xref: /linux/drivers/spi/spi-fsl-dspi.c (revision 9acb51e9617c28a92f9ce2af767db6bd660a6d4f)
1  // SPDX-License-Identifier: GPL-2.0+
2  //
3  // Copyright 2013 Freescale Semiconductor, Inc.
4  // Copyright 2020 NXP
5  //
6  // Freescale DSPI driver
7  // This file contains a driver for the Freescale DSPI
8  
9  #include <linux/clk.h>
10  #include <linux/delay.h>
11  #include <linux/dmaengine.h>
12  #include <linux/dma-mapping.h>
13  #include <linux/interrupt.h>
14  #include <linux/kernel.h>
15  #include <linux/module.h>
16  #include <linux/of.h>
17  #include <linux/platform_device.h>
18  #include <linux/pinctrl/consumer.h>
19  #include <linux/regmap.h>
20  #include <linux/spi/spi.h>
21  #include <linux/spi/spi-fsl-dspi.h>
22  
23  #define DRIVER_NAME			"fsl-dspi"
24  
25  #define SPI_MCR				0x00
26  #define SPI_MCR_HOST			BIT(31)
27  #define SPI_MCR_PCSIS(x)		((x) << 16)
28  #define SPI_MCR_CLR_TXF			BIT(11)
29  #define SPI_MCR_CLR_RXF			BIT(10)
30  #define SPI_MCR_XSPI			BIT(3)
31  #define SPI_MCR_DIS_TXF			BIT(13)
32  #define SPI_MCR_DIS_RXF			BIT(12)
33  #define SPI_MCR_HALT			BIT(0)
34  
35  #define SPI_TCR				0x08
36  #define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
37  
38  #define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
39  #define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
40  #define SPI_CTAR_CPOL			BIT(26)
41  #define SPI_CTAR_CPHA			BIT(25)
42  #define SPI_CTAR_LSBFE			BIT(24)
43  #define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
44  #define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
45  #define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
46  #define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
47  #define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
48  #define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
49  #define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
50  #define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
51  #define SPI_CTAR_SCALE_BITS		0xf
52  
53  #define SPI_CTAR0_SLAVE			0x0c
54  
55  #define SPI_SR				0x2c
56  #define SPI_SR_TCFQF			BIT(31)
57  #define SPI_SR_TFUF			BIT(27)
58  #define SPI_SR_TFFF			BIT(25)
59  #define SPI_SR_CMDTCF			BIT(23)
60  #define SPI_SR_SPEF			BIT(21)
61  #define SPI_SR_RFOF			BIT(19)
62  #define SPI_SR_TFIWF			BIT(18)
63  #define SPI_SR_RFDF			BIT(17)
64  #define SPI_SR_CMDFFF			BIT(16)
65  #define SPI_SR_CLEAR			(SPI_SR_TCFQF | \
66  					SPI_SR_TFUF | SPI_SR_TFFF | \
67  					SPI_SR_CMDTCF | SPI_SR_SPEF | \
68  					SPI_SR_RFOF | SPI_SR_TFIWF | \
69  					SPI_SR_RFDF | SPI_SR_CMDFFF)
70  
71  #define SPI_RSER_TFFFE			BIT(25)
72  #define SPI_RSER_TFFFD			BIT(24)
73  #define SPI_RSER_RFDFE			BIT(17)
74  #define SPI_RSER_RFDFD			BIT(16)
75  
76  #define SPI_RSER			0x30
77  #define SPI_RSER_TCFQE			BIT(31)
78  #define SPI_RSER_CMDTCFE		BIT(23)
79  
80  #define SPI_PUSHR			0x34
81  #define SPI_PUSHR_CMD_CONT		BIT(15)
82  #define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
83  #define SPI_PUSHR_CMD_EOQ		BIT(11)
84  #define SPI_PUSHR_CMD_CTCNT		BIT(10)
85  #define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
86  
87  #define SPI_PUSHR_SLAVE			0x34
88  
89  #define SPI_POPR			0x38
90  
91  #define SPI_TXFR0			0x3c
92  #define SPI_TXFR1			0x40
93  #define SPI_TXFR2			0x44
94  #define SPI_TXFR3			0x48
95  #define SPI_RXFR0			0x7c
96  #define SPI_RXFR1			0x80
97  #define SPI_RXFR2			0x84
98  #define SPI_RXFR3			0x88
99  
100  #define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
101  #define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
102  #define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
103  
104  #define SPI_SREX			0x13c
105  
106  #define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
107  #define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
108  
109  #define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
110  
111  struct chip_data {
112  	u32			ctar_val;
113  };
114  
115  enum dspi_trans_mode {
116  	DSPI_XSPI_MODE,
117  	DSPI_DMA_MODE,
118  };
119  
120  struct fsl_dspi_devtype_data {
121  	enum dspi_trans_mode	trans_mode;
122  	u8			max_clock_factor;
123  	int			fifo_size;
124  };
125  
126  enum {
127  	LS1021A,
128  	LS1012A,
129  	LS1028A,
130  	LS1043A,
131  	LS1046A,
132  	LS2080A,
133  	LS2085A,
134  	LX2160A,
135  	MCF5441X,
136  	VF610,
137  };
138  
139  static const struct fsl_dspi_devtype_data devtype_data[] = {
140  	[VF610] = {
141  		.trans_mode		= DSPI_DMA_MODE,
142  		.max_clock_factor	= 2,
143  		.fifo_size		= 4,
144  	},
145  	[LS1021A] = {
146  		/* Has A-011218 DMA erratum */
147  		.trans_mode		= DSPI_XSPI_MODE,
148  		.max_clock_factor	= 8,
149  		.fifo_size		= 4,
150  	},
151  	[LS1012A] = {
152  		/* Has A-011218 DMA erratum */
153  		.trans_mode		= DSPI_XSPI_MODE,
154  		.max_clock_factor	= 8,
155  		.fifo_size		= 16,
156  	},
157  	[LS1028A] = {
158  		.trans_mode		= DSPI_XSPI_MODE,
159  		.max_clock_factor	= 8,
160  		.fifo_size		= 4,
161  	},
162  	[LS1043A] = {
163  		/* Has A-011218 DMA erratum */
164  		.trans_mode		= DSPI_XSPI_MODE,
165  		.max_clock_factor	= 8,
166  		.fifo_size		= 16,
167  	},
168  	[LS1046A] = {
169  		/* Has A-011218 DMA erratum */
170  		.trans_mode		= DSPI_XSPI_MODE,
171  		.max_clock_factor	= 8,
172  		.fifo_size		= 16,
173  	},
174  	[LS2080A] = {
175  		.trans_mode		= DSPI_XSPI_MODE,
176  		.max_clock_factor	= 8,
177  		.fifo_size		= 4,
178  	},
179  	[LS2085A] = {
180  		.trans_mode		= DSPI_XSPI_MODE,
181  		.max_clock_factor	= 8,
182  		.fifo_size		= 4,
183  	},
184  	[LX2160A] = {
185  		.trans_mode		= DSPI_XSPI_MODE,
186  		.max_clock_factor	= 8,
187  		.fifo_size		= 4,
188  	},
189  	[MCF5441X] = {
190  		.trans_mode		= DSPI_DMA_MODE,
191  		.max_clock_factor	= 8,
192  		.fifo_size		= 16,
193  	},
194  };
195  
196  struct fsl_dspi_dma {
197  	u32					*tx_dma_buf;
198  	struct dma_chan				*chan_tx;
199  	dma_addr_t				tx_dma_phys;
200  	struct completion			cmd_tx_complete;
201  	struct dma_async_tx_descriptor		*tx_desc;
202  
203  	u32					*rx_dma_buf;
204  	struct dma_chan				*chan_rx;
205  	dma_addr_t				rx_dma_phys;
206  	struct completion			cmd_rx_complete;
207  	struct dma_async_tx_descriptor		*rx_desc;
208  };
209  
210  struct fsl_dspi {
211  	struct spi_controller			*ctlr;
212  	struct platform_device			*pdev;
213  
214  	struct regmap				*regmap;
215  	struct regmap				*regmap_pushr;
216  	int					irq;
217  	struct clk				*clk;
218  
219  	struct spi_transfer			*cur_transfer;
220  	struct spi_message			*cur_msg;
221  	struct chip_data			*cur_chip;
222  	size_t					progress;
223  	size_t					len;
224  	const void				*tx;
225  	void					*rx;
226  	u16					tx_cmd;
227  	const struct fsl_dspi_devtype_data	*devtype_data;
228  
229  	struct completion			xfer_done;
230  
231  	struct fsl_dspi_dma			*dma;
232  
233  	int					oper_word_size;
234  	int					oper_bits_per_word;
235  
236  	int					words_in_flight;
237  
238  	/*
239  	 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
240  	 * individually (in XSPI mode)
241  	 */
242  	int					pushr_cmd;
243  	int					pushr_tx;
244  
245  	void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
246  	void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
247  };
248  
249  static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
250  {
251  	switch (dspi->oper_word_size) {
252  	case 1:
253  		*txdata = *(u8 *)dspi->tx;
254  		break;
255  	case 2:
256  		*txdata = *(u16 *)dspi->tx;
257  		break;
258  	case 4:
259  		*txdata = *(u32 *)dspi->tx;
260  		break;
261  	}
262  	dspi->tx += dspi->oper_word_size;
263  }
264  
265  static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
266  {
267  	switch (dspi->oper_word_size) {
268  	case 1:
269  		*(u8 *)dspi->rx = rxdata;
270  		break;
271  	case 2:
272  		*(u16 *)dspi->rx = rxdata;
273  		break;
274  	case 4:
275  		*(u32 *)dspi->rx = rxdata;
276  		break;
277  	}
278  	dspi->rx += dspi->oper_word_size;
279  }
280  
281  static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
282  {
283  	*txdata = cpu_to_be32(*(u32 *)dspi->tx);
284  	dspi->tx += sizeof(u32);
285  }
286  
287  static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
288  {
289  	*(u32 *)dspi->rx = be32_to_cpu(rxdata);
290  	dspi->rx += sizeof(u32);
291  }
292  
293  static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
294  {
295  	*txdata = cpu_to_be16(*(u16 *)dspi->tx);
296  	dspi->tx += sizeof(u16);
297  }
298  
299  static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
300  {
301  	*(u16 *)dspi->rx = be16_to_cpu(rxdata);
302  	dspi->rx += sizeof(u16);
303  }
304  
305  static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
306  {
307  	u16 hi = *(u16 *)dspi->tx;
308  	u16 lo = *(u16 *)(dspi->tx + 2);
309  
310  	*txdata = (u32)hi << 16 | lo;
311  	dspi->tx += sizeof(u32);
312  }
313  
314  static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
315  {
316  	u16 hi = rxdata & 0xffff;
317  	u16 lo = rxdata >> 16;
318  
319  	*(u16 *)dspi->rx = lo;
320  	*(u16 *)(dspi->rx + 2) = hi;
321  	dspi->rx += sizeof(u32);
322  }
323  
324  /*
325   * Pop one word from the TX buffer for pushing into the
326   * PUSHR register (TX FIFO)
327   */
328  static u32 dspi_pop_tx(struct fsl_dspi *dspi)
329  {
330  	u32 txdata = 0;
331  
332  	if (dspi->tx)
333  		dspi->host_to_dev(dspi, &txdata);
334  	dspi->len -= dspi->oper_word_size;
335  	return txdata;
336  }
337  
338  /* Prepare one TX FIFO entry (txdata plus cmd) */
339  static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
340  {
341  	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
342  
343  	if (spi_controller_is_target(dspi->ctlr))
344  		return data;
345  
346  	if (dspi->len > 0)
347  		cmd |= SPI_PUSHR_CMD_CONT;
348  	return cmd << 16 | data;
349  }
350  
351  /* Push one word to the RX buffer from the POPR register (RX FIFO) */
352  static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
353  {
354  	if (!dspi->rx)
355  		return;
356  	dspi->dev_to_host(dspi, rxdata);
357  }
358  
359  static void dspi_tx_dma_callback(void *arg)
360  {
361  	struct fsl_dspi *dspi = arg;
362  	struct fsl_dspi_dma *dma = dspi->dma;
363  
364  	complete(&dma->cmd_tx_complete);
365  }
366  
367  static void dspi_rx_dma_callback(void *arg)
368  {
369  	struct fsl_dspi *dspi = arg;
370  	struct fsl_dspi_dma *dma = dspi->dma;
371  	int i;
372  
373  	if (dspi->rx) {
374  		for (i = 0; i < dspi->words_in_flight; i++)
375  			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
376  	}
377  
378  	complete(&dma->cmd_rx_complete);
379  }
380  
381  static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
382  {
383  	struct device *dev = &dspi->pdev->dev;
384  	struct fsl_dspi_dma *dma = dspi->dma;
385  	int time_left;
386  	int i;
387  
388  	for (i = 0; i < dspi->words_in_flight; i++)
389  		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
390  
391  	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
392  					dma->tx_dma_phys,
393  					dspi->words_in_flight *
394  					DMA_SLAVE_BUSWIDTH_4_BYTES,
395  					DMA_MEM_TO_DEV,
396  					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
397  	if (!dma->tx_desc) {
398  		dev_err(dev, "Not able to get desc for DMA xfer\n");
399  		return -EIO;
400  	}
401  
402  	dma->tx_desc->callback = dspi_tx_dma_callback;
403  	dma->tx_desc->callback_param = dspi;
404  	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
405  		dev_err(dev, "DMA submit failed\n");
406  		return -EINVAL;
407  	}
408  
409  	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
410  					dma->rx_dma_phys,
411  					dspi->words_in_flight *
412  					DMA_SLAVE_BUSWIDTH_4_BYTES,
413  					DMA_DEV_TO_MEM,
414  					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
415  	if (!dma->rx_desc) {
416  		dev_err(dev, "Not able to get desc for DMA xfer\n");
417  		return -EIO;
418  	}
419  
420  	dma->rx_desc->callback = dspi_rx_dma_callback;
421  	dma->rx_desc->callback_param = dspi;
422  	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
423  		dev_err(dev, "DMA submit failed\n");
424  		return -EINVAL;
425  	}
426  
427  	reinit_completion(&dspi->dma->cmd_rx_complete);
428  	reinit_completion(&dspi->dma->cmd_tx_complete);
429  
430  	dma_async_issue_pending(dma->chan_rx);
431  	dma_async_issue_pending(dma->chan_tx);
432  
433  	if (spi_controller_is_target(dspi->ctlr)) {
434  		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
435  		return 0;
436  	}
437  
438  	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
439  						DMA_COMPLETION_TIMEOUT);
440  	if (time_left == 0) {
441  		dev_err(dev, "DMA tx timeout\n");
442  		dmaengine_terminate_all(dma->chan_tx);
443  		dmaengine_terminate_all(dma->chan_rx);
444  		return -ETIMEDOUT;
445  	}
446  
447  	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
448  						DMA_COMPLETION_TIMEOUT);
449  	if (time_left == 0) {
450  		dev_err(dev, "DMA rx timeout\n");
451  		dmaengine_terminate_all(dma->chan_tx);
452  		dmaengine_terminate_all(dma->chan_rx);
453  		return -ETIMEDOUT;
454  	}
455  
456  	return 0;
457  }
458  
459  static void dspi_setup_accel(struct fsl_dspi *dspi);
460  
461  static int dspi_dma_xfer(struct fsl_dspi *dspi)
462  {
463  	struct spi_message *message = dspi->cur_msg;
464  	struct device *dev = &dspi->pdev->dev;
465  	int ret = 0;
466  
467  	/*
468  	 * dspi->len gets decremented by dspi_pop_tx_pushr in
469  	 * dspi_next_xfer_dma_submit
470  	 */
471  	while (dspi->len) {
472  		/* Figure out operational bits-per-word for this chunk */
473  		dspi_setup_accel(dspi);
474  
475  		dspi->words_in_flight = dspi->len / dspi->oper_word_size;
476  		if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
477  			dspi->words_in_flight = dspi->devtype_data->fifo_size;
478  
479  		message->actual_length += dspi->words_in_flight *
480  					  dspi->oper_word_size;
481  
482  		ret = dspi_next_xfer_dma_submit(dspi);
483  		if (ret) {
484  			dev_err(dev, "DMA transfer failed\n");
485  			break;
486  		}
487  	}
488  
489  	return ret;
490  }
491  
492  static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
493  {
494  	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
495  	struct device *dev = &dspi->pdev->dev;
496  	struct dma_slave_config cfg;
497  	struct fsl_dspi_dma *dma;
498  	int ret;
499  
500  	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
501  	if (!dma)
502  		return -ENOMEM;
503  
504  	dma->chan_rx = dma_request_chan(dev, "rx");
505  	if (IS_ERR(dma->chan_rx))
506  		return dev_err_probe(dev, PTR_ERR(dma->chan_rx), "rx dma channel not available\n");
507  
508  	dma->chan_tx = dma_request_chan(dev, "tx");
509  	if (IS_ERR(dma->chan_tx)) {
510  		ret = dev_err_probe(dev, PTR_ERR(dma->chan_tx), "tx dma channel not available\n");
511  		goto err_tx_channel;
512  	}
513  
514  	dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
515  					     dma_bufsize, &dma->tx_dma_phys,
516  					     GFP_KERNEL);
517  	if (!dma->tx_dma_buf) {
518  		ret = -ENOMEM;
519  		goto err_tx_dma_buf;
520  	}
521  
522  	dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
523  					     dma_bufsize, &dma->rx_dma_phys,
524  					     GFP_KERNEL);
525  	if (!dma->rx_dma_buf) {
526  		ret = -ENOMEM;
527  		goto err_rx_dma_buf;
528  	}
529  
530  	memset(&cfg, 0, sizeof(cfg));
531  	cfg.src_addr = phy_addr + SPI_POPR;
532  	cfg.dst_addr = phy_addr + SPI_PUSHR;
533  	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
534  	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
535  	cfg.src_maxburst = 1;
536  	cfg.dst_maxburst = 1;
537  
538  	cfg.direction = DMA_DEV_TO_MEM;
539  	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
540  	if (ret) {
541  		dev_err_probe(dev, ret, "can't configure rx dma channel\n");
542  		goto err_slave_config;
543  	}
544  
545  	cfg.direction = DMA_MEM_TO_DEV;
546  	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
547  	if (ret) {
548  		dev_err_probe(dev, ret, "can't configure tx dma channel\n");
549  		goto err_slave_config;
550  	}
551  
552  	dspi->dma = dma;
553  	init_completion(&dma->cmd_tx_complete);
554  	init_completion(&dma->cmd_rx_complete);
555  
556  	return 0;
557  
558  err_slave_config:
559  	dma_free_coherent(dma->chan_rx->device->dev,
560  			  dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
561  err_rx_dma_buf:
562  	dma_free_coherent(dma->chan_tx->device->dev,
563  			  dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
564  err_tx_dma_buf:
565  	dma_release_channel(dma->chan_tx);
566  err_tx_channel:
567  	dma_release_channel(dma->chan_rx);
568  
569  	devm_kfree(dev, dma);
570  	dspi->dma = NULL;
571  
572  	return ret;
573  }
574  
575  static void dspi_release_dma(struct fsl_dspi *dspi)
576  {
577  	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
578  	struct fsl_dspi_dma *dma = dspi->dma;
579  
580  	if (!dma)
581  		return;
582  
583  	if (dma->chan_tx) {
584  		dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
585  				  dma->tx_dma_buf, dma->tx_dma_phys);
586  		dma_release_channel(dma->chan_tx);
587  	}
588  
589  	if (dma->chan_rx) {
590  		dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
591  				  dma->rx_dma_buf, dma->rx_dma_phys);
592  		dma_release_channel(dma->chan_rx);
593  	}
594  }
595  
596  static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
597  			   unsigned long clkrate)
598  {
599  	/* Valid baud rate pre-scaler values */
600  	int pbr_tbl[4] = {2, 3, 5, 7};
601  	int brs[16] = {	2,	4,	6,	8,
602  			16,	32,	64,	128,
603  			256,	512,	1024,	2048,
604  			4096,	8192,	16384,	32768 };
605  	int scale_needed, scale, minscale = INT_MAX;
606  	int i, j;
607  
608  	scale_needed = clkrate / speed_hz;
609  	if (clkrate % speed_hz)
610  		scale_needed++;
611  
612  	for (i = 0; i < ARRAY_SIZE(brs); i++)
613  		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
614  			scale = brs[i] * pbr_tbl[j];
615  			if (scale >= scale_needed) {
616  				if (scale < minscale) {
617  					minscale = scale;
618  					*br = i;
619  					*pbr = j;
620  				}
621  				break;
622  			}
623  		}
624  
625  	if (minscale == INT_MAX) {
626  		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
627  			speed_hz, clkrate);
628  		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
629  		*br =  ARRAY_SIZE(brs) - 1;
630  	}
631  }
632  
633  static void ns_delay_scale(char *psc, char *sc, int delay_ns,
634  			   unsigned long clkrate)
635  {
636  	int scale_needed, scale, minscale = INT_MAX;
637  	int pscale_tbl[4] = {1, 3, 5, 7};
638  	u32 remainder;
639  	int i, j;
640  
641  	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
642  				   &remainder);
643  	if (remainder)
644  		scale_needed++;
645  
646  	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
647  		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
648  			scale = pscale_tbl[i] * (2 << j);
649  			if (scale >= scale_needed) {
650  				if (scale < minscale) {
651  					minscale = scale;
652  					*psc = i;
653  					*sc = j;
654  				}
655  				break;
656  			}
657  		}
658  
659  	if (minscale == INT_MAX) {
660  		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
661  			delay_ns, clkrate);
662  		*psc = ARRAY_SIZE(pscale_tbl) - 1;
663  		*sc = SPI_CTAR_SCALE_BITS;
664  	}
665  }
666  
667  static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
668  {
669  	/*
670  	 * The only time when the PCS doesn't need continuation after this word
671  	 * is when it's last. We need to look ahead, because we actually call
672  	 * dspi_pop_tx (the function that decrements dspi->len) _after_
673  	 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
674  	 * word is enough. If there's more to transmit than that,
675  	 * dspi_xspi_write will know to split the FIFO writes in 2, and
676  	 * generate a new PUSHR command with the final word that will have PCS
677  	 * deasserted (not continued) here.
678  	 */
679  	if (dspi->len > dspi->oper_word_size)
680  		cmd |= SPI_PUSHR_CMD_CONT;
681  	regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
682  }
683  
684  static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
685  {
686  	regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
687  }
688  
689  static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
690  {
691  	int num_bytes = num_words * dspi->oper_word_size;
692  	u16 tx_cmd = dspi->tx_cmd;
693  
694  	/*
695  	 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
696  	 * and cs_change does not want the PCS to stay on), then we need a new
697  	 * PUSHR command, since this one (for the body of the buffer)
698  	 * necessarily has the CONT bit set.
699  	 * So send one word less during this go, to force a split and a command
700  	 * with a single word next time, when CONT will be unset.
701  	 */
702  	if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
703  		tx_cmd |= SPI_PUSHR_CMD_EOQ;
704  
705  	/* Update CTARE */
706  	regmap_write(dspi->regmap, SPI_CTARE(0),
707  		     SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
708  		     SPI_CTARE_DTCP(num_words));
709  
710  	/*
711  	 * Write the CMD FIFO entry first, and then the two
712  	 * corresponding TX FIFO entries (or one...).
713  	 */
714  	dspi_pushr_cmd_write(dspi, tx_cmd);
715  
716  	/* Fill TX FIFO with as many transfers as possible */
717  	while (num_words--) {
718  		u32 data = dspi_pop_tx(dspi);
719  
720  		dspi_pushr_txdata_write(dspi, data & 0xFFFF);
721  		if (dspi->oper_bits_per_word > 16)
722  			dspi_pushr_txdata_write(dspi, data >> 16);
723  	}
724  }
725  
726  static u32 dspi_popr_read(struct fsl_dspi *dspi)
727  {
728  	u32 rxdata = 0;
729  
730  	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
731  	return rxdata;
732  }
733  
734  static void dspi_fifo_read(struct fsl_dspi *dspi)
735  {
736  	int num_fifo_entries = dspi->words_in_flight;
737  
738  	/* Read one FIFO entry and push to rx buffer */
739  	while (num_fifo_entries--)
740  		dspi_push_rx(dspi, dspi_popr_read(dspi));
741  }
742  
743  static void dspi_setup_accel(struct fsl_dspi *dspi)
744  {
745  	struct spi_transfer *xfer = dspi->cur_transfer;
746  	bool odd = !!(dspi->len & 1);
747  
748  	/* No accel for frames not multiple of 8 bits at the moment */
749  	if (xfer->bits_per_word % 8)
750  		goto no_accel;
751  
752  	if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
753  		dspi->oper_bits_per_word = 16;
754  	} else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
755  		dspi->oper_bits_per_word = 8;
756  	} else {
757  		/* Start off with maximum supported by hardware */
758  		if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
759  			dspi->oper_bits_per_word = 32;
760  		else
761  			dspi->oper_bits_per_word = 16;
762  
763  		/*
764  		 * And go down only if the buffer can't be sent with
765  		 * words this big
766  		 */
767  		do {
768  			if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
769  				break;
770  
771  			dspi->oper_bits_per_word /= 2;
772  		} while (dspi->oper_bits_per_word > 8);
773  	}
774  
775  	if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
776  		dspi->dev_to_host = dspi_8on32_dev_to_host;
777  		dspi->host_to_dev = dspi_8on32_host_to_dev;
778  	} else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
779  		dspi->dev_to_host = dspi_8on16_dev_to_host;
780  		dspi->host_to_dev = dspi_8on16_host_to_dev;
781  	} else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
782  		dspi->dev_to_host = dspi_16on32_dev_to_host;
783  		dspi->host_to_dev = dspi_16on32_host_to_dev;
784  	} else {
785  no_accel:
786  		dspi->dev_to_host = dspi_native_dev_to_host;
787  		dspi->host_to_dev = dspi_native_host_to_dev;
788  		dspi->oper_bits_per_word = xfer->bits_per_word;
789  	}
790  
791  	dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
792  
793  	/*
794  	 * Update CTAR here (code is common for XSPI and DMA modes).
795  	 * We will update CTARE in the portion specific to XSPI, when we
796  	 * also know the preload value (DTCP).
797  	 */
798  	regmap_write(dspi->regmap, SPI_CTAR(0),
799  		     dspi->cur_chip->ctar_val |
800  		     SPI_FRAME_BITS(dspi->oper_bits_per_word));
801  }
802  
803  static void dspi_fifo_write(struct fsl_dspi *dspi)
804  {
805  	int num_fifo_entries = dspi->devtype_data->fifo_size;
806  	struct spi_transfer *xfer = dspi->cur_transfer;
807  	struct spi_message *msg = dspi->cur_msg;
808  	int num_words, num_bytes;
809  
810  	dspi_setup_accel(dspi);
811  
812  	/* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
813  	if (dspi->oper_word_size == 4)
814  		num_fifo_entries /= 2;
815  
816  	/*
817  	 * Integer division intentionally trims off odd (or non-multiple of 4)
818  	 * numbers of bytes at the end of the buffer, which will be sent next
819  	 * time using a smaller oper_word_size.
820  	 */
821  	num_words = dspi->len / dspi->oper_word_size;
822  	if (num_words > num_fifo_entries)
823  		num_words = num_fifo_entries;
824  
825  	/* Update total number of bytes that were transferred */
826  	num_bytes = num_words * dspi->oper_word_size;
827  	msg->actual_length += num_bytes;
828  	dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
829  
830  	/*
831  	 * Update shared variable for use in the next interrupt (both in
832  	 * dspi_fifo_read and in dspi_fifo_write).
833  	 */
834  	dspi->words_in_flight = num_words;
835  
836  	spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
837  
838  	dspi_xspi_fifo_write(dspi, num_words);
839  	/*
840  	 * Everything after this point is in a potential race with the next
841  	 * interrupt, so we must never use dspi->words_in_flight again since it
842  	 * might already be modified by the next dspi_fifo_write.
843  	 */
844  
845  	spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
846  				dspi->progress, !dspi->irq);
847  }
848  
849  static int dspi_rxtx(struct fsl_dspi *dspi)
850  {
851  	dspi_fifo_read(dspi);
852  
853  	if (!dspi->len)
854  		/* Success! */
855  		return 0;
856  
857  	dspi_fifo_write(dspi);
858  
859  	return -EINPROGRESS;
860  }
861  
862  static int dspi_poll(struct fsl_dspi *dspi)
863  {
864  	int tries = 1000;
865  	u32 spi_sr;
866  
867  	do {
868  		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
869  		regmap_write(dspi->regmap, SPI_SR, spi_sr);
870  
871  		if (spi_sr & SPI_SR_CMDTCF)
872  			break;
873  	} while (--tries);
874  
875  	if (!tries)
876  		return -ETIMEDOUT;
877  
878  	return dspi_rxtx(dspi);
879  }
880  
881  static irqreturn_t dspi_interrupt(int irq, void *dev_id)
882  {
883  	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
884  	u32 spi_sr;
885  
886  	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
887  	regmap_write(dspi->regmap, SPI_SR, spi_sr);
888  
889  	if (!(spi_sr & SPI_SR_CMDTCF))
890  		return IRQ_NONE;
891  
892  	if (dspi_rxtx(dspi) == 0)
893  		complete(&dspi->xfer_done);
894  
895  	return IRQ_HANDLED;
896  }
897  
898  static void dspi_assert_cs(struct spi_device *spi, bool *cs)
899  {
900  	if (!spi_get_csgpiod(spi, 0) || *cs)
901  		return;
902  
903  	gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), true);
904  	*cs = true;
905  }
906  
907  static void dspi_deassert_cs(struct spi_device *spi, bool *cs)
908  {
909  	if (!spi_get_csgpiod(spi, 0) || !*cs)
910  		return;
911  
912  	gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), false);
913  	*cs = false;
914  }
915  
916  static int dspi_transfer_one_message(struct spi_controller *ctlr,
917  				     struct spi_message *message)
918  {
919  	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
920  	struct spi_device *spi = message->spi;
921  	struct spi_transfer *transfer;
922  	bool cs = false;
923  	int status = 0;
924  
925  	message->actual_length = 0;
926  
927  	list_for_each_entry(transfer, &message->transfers, transfer_list) {
928  		dspi->cur_transfer = transfer;
929  		dspi->cur_msg = message;
930  		dspi->cur_chip = spi_get_ctldata(spi);
931  
932  		dspi_assert_cs(spi, &cs);
933  
934  		/* Prepare command word for CMD FIFO */
935  		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0);
936  		if (!spi_get_csgpiod(spi, 0))
937  			dspi->tx_cmd |= SPI_PUSHR_CMD_PCS(spi_get_chipselect(spi, 0));
938  
939  		if (list_is_last(&dspi->cur_transfer->transfer_list,
940  				 &dspi->cur_msg->transfers)) {
941  			/* Leave PCS activated after last transfer when
942  			 * cs_change is set.
943  			 */
944  			if (transfer->cs_change)
945  				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
946  		} else {
947  			/* Keep PCS active between transfers in same message
948  			 * when cs_change is not set, and de-activate PCS
949  			 * between transfers in the same message when
950  			 * cs_change is set.
951  			 */
952  			if (!transfer->cs_change)
953  				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
954  		}
955  
956  		dspi->tx = transfer->tx_buf;
957  		dspi->rx = transfer->rx_buf;
958  		dspi->len = transfer->len;
959  		dspi->progress = 0;
960  
961  		regmap_update_bits(dspi->regmap, SPI_MCR,
962  				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
963  				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
964  
965  		spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
966  				       dspi->progress, !dspi->irq);
967  
968  		if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
969  			status = dspi_dma_xfer(dspi);
970  		} else {
971  			dspi_fifo_write(dspi);
972  
973  			if (dspi->irq) {
974  				wait_for_completion(&dspi->xfer_done);
975  				reinit_completion(&dspi->xfer_done);
976  			} else {
977  				do {
978  					status = dspi_poll(dspi);
979  				} while (status == -EINPROGRESS);
980  			}
981  		}
982  		if (status)
983  			break;
984  
985  		spi_transfer_delay_exec(transfer);
986  
987  		if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT))
988  			dspi_deassert_cs(spi, &cs);
989  	}
990  
991  	message->status = status;
992  	spi_finalize_current_message(ctlr);
993  
994  	return status;
995  }
996  
997  static int dspi_setup(struct spi_device *spi)
998  {
999  	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
1000  	u32 period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->max_speed_hz);
1001  	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
1002  	u32 quarter_period_ns = DIV_ROUND_UP(period_ns, 4);
1003  	u32 cs_sck_delay = 0, sck_cs_delay = 0;
1004  	struct fsl_dspi_platform_data *pdata;
1005  	unsigned char pasc = 0, asc = 0;
1006  	struct chip_data *chip;
1007  	unsigned long clkrate;
1008  	bool cs = true;
1009  	int val;
1010  
1011  	/* Only alloc on first setup */
1012  	chip = spi_get_ctldata(spi);
1013  	if (chip == NULL) {
1014  		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1015  		if (!chip)
1016  			return -ENOMEM;
1017  	}
1018  
1019  	pdata = dev_get_platdata(&dspi->pdev->dev);
1020  
1021  	if (!pdata) {
1022  		val = spi_delay_to_ns(&spi->cs_setup, NULL);
1023  		cs_sck_delay = val >= 0 ? val : 0;
1024  		if (!cs_sck_delay)
1025  			of_property_read_u32(spi->dev.of_node,
1026  					     "fsl,spi-cs-sck-delay",
1027  					     &cs_sck_delay);
1028  
1029  		val = spi_delay_to_ns(&spi->cs_hold, NULL);
1030  		sck_cs_delay =  val >= 0 ? val : 0;
1031  		if (!sck_cs_delay)
1032  			of_property_read_u32(spi->dev.of_node,
1033  					     "fsl,spi-sck-cs-delay",
1034  					     &sck_cs_delay);
1035  	} else {
1036  		cs_sck_delay = pdata->cs_sck_delay;
1037  		sck_cs_delay = pdata->sck_cs_delay;
1038  	}
1039  
1040  	/* Since tCSC and tASC apply to continuous transfers too, avoid SCK
1041  	 * glitches of half a cycle by never allowing tCSC + tASC to go below
1042  	 * half a SCK period.
1043  	 */
1044  	if (cs_sck_delay < quarter_period_ns)
1045  		cs_sck_delay = quarter_period_ns;
1046  	if (sck_cs_delay < quarter_period_ns)
1047  		sck_cs_delay = quarter_period_ns;
1048  
1049  	dev_dbg(&spi->dev,
1050  		"DSPI controller timing params: CS-to-SCK delay %u ns, SCK-to-CS delay %u ns\n",
1051  		cs_sck_delay, sck_cs_delay);
1052  
1053  	clkrate = clk_get_rate(dspi->clk);
1054  	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1055  
1056  	/* Set PCS to SCK delay scale values */
1057  	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1058  
1059  	/* Set After SCK delay scale values */
1060  	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1061  
1062  	chip->ctar_val = 0;
1063  	if (spi->mode & SPI_CPOL)
1064  		chip->ctar_val |= SPI_CTAR_CPOL;
1065  	if (spi->mode & SPI_CPHA)
1066  		chip->ctar_val |= SPI_CTAR_CPHA;
1067  
1068  	if (!spi_controller_is_target(dspi->ctlr)) {
1069  		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1070  				  SPI_CTAR_CSSCK(cssck) |
1071  				  SPI_CTAR_PASC(pasc) |
1072  				  SPI_CTAR_ASC(asc) |
1073  				  SPI_CTAR_PBR(pbr) |
1074  				  SPI_CTAR_BR(br);
1075  
1076  		if (spi->mode & SPI_LSB_FIRST)
1077  			chip->ctar_val |= SPI_CTAR_LSBFE;
1078  	}
1079  
1080  	gpiod_direction_output(spi_get_csgpiod(spi, 0), false);
1081  	dspi_deassert_cs(spi, &cs);
1082  
1083  	spi_set_ctldata(spi, chip);
1084  
1085  	return 0;
1086  }
1087  
1088  static void dspi_cleanup(struct spi_device *spi)
1089  {
1090  	struct chip_data *chip = spi_get_ctldata(spi);
1091  
1092  	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1093  		spi->controller->bus_num, spi_get_chipselect(spi, 0));
1094  
1095  	kfree(chip);
1096  }
1097  
1098  static const struct of_device_id fsl_dspi_dt_ids[] = {
1099  	{
1100  		.compatible = "fsl,vf610-dspi",
1101  		.data = &devtype_data[VF610],
1102  	}, {
1103  		.compatible = "fsl,ls1021a-v1.0-dspi",
1104  		.data = &devtype_data[LS1021A],
1105  	}, {
1106  		.compatible = "fsl,ls1012a-dspi",
1107  		.data = &devtype_data[LS1012A],
1108  	}, {
1109  		.compatible = "fsl,ls1028a-dspi",
1110  		.data = &devtype_data[LS1028A],
1111  	}, {
1112  		.compatible = "fsl,ls1043a-dspi",
1113  		.data = &devtype_data[LS1043A],
1114  	}, {
1115  		.compatible = "fsl,ls1046a-dspi",
1116  		.data = &devtype_data[LS1046A],
1117  	}, {
1118  		.compatible = "fsl,ls2080a-dspi",
1119  		.data = &devtype_data[LS2080A],
1120  	}, {
1121  		.compatible = "fsl,ls2085a-dspi",
1122  		.data = &devtype_data[LS2085A],
1123  	}, {
1124  		.compatible = "fsl,lx2160a-dspi",
1125  		.data = &devtype_data[LX2160A],
1126  	},
1127  	{ /* sentinel */ }
1128  };
1129  MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1130  
1131  #ifdef CONFIG_PM_SLEEP
1132  static int dspi_suspend(struct device *dev)
1133  {
1134  	struct fsl_dspi *dspi = dev_get_drvdata(dev);
1135  
1136  	if (dspi->irq)
1137  		disable_irq(dspi->irq);
1138  	spi_controller_suspend(dspi->ctlr);
1139  	clk_disable_unprepare(dspi->clk);
1140  
1141  	pinctrl_pm_select_sleep_state(dev);
1142  
1143  	return 0;
1144  }
1145  
1146  static int dspi_resume(struct device *dev)
1147  {
1148  	struct fsl_dspi *dspi = dev_get_drvdata(dev);
1149  	int ret;
1150  
1151  	pinctrl_pm_select_default_state(dev);
1152  
1153  	ret = clk_prepare_enable(dspi->clk);
1154  	if (ret)
1155  		return ret;
1156  	spi_controller_resume(dspi->ctlr);
1157  	if (dspi->irq)
1158  		enable_irq(dspi->irq);
1159  
1160  	return 0;
1161  }
1162  #endif /* CONFIG_PM_SLEEP */
1163  
1164  static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1165  
1166  static const struct regmap_range dspi_volatile_ranges[] = {
1167  	regmap_reg_range(SPI_MCR, SPI_TCR),
1168  	regmap_reg_range(SPI_SR, SPI_SR),
1169  	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1170  };
1171  
1172  static const struct regmap_access_table dspi_volatile_table = {
1173  	.yes_ranges	= dspi_volatile_ranges,
1174  	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
1175  };
1176  
1177  static const struct regmap_config dspi_regmap_config = {
1178  	.reg_bits	= 32,
1179  	.val_bits	= 32,
1180  	.reg_stride	= 4,
1181  	.max_register	= 0x88,
1182  	.volatile_table	= &dspi_volatile_table,
1183  };
1184  
1185  static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1186  	regmap_reg_range(SPI_MCR, SPI_TCR),
1187  	regmap_reg_range(SPI_SR, SPI_SR),
1188  	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1189  	regmap_reg_range(SPI_SREX, SPI_SREX),
1190  };
1191  
1192  static const struct regmap_access_table dspi_xspi_volatile_table = {
1193  	.yes_ranges	= dspi_xspi_volatile_ranges,
1194  	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
1195  };
1196  
1197  static const struct regmap_config dspi_xspi_regmap_config[] = {
1198  	{
1199  		.reg_bits	= 32,
1200  		.val_bits	= 32,
1201  		.reg_stride	= 4,
1202  		.max_register	= 0x13c,
1203  		.volatile_table	= &dspi_xspi_volatile_table,
1204  	},
1205  	{
1206  		.name		= "pushr",
1207  		.reg_bits	= 16,
1208  		.val_bits	= 16,
1209  		.reg_stride	= 2,
1210  		.max_register	= 0x2,
1211  	},
1212  };
1213  
1214  static int dspi_init(struct fsl_dspi *dspi)
1215  {
1216  	unsigned int mcr;
1217  
1218  	/* Set idle states for all chip select signals to high */
1219  	mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
1220  
1221  	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1222  		mcr |= SPI_MCR_XSPI;
1223  	if (!spi_controller_is_target(dspi->ctlr))
1224  		mcr |= SPI_MCR_HOST;
1225  
1226  	regmap_write(dspi->regmap, SPI_MCR, mcr);
1227  	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1228  
1229  	switch (dspi->devtype_data->trans_mode) {
1230  	case DSPI_XSPI_MODE:
1231  		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1232  		break;
1233  	case DSPI_DMA_MODE:
1234  		regmap_write(dspi->regmap, SPI_RSER,
1235  			     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1236  			     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1237  		break;
1238  	default:
1239  		dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1240  			dspi->devtype_data->trans_mode);
1241  		return -EINVAL;
1242  	}
1243  
1244  	return 0;
1245  }
1246  
1247  static int dspi_target_abort(struct spi_controller *host)
1248  {
1249  	struct fsl_dspi *dspi = spi_controller_get_devdata(host);
1250  
1251  	/*
1252  	 * Terminate all pending DMA transactions for the SPI working
1253  	 * in TARGET mode.
1254  	 */
1255  	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1256  		dmaengine_terminate_sync(dspi->dma->chan_rx);
1257  		dmaengine_terminate_sync(dspi->dma->chan_tx);
1258  	}
1259  
1260  	/* Clear the internal DSPI RX and TX FIFO buffers */
1261  	regmap_update_bits(dspi->regmap, SPI_MCR,
1262  			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1263  			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1264  
1265  	return 0;
1266  }
1267  
1268  static int dspi_probe(struct platform_device *pdev)
1269  {
1270  	struct device_node *np = pdev->dev.of_node;
1271  	const struct regmap_config *regmap_config;
1272  	struct fsl_dspi_platform_data *pdata;
1273  	struct spi_controller *ctlr;
1274  	int ret, cs_num, bus_num = -1;
1275  	struct fsl_dspi *dspi;
1276  	struct resource *res;
1277  	void __iomem *base;
1278  	bool big_endian;
1279  
1280  	dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
1281  	if (!dspi)
1282  		return -ENOMEM;
1283  
1284  	ctlr = spi_alloc_host(&pdev->dev, 0);
1285  	if (!ctlr)
1286  		return -ENOMEM;
1287  
1288  	spi_controller_set_devdata(ctlr, dspi);
1289  	platform_set_drvdata(pdev, dspi);
1290  
1291  	dspi->pdev = pdev;
1292  	dspi->ctlr = ctlr;
1293  
1294  	ctlr->setup = dspi_setup;
1295  	ctlr->transfer_one_message = dspi_transfer_one_message;
1296  	ctlr->dev.of_node = pdev->dev.of_node;
1297  
1298  	ctlr->cleanup = dspi_cleanup;
1299  	ctlr->target_abort = dspi_target_abort;
1300  	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1301  	ctlr->use_gpio_descriptors = true;
1302  
1303  	pdata = dev_get_platdata(&pdev->dev);
1304  	if (pdata) {
1305  		ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
1306  		ctlr->bus_num = pdata->bus_num;
1307  
1308  		/* Only Coldfire uses platform data */
1309  		dspi->devtype_data = &devtype_data[MCF5441X];
1310  		big_endian = true;
1311  	} else {
1312  
1313  		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1314  		if (ret < 0) {
1315  			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1316  			goto out_ctlr_put;
1317  		}
1318  		ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
1319  
1320  		of_property_read_u32(np, "bus-num", &bus_num);
1321  		ctlr->bus_num = bus_num;
1322  
1323  		if (of_property_read_bool(np, "spi-slave"))
1324  			ctlr->target = true;
1325  
1326  		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1327  		if (!dspi->devtype_data) {
1328  			dev_err(&pdev->dev, "can't get devtype_data\n");
1329  			ret = -EFAULT;
1330  			goto out_ctlr_put;
1331  		}
1332  
1333  		big_endian = of_device_is_big_endian(np);
1334  	}
1335  	if (big_endian) {
1336  		dspi->pushr_cmd = 0;
1337  		dspi->pushr_tx = 2;
1338  	} else {
1339  		dspi->pushr_cmd = 2;
1340  		dspi->pushr_tx = 0;
1341  	}
1342  
1343  	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1344  		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1345  	else
1346  		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1347  
1348  	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1349  	if (IS_ERR(base)) {
1350  		ret = PTR_ERR(base);
1351  		goto out_ctlr_put;
1352  	}
1353  
1354  	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1355  		regmap_config = &dspi_xspi_regmap_config[0];
1356  	else
1357  		regmap_config = &dspi_regmap_config;
1358  	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1359  	if (IS_ERR(dspi->regmap)) {
1360  		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1361  				PTR_ERR(dspi->regmap));
1362  		ret = PTR_ERR(dspi->regmap);
1363  		goto out_ctlr_put;
1364  	}
1365  
1366  	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1367  		dspi->regmap_pushr = devm_regmap_init_mmio(
1368  			&pdev->dev, base + SPI_PUSHR,
1369  			&dspi_xspi_regmap_config[1]);
1370  		if (IS_ERR(dspi->regmap_pushr)) {
1371  			dev_err(&pdev->dev,
1372  				"failed to init pushr regmap: %ld\n",
1373  				PTR_ERR(dspi->regmap_pushr));
1374  			ret = PTR_ERR(dspi->regmap_pushr);
1375  			goto out_ctlr_put;
1376  		}
1377  	}
1378  
1379  	dspi->clk = devm_clk_get_enabled(&pdev->dev, "dspi");
1380  	if (IS_ERR(dspi->clk)) {
1381  		ret = PTR_ERR(dspi->clk);
1382  		dev_err(&pdev->dev, "unable to get clock\n");
1383  		goto out_ctlr_put;
1384  	}
1385  
1386  	ret = dspi_init(dspi);
1387  	if (ret)
1388  		goto out_ctlr_put;
1389  
1390  	dspi->irq = platform_get_irq(pdev, 0);
1391  	if (dspi->irq <= 0) {
1392  		dev_info(&pdev->dev,
1393  			 "can't get platform irq, using poll mode\n");
1394  		dspi->irq = 0;
1395  		goto poll_mode;
1396  	}
1397  
1398  	init_completion(&dspi->xfer_done);
1399  
1400  	ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1401  				   IRQF_SHARED, pdev->name, dspi);
1402  	if (ret < 0) {
1403  		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1404  		goto out_ctlr_put;
1405  	}
1406  
1407  poll_mode:
1408  
1409  	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1410  		ret = dspi_request_dma(dspi, res->start);
1411  		if (ret < 0) {
1412  			dev_err(&pdev->dev, "can't get dma channels\n");
1413  			goto out_free_irq;
1414  		}
1415  	}
1416  
1417  	ctlr->max_speed_hz =
1418  		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1419  
1420  	if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1421  		ctlr->ptp_sts_supported = true;
1422  
1423  	ret = spi_register_controller(ctlr);
1424  	if (ret != 0) {
1425  		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1426  		goto out_release_dma;
1427  	}
1428  
1429  	return ret;
1430  
1431  out_release_dma:
1432  	dspi_release_dma(dspi);
1433  out_free_irq:
1434  	if (dspi->irq)
1435  		free_irq(dspi->irq, dspi);
1436  out_ctlr_put:
1437  	spi_controller_put(ctlr);
1438  
1439  	return ret;
1440  }
1441  
1442  static void dspi_remove(struct platform_device *pdev)
1443  {
1444  	struct fsl_dspi *dspi = platform_get_drvdata(pdev);
1445  
1446  	/* Disconnect from the SPI framework */
1447  	spi_unregister_controller(dspi->ctlr);
1448  
1449  	/* Disable RX and TX */
1450  	regmap_update_bits(dspi->regmap, SPI_MCR,
1451  			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1452  			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1453  
1454  	/* Stop Running */
1455  	regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1456  
1457  	dspi_release_dma(dspi);
1458  	if (dspi->irq)
1459  		free_irq(dspi->irq, dspi);
1460  }
1461  
1462  static void dspi_shutdown(struct platform_device *pdev)
1463  {
1464  	dspi_remove(pdev);
1465  }
1466  
1467  static struct platform_driver fsl_dspi_driver = {
1468  	.driver.name		= DRIVER_NAME,
1469  	.driver.of_match_table	= fsl_dspi_dt_ids,
1470  	.driver.pm		= &dspi_pm,
1471  	.probe			= dspi_probe,
1472  	.remove_new		= dspi_remove,
1473  	.shutdown		= dspi_shutdown,
1474  };
1475  module_platform_driver(fsl_dspi_driver);
1476  
1477  MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1478  MODULE_LICENSE("GPL");
1479  MODULE_ALIAS("platform:" DRIVER_NAME);
1480