTR_ERR(dspi->regmap_pushr);
1324 			goto out_ctlr_put;
1325 		}
1326 	}
1327 
1328 	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1329 	if (IS_ERR(dspi->clk)) {
1330 		ret = PTR_ERR(dspi->clk);
1331 		dev_err(&pdev->dev, "unable to get clock\n");
1332 		goto out_ctlr_put;
1333 	}
1334 	ret = clk_prepare_enable(dspi->clk);
1335 	if (ret)
1336 		goto out_ctlr_put;
1337 
1338 	ret = dspi_init(dspi);
1339 	if (ret)
1340 		goto out_clk_put;
1341 
1342 	dspi->irq = platform_get_irq(pdev, 0);
1343 	if (dspi->irq <= 0) {
1344 		dev_info(&pdev->dev,
1345 			 "can't get platform irq, using poll mode\n");
1346 		dspi->irq = 0;
1347 		goto poll_mode;
1348 	}
1349 
1350 	init_completion(&dspi->xfer_done);
1351 
1352 	ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1353 				   IRQF_SHARED, pdev->name, dspi);
1354 	if (ret < 0) {
1355 		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1356 		goto out_clk_put;
1357 	}
1358 
1359 poll_mode:
1360 
1361 	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1362 		ret = dspi_request_dma(dspi, res->start);
1363 		if (ret < 0) {
1364 			dev_err(&pdev->dev, "can't get dma channels\n");
1365 			goto out_free_irq;
1366 		}
1367 	}
1368 
1369 	ctlr->max_speed_hz =
1370 		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1371 
1372 	if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1373 		ctlr->ptp_sts_supported = true;
1374 
1375 	ret = spi_register_controller(ctlr);
1376 	if (ret != 0) {
1377 		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1378 		goto out_release_dma;
1379 	}
1380 
1381 	return ret;
1382 
1383 out_release_dma:
1384 	dspi_release_dma(dspi);
1385 out_free_irq:
1386 	if (dspi->irq)
1387 		free_irq(dspi->irq, dspi);
1388 out_clk_put:
1389 	clk_disable_unprepare(dspi->clk);
1390 out_ctlr_put:
1391 	spi_controller_put(ctlr);
1392 
1393 	return ret;
1394 }
1395 
1396 static int dspi_remove(struct platform_device *pdev)
1397 {
1398 	struct fsl_dspi *dspi = platform_get_drvdata(pdev);
1399 
1400 	/* Disconnect from the SPI framework */
1401 	spi_unregister_controller(dspi->ctlr);
1402 
1403 	/* Disable RX and TX */
1404 	regmap_update_bits(dspi->regmap, SPI_MCR,
1405 			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1406 			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1407 
1408 	/* Stop Running */
1409 	regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1410 
1411 	dspi_release_dma(dspi);
1412 	if (dspi->irq)
1413 		free_irq(dspi->irq, dspi);
1414 	clk_disable_unprepare(dspi->clk);
1415 
1416 	return 0;
1417 }
1418 
1419 static void dspi_shutdown(struct platform_device *pdev)
1420 {
1421 	dspi_remove(pdev);
1422 }
1423 
1424 static struct platform_driver fsl_dspi_driver = {
1425 	.driver.name		= DRIVER_NAME,
1426 	.driver.of_match_table	= fsl_dspi_dt_ids,
1427 	.driver.owner		= THIS_MODULE,
1428 	.driver.pm		= &dspi_pm,
1429 	.probe			= dspi_probe,
1430 	.remove			= dspi_remove,
1431 	.shutdown		= dspi_shutdown,
1432 };
1433 module_platform_driver(fsl_dspi_driver);
1434 
1435 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1436 MODULE_LICENSE("GPL");
1437 MODULE_ALIAS("platform:" DRIVER_NAME);
1438