xref: /linux/drivers/spi/spi-fsl-dspi.c (revision 6efc0ab3b05de0d7bab8ec0597214e4788251071)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 // Copyright 2020 NXP
5 //
6 // Freescale DSPI driver
7 // This file contains a driver for the Freescale DSPI
8 
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/regmap.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-fsl-dspi.h>
22 
23 #define DRIVER_NAME			"fsl-dspi"
24 
25 #define SPI_MCR				0x00
26 #define SPI_MCR_HOST			BIT(31)
27 #define SPI_MCR_PCSIS(x)		((x) << 16)
28 #define SPI_MCR_CLR_TXF			BIT(11)
29 #define SPI_MCR_CLR_RXF			BIT(10)
30 #define SPI_MCR_XSPI			BIT(3)
31 #define SPI_MCR_DIS_TXF			BIT(13)
32 #define SPI_MCR_DIS_RXF			BIT(12)
33 #define SPI_MCR_HALT			BIT(0)
34 
35 #define SPI_TCR				0x08
36 #define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
37 
38 #define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
39 #define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
40 #define SPI_CTAR_CPOL			BIT(26)
41 #define SPI_CTAR_CPHA			BIT(25)
42 #define SPI_CTAR_LSBFE			BIT(24)
43 #define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
44 #define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
45 #define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
46 #define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
47 #define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
48 #define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
49 #define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
50 #define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
51 #define SPI_CTAR_SCALE_BITS		0xf
52 
53 #define SPI_CTAR0_SLAVE			0x0c
54 
55 #define SPI_SR				0x2c
56 #define SPI_SR_TCFQF			BIT(31)
57 #define SPI_SR_TFUF			BIT(27)
58 #define SPI_SR_TFFF			BIT(25)
59 #define SPI_SR_CMDTCF			BIT(23)
60 #define SPI_SR_SPEF			BIT(21)
61 #define SPI_SR_RFOF			BIT(19)
62 #define SPI_SR_TFIWF			BIT(18)
63 #define SPI_SR_RFDF			BIT(17)
64 #define SPI_SR_CMDFFF			BIT(16)
65 #define SPI_SR_CLEAR			(SPI_SR_TCFQF | \
66 					SPI_SR_TFUF | SPI_SR_TFFF | \
67 					SPI_SR_CMDTCF | SPI_SR_SPEF | \
68 					SPI_SR_RFOF | SPI_SR_TFIWF | \
69 					SPI_SR_RFDF | SPI_SR_CMDFFF)
70 
71 #define SPI_RSER_TFFFE			BIT(25)
72 #define SPI_RSER_TFFFD			BIT(24)
73 #define SPI_RSER_RFDFE			BIT(17)
74 #define SPI_RSER_RFDFD			BIT(16)
75 
76 #define SPI_RSER			0x30
77 #define SPI_RSER_TCFQE			BIT(31)
78 #define SPI_RSER_CMDTCFE		BIT(23)
79 
80 #define SPI_PUSHR			0x34
81 #define SPI_PUSHR_CMD_CONT		BIT(15)
82 #define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
83 #define SPI_PUSHR_CMD_EOQ		BIT(11)
84 #define SPI_PUSHR_CMD_CTCNT		BIT(10)
85 #define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
86 
87 #define SPI_PUSHR_SLAVE			0x34
88 
89 #define SPI_POPR			0x38
90 
91 #define SPI_TXFR0			0x3c
92 #define SPI_TXFR1			0x40
93 #define SPI_TXFR2			0x44
94 #define SPI_TXFR3			0x48
95 #define SPI_RXFR0			0x7c
96 #define SPI_RXFR1			0x80
97 #define SPI_RXFR2			0x84
98 #define SPI_RXFR3			0x88
99 
100 #define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
101 #define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
102 #define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
103 
104 #define SPI_SREX			0x13c
105 
106 #define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
107 #define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
108 
109 #define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
110 
111 struct chip_data {
112 	u32			ctar_val;
113 };
114 
115 enum dspi_trans_mode {
116 	DSPI_XSPI_MODE,
117 	DSPI_DMA_MODE,
118 };
119 
120 struct fsl_dspi_devtype_data {
121 	enum dspi_trans_mode	trans_mode;
122 	u8			max_clock_factor;
123 	int			fifo_size;
124 };
125 
126 enum {
127 	LS1021A,
128 	LS1012A,
129 	LS1028A,
130 	LS1043A,
131 	LS1046A,
132 	LS2080A,
133 	LS2085A,
134 	LX2160A,
135 	MCF5441X,
136 	VF610,
137 };
138 
139 static const struct fsl_dspi_devtype_data devtype_data[] = {
140 	[VF610] = {
141 		.trans_mode		= DSPI_DMA_MODE,
142 		.max_clock_factor	= 2,
143 		.fifo_size		= 4,
144 	},
145 	[LS1021A] = {
146 		/* Has A-011218 DMA erratum */
147 		.trans_mode		= DSPI_XSPI_MODE,
148 		.max_clock_factor	= 8,
149 		.fifo_size		= 4,
150 	},
151 	[LS1012A] = {
152 		/* Has A-011218 DMA erratum */
153 		.trans_mode		= DSPI_XSPI_MODE,
154 		.max_clock_factor	= 8,
155 		.fifo_size		= 16,
156 	},
157 	[LS1028A] = {
158 		.trans_mode		= DSPI_XSPI_MODE,
159 		.max_clock_factor	= 8,
160 		.fifo_size		= 4,
161 	},
162 	[LS1043A] = {
163 		/* Has A-011218 DMA erratum */
164 		.trans_mode		= DSPI_XSPI_MODE,
165 		.max_clock_factor	= 8,
166 		.fifo_size		= 16,
167 	},
168 	[LS1046A] = {
169 		/* Has A-011218 DMA erratum */
170 		.trans_mode		= DSPI_XSPI_MODE,
171 		.max_clock_factor	= 8,
172 		.fifo_size		= 16,
173 	},
174 	[LS2080A] = {
175 		.trans_mode		= DSPI_XSPI_MODE,
176 		.max_clock_factor	= 8,
177 		.fifo_size		= 4,
178 	},
179 	[LS2085A] = {
180 		.trans_mode		= DSPI_XSPI_MODE,
181 		.max_clock_factor	= 8,
182 		.fifo_size		= 4,
183 	},
184 	[LX2160A] = {
185 		.trans_mode		= DSPI_XSPI_MODE,
186 		.max_clock_factor	= 8,
187 		.fifo_size		= 4,
188 	},
189 	[MCF5441X] = {
190 		.trans_mode		= DSPI_DMA_MODE,
191 		.max_clock_factor	= 8,
192 		.fifo_size		= 16,
193 	},
194 };
195 
196 struct fsl_dspi_dma {
197 	u32					*tx_dma_buf;
198 	struct dma_chan				*chan_tx;
199 	dma_addr_t				tx_dma_phys;
200 	struct completion			cmd_tx_complete;
201 	struct dma_async_tx_descriptor		*tx_desc;
202 
203 	u32					*rx_dma_buf;
204 	struct dma_chan				*chan_rx;
205 	dma_addr_t				rx_dma_phys;
206 	struct completion			cmd_rx_complete;
207 	struct dma_async_tx_descriptor		*rx_desc;
208 };
209 
210 struct fsl_dspi {
211 	struct spi_controller			*ctlr;
212 	struct platform_device			*pdev;
213 
214 	struct regmap				*regmap;
215 	struct regmap				*regmap_pushr;
216 	int					irq;
217 	struct clk				*clk;
218 
219 	struct spi_transfer			*cur_transfer;
220 	struct spi_message			*cur_msg;
221 	struct chip_data			*cur_chip;
222 	size_t					progress;
223 	size_t					len;
224 	const void				*tx;
225 	void					*rx;
226 	u16					tx_cmd;
227 	const struct fsl_dspi_devtype_data	*devtype_data;
228 
229 	struct completion			xfer_done;
230 
231 	struct fsl_dspi_dma			*dma;
232 
233 	int					oper_word_size;
234 	int					oper_bits_per_word;
235 
236 	int					words_in_flight;
237 
238 	/*
239 	 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
240 	 * individually (in XSPI mode)
241 	 */
242 	int					pushr_cmd;
243 	int					pushr_tx;
244 
245 	void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
246 	void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
247 };
248 
249 static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
250 {
251 	switch (dspi->oper_word_size) {
252 	case 1:
253 		*txdata = *(u8 *)dspi->tx;
254 		break;
255 	case 2:
256 		*txdata = *(u16 *)dspi->tx;
257 		break;
258 	case 4:
259 		*txdata = *(u32 *)dspi->tx;
260 		break;
261 	}
262 	dspi->tx += dspi->oper_word_size;
263 }
264 
265 static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
266 {
267 	switch (dspi->oper_word_size) {
268 	case 1:
269 		*(u8 *)dspi->rx = rxdata;
270 		break;
271 	case 2:
272 		*(u16 *)dspi->rx = rxdata;
273 		break;
274 	case 4:
275 		*(u32 *)dspi->rx = rxdata;
276 		break;
277 	}
278 	dspi->rx += dspi->oper_word_size;
279 }
280 
281 static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
282 {
283 	*txdata = cpu_to_be32(*(u32 *)dspi->tx);
284 	dspi->tx += sizeof(u32);
285 }
286 
287 static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
288 {
289 	*(u32 *)dspi->rx = be32_to_cpu(rxdata);
290 	dspi->rx += sizeof(u32);
291 }
292 
293 static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
294 {
295 	*txdata = cpu_to_be16(*(u16 *)dspi->tx);
296 	dspi->tx += sizeof(u16);
297 }
298 
299 static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
300 {
301 	*(u16 *)dspi->rx = be16_to_cpu(rxdata);
302 	dspi->rx += sizeof(u16);
303 }
304 
305 static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
306 {
307 	u16 hi = *(u16 *)dspi->tx;
308 	u16 lo = *(u16 *)(dspi->tx + 2);
309 
310 	*txdata = (u32)hi << 16 | lo;
311 	dspi->tx += sizeof(u32);
312 }
313 
314 static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
315 {
316 	u16 hi = rxdata & 0xffff;
317 	u16 lo = rxdata >> 16;
318 
319 	*(u16 *)dspi->rx = lo;
320 	*(u16 *)(dspi->rx + 2) = hi;
321 	dspi->rx += sizeof(u32);
322 }
323 
324 /*
325  * Pop one word from the TX buffer for pushing into the
326  * PUSHR register (TX FIFO)
327  */
328 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
329 {
330 	u32 txdata = 0;
331 
332 	if (dspi->tx)
333 		dspi->host_to_dev(dspi, &txdata);
334 	dspi->len -= dspi->oper_word_size;
335 	return txdata;
336 }
337 
338 /* Prepare one TX FIFO entry (txdata plus cmd) */
339 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
340 {
341 	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
342 
343 	if (spi_controller_is_target(dspi->ctlr))
344 		return data;
345 
346 	if (dspi->len > 0)
347 		cmd |= SPI_PUSHR_CMD_CONT;
348 	return cmd << 16 | data;
349 }
350 
351 /* Push one word to the RX buffer from the POPR register (RX FIFO) */
352 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
353 {
354 	if (!dspi->rx)
355 		return;
356 	dspi->dev_to_host(dspi, rxdata);
357 }
358 
359 static void dspi_tx_dma_callback(void *arg)
360 {
361 	struct fsl_dspi *dspi = arg;
362 	struct fsl_dspi_dma *dma = dspi->dma;
363 
364 	complete(&dma->cmd_tx_complete);
365 }
366 
367 static void dspi_rx_dma_callback(void *arg)
368 {
369 	struct fsl_dspi *dspi = arg;
370 	struct fsl_dspi_dma *dma = dspi->dma;
371 	int i;
372 
373 	if (dspi->rx) {
374 		for (i = 0; i < dspi->words_in_flight; i++)
375 			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
376 	}
377 
378 	complete(&dma->cmd_rx_complete);
379 }
380 
381 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
382 {
383 	struct device *dev = &dspi->pdev->dev;
384 	struct fsl_dspi_dma *dma = dspi->dma;
385 	int time_left;
386 	int i;
387 
388 	for (i = 0; i < dspi->words_in_flight; i++)
389 		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
390 
391 	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
392 					dma->tx_dma_phys,
393 					dspi->words_in_flight *
394 					DMA_SLAVE_BUSWIDTH_4_BYTES,
395 					DMA_MEM_TO_DEV,
396 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
397 	if (!dma->tx_desc) {
398 		dev_err(dev, "Not able to get desc for DMA xfer\n");
399 		return -EIO;
400 	}
401 
402 	dma->tx_desc->callback = dspi_tx_dma_callback;
403 	dma->tx_desc->callback_param = dspi;
404 	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
405 		dev_err(dev, "DMA submit failed\n");
406 		return -EINVAL;
407 	}
408 
409 	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
410 					dma->rx_dma_phys,
411 					dspi->words_in_flight *
412 					DMA_SLAVE_BUSWIDTH_4_BYTES,
413 					DMA_DEV_TO_MEM,
414 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
415 	if (!dma->rx_desc) {
416 		dev_err(dev, "Not able to get desc for DMA xfer\n");
417 		return -EIO;
418 	}
419 
420 	dma->rx_desc->callback = dspi_rx_dma_callback;
421 	dma->rx_desc->callback_param = dspi;
422 	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
423 		dev_err(dev, "DMA submit failed\n");
424 		return -EINVAL;
425 	}
426 
427 	reinit_completion(&dspi->dma->cmd_rx_complete);
428 	reinit_completion(&dspi->dma->cmd_tx_complete);
429 
430 	dma_async_issue_pending(dma->chan_rx);
431 	dma_async_issue_pending(dma->chan_tx);
432 
433 	if (spi_controller_is_target(dspi->ctlr)) {
434 		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
435 		return 0;
436 	}
437 
438 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
439 						DMA_COMPLETION_TIMEOUT);
440 	if (time_left == 0) {
441 		dev_err(dev, "DMA tx timeout\n");
442 		dmaengine_terminate_all(dma->chan_tx);
443 		dmaengine_terminate_all(dma->chan_rx);
444 		return -ETIMEDOUT;
445 	}
446 
447 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
448 						DMA_COMPLETION_TIMEOUT);
449 	if (time_left == 0) {
450 		dev_err(dev, "DMA rx timeout\n");
451 		dmaengine_terminate_all(dma->chan_tx);
452 		dmaengine_terminate_all(dma->chan_rx);
453 		return -ETIMEDOUT;
454 	}
455 
456 	return 0;
457 }
458 
459 static void dspi_setup_accel(struct fsl_dspi *dspi);
460 
461 static int dspi_dma_xfer(struct fsl_dspi *dspi)
462 {
463 	struct spi_message *message = dspi->cur_msg;
464 	struct device *dev = &dspi->pdev->dev;
465 	int ret = 0;
466 
467 	/*
468 	 * dspi->len gets decremented by dspi_pop_tx_pushr in
469 	 * dspi_next_xfer_dma_submit
470 	 */
471 	while (dspi->len) {
472 		/* Figure out operational bits-per-word for this chunk */
473 		dspi_setup_accel(dspi);
474 
475 		dspi->words_in_flight = dspi->len / dspi->oper_word_size;
476 		if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
477 			dspi->words_in_flight = dspi->devtype_data->fifo_size;
478 
479 		message->actual_length += dspi->words_in_flight *
480 					  dspi->oper_word_size;
481 
482 		ret = dspi_next_xfer_dma_submit(dspi);
483 		if (ret) {
484 			dev_err(dev, "DMA transfer failed\n");
485 			break;
486 		}
487 	}
488 
489 	return ret;
490 }
491 
492 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
493 {
494 	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
495 	struct device *dev = &dspi->pdev->dev;
496 	struct dma_slave_config cfg;
497 	struct fsl_dspi_dma *dma;
498 	int ret;
499 
500 	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
501 	if (!dma)
502 		return -ENOMEM;
503 
504 	dma->chan_rx = dma_request_chan(dev, "rx");
505 	if (IS_ERR(dma->chan_rx))
506 		return dev_err_probe(dev, PTR_ERR(dma->chan_rx), "rx dma channel not available\n");
507 
508 	dma->chan_tx = dma_request_chan(dev, "tx");
509 	if (IS_ERR(dma->chan_tx)) {
510 		ret = dev_err_probe(dev, PTR_ERR(dma->chan_tx), "tx dma channel not available\n");
511 		goto err_tx_channel;
512 	}
513 
514 	dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
515 					     dma_bufsize, &dma->tx_dma_phys,
516 					     GFP_KERNEL);
517 	if (!dma->tx_dma_buf) {
518 		ret = -ENOMEM;
519 		goto err_tx_dma_buf;
520 	}
521 
522 	dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
523 					     dma_bufsize, &dma->rx_dma_phys,
524 					     GFP_KERNEL);
525 	if (!dma->rx_dma_buf) {
526 		ret = -ENOMEM;
527 		goto err_rx_dma_buf;
528 	}
529 
530 	memset(&cfg, 0, sizeof(cfg));
531 	cfg.src_addr = phy_addr + SPI_POPR;
532 	cfg.dst_addr = phy_addr + SPI_PUSHR;
533 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
534 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
535 	cfg.src_maxburst = 1;
536 	cfg.dst_maxburst = 1;
537 
538 	cfg.direction = DMA_DEV_TO_MEM;
539 	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
540 	if (ret) {
541 		dev_err_probe(dev, ret, "can't configure rx dma channel\n");
542 		goto err_slave_config;
543 	}
544 
545 	cfg.direction = DMA_MEM_TO_DEV;
546 	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
547 	if (ret) {
548 		dev_err_probe(dev, ret, "can't configure tx dma channel\n");
549 		goto err_slave_config;
550 	}
551 
552 	dspi->dma = dma;
553 	init_completion(&dma->cmd_tx_complete);
554 	init_completion(&dma->cmd_rx_complete);
555 
556 	return 0;
557 
558 err_slave_config:
559 	dma_free_coherent(dma->chan_rx->device->dev,
560 			  dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
561 err_rx_dma_buf:
562 	dma_free_coherent(dma->chan_tx->device->dev,
563 			  dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
564 err_tx_dma_buf:
565 	dma_release_channel(dma->chan_tx);
566 err_tx_channel:
567 	dma_release_channel(dma->chan_rx);
568 
569 	devm_kfree(dev, dma);
570 	dspi->dma = NULL;
571 
572 	return ret;
573 }
574 
575 static void dspi_release_dma(struct fsl_dspi *dspi)
576 {
577 	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
578 	struct fsl_dspi_dma *dma = dspi->dma;
579 
580 	if (!dma)
581 		return;
582 
583 	if (dma->chan_tx) {
584 		dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
585 				  dma->tx_dma_buf, dma->tx_dma_phys);
586 		dma_release_channel(dma->chan_tx);
587 	}
588 
589 	if (dma->chan_rx) {
590 		dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
591 				  dma->rx_dma_buf, dma->rx_dma_phys);
592 		dma_release_channel(dma->chan_rx);
593 	}
594 }
595 
596 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
597 			   unsigned long clkrate)
598 {
599 	/* Valid baud rate pre-scaler values */
600 	int pbr_tbl[4] = {2, 3, 5, 7};
601 	int brs[16] = {	2,	4,	6,	8,
602 			16,	32,	64,	128,
603 			256,	512,	1024,	2048,
604 			4096,	8192,	16384,	32768 };
605 	int scale_needed, scale, minscale = INT_MAX;
606 	int i, j;
607 
608 	scale_needed = clkrate / speed_hz;
609 	if (clkrate % speed_hz)
610 		scale_needed++;
611 
612 	for (i = 0; i < ARRAY_SIZE(brs); i++)
613 		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
614 			scale = brs[i] * pbr_tbl[j];
615 			if (scale >= scale_needed) {
616 				if (scale < minscale) {
617 					minscale = scale;
618 					*br = i;
619 					*pbr = j;
620 				}
621 				break;
622 			}
623 		}
624 
625 	if (minscale == INT_MAX) {
626 		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
627 			speed_hz, clkrate);
628 		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
629 		*br =  ARRAY_SIZE(brs) - 1;
630 	}
631 }
632 
633 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
634 			   unsigned long clkrate)
635 {
636 	int scale_needed, scale, minscale = INT_MAX;
637 	int pscale_tbl[4] = {1, 3, 5, 7};
638 	u32 remainder;
639 	int i, j;
640 
641 	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
642 				   &remainder);
643 	if (remainder)
644 		scale_needed++;
645 
646 	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
647 		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
648 			scale = pscale_tbl[i] * (2 << j);
649 			if (scale >= scale_needed) {
650 				if (scale < minscale) {
651 					minscale = scale;
652 					*psc = i;
653 					*sc = j;
654 				}
655 				break;
656 			}
657 		}
658 
659 	if (minscale == INT_MAX) {
660 		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
661 			delay_ns, clkrate);
662 		*psc = ARRAY_SIZE(pscale_tbl) - 1;
663 		*sc = SPI_CTAR_SCALE_BITS;
664 	}
665 }
666 
667 static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
668 {
669 	/*
670 	 * The only time when the PCS doesn't need continuation after this word
671 	 * is when it's last. We need to look ahead, because we actually call
672 	 * dspi_pop_tx (the function that decrements dspi->len) _after_
673 	 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
674 	 * word is enough. If there's more to transmit than that,
675 	 * dspi_xspi_write will know to split the FIFO writes in 2, and
676 	 * generate a new PUSHR command with the final word that will have PCS
677 	 * deasserted (not continued) here.
678 	 */
679 	if (dspi->len > dspi->oper_word_size)
680 		cmd |= SPI_PUSHR_CMD_CONT;
681 	regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
682 }
683 
684 static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
685 {
686 	regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
687 }
688 
689 static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
690 {
691 	int num_bytes = num_words * dspi->oper_word_size;
692 	u16 tx_cmd = dspi->tx_cmd;
693 
694 	/*
695 	 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
696 	 * and cs_change does not want the PCS to stay on), then we need a new
697 	 * PUSHR command, since this one (for the body of the buffer)
698 	 * necessarily has the CONT bit set.
699 	 * So send one word less during this go, to force a split and a command
700 	 * with a single word next time, when CONT will be unset.
701 	 */
702 	if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
703 		tx_cmd |= SPI_PUSHR_CMD_EOQ;
704 
705 	/* Update CTARE */
706 	regmap_write(dspi->regmap, SPI_CTARE(0),
707 		     SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
708 		     SPI_CTARE_DTCP(num_words));
709 
710 	/*
711 	 * Write the CMD FIFO entry first, and then the two
712 	 * corresponding TX FIFO entries (or one...).
713 	 */
714 	dspi_pushr_cmd_write(dspi, tx_cmd);
715 
716 	/* Fill TX FIFO with as many transfers as possible */
717 	while (num_words--) {
718 		u32 data = dspi_pop_tx(dspi);
719 
720 		dspi_pushr_txdata_write(dspi, data & 0xFFFF);
721 		if (dspi->oper_bits_per_word > 16)
722 			dspi_pushr_txdata_write(dspi, data >> 16);
723 	}
724 }
725 
726 static u32 dspi_popr_read(struct fsl_dspi *dspi)
727 {
728 	u32 rxdata = 0;
729 
730 	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
731 	return rxdata;
732 }
733 
734 static void dspi_fifo_read(struct fsl_dspi *dspi)
735 {
736 	int num_fifo_entries = dspi->words_in_flight;
737 
738 	/* Read one FIFO entry and push to rx buffer */
739 	while (num_fifo_entries--)
740 		dspi_push_rx(dspi, dspi_popr_read(dspi));
741 }
742 
743 static void dspi_setup_accel(struct fsl_dspi *dspi)
744 {
745 	struct spi_transfer *xfer = dspi->cur_transfer;
746 	bool odd = !!(dspi->len & 1);
747 
748 	/* No accel for frames not multiple of 8 bits at the moment */
749 	if (xfer->bits_per_word % 8)
750 		goto no_accel;
751 
752 	if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
753 		dspi->oper_bits_per_word = 16;
754 	} else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
755 		dspi->oper_bits_per_word = 8;
756 	} else {
757 		/* Start off with maximum supported by hardware */
758 		if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
759 			dspi->oper_bits_per_word = 32;
760 		else
761 			dspi->oper_bits_per_word = 16;
762 
763 		/*
764 		 * And go down only if the buffer can't be sent with
765 		 * words this big
766 		 */
767 		do {
768 			if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
769 				break;
770 
771 			dspi->oper_bits_per_word /= 2;
772 		} while (dspi->oper_bits_per_word > 8);
773 	}
774 
775 	if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
776 		dspi->dev_to_host = dspi_8on32_dev_to_host;
777 		dspi->host_to_dev = dspi_8on32_host_to_dev;
778 	} else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
779 		dspi->dev_to_host = dspi_8on16_dev_to_host;
780 		dspi->host_to_dev = dspi_8on16_host_to_dev;
781 	} else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
782 		dspi->dev_to_host = dspi_16on32_dev_to_host;
783 		dspi->host_to_dev = dspi_16on32_host_to_dev;
784 	} else {
785 no_accel:
786 		dspi->dev_to_host = dspi_native_dev_to_host;
787 		dspi->host_to_dev = dspi_native_host_to_dev;
788 		dspi->oper_bits_per_word = xfer->bits_per_word;
789 	}
790 
791 	dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
792 
793 	/*
794 	 * Update CTAR here (code is common for XSPI and DMA modes).
795 	 * We will update CTARE in the portion specific to XSPI, when we
796 	 * also know the preload value (DTCP).
797 	 */
798 	regmap_write(dspi->regmap, SPI_CTAR(0),
799 		     dspi->cur_chip->ctar_val |
800 		     SPI_FRAME_BITS(dspi->oper_bits_per_word));
801 }
802 
803 static void dspi_fifo_write(struct fsl_dspi *dspi)
804 {
805 	int num_fifo_entries = dspi->devtype_data->fifo_size;
806 	struct spi_transfer *xfer = dspi->cur_transfer;
807 	struct spi_message *msg = dspi->cur_msg;
808 	int num_words, num_bytes;
809 
810 	dspi_setup_accel(dspi);
811 
812 	/* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
813 	if (dspi->oper_word_size == 4)
814 		num_fifo_entries /= 2;
815 
816 	/*
817 	 * Integer division intentionally trims off odd (or non-multiple of 4)
818 	 * numbers of bytes at the end of the buffer, which will be sent next
819 	 * time using a smaller oper_word_size.
820 	 */
821 	num_words = dspi->len / dspi->oper_word_size;
822 	if (num_words > num_fifo_entries)
823 		num_words = num_fifo_entries;
824 
825 	/* Update total number of bytes that were transferred */
826 	num_bytes = num_words * dspi->oper_word_size;
827 	msg->actual_length += num_bytes;
828 	dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
829 
830 	/*
831 	 * Update shared variable for use in the next interrupt (both in
832 	 * dspi_fifo_read and in dspi_fifo_write).
833 	 */
834 	dspi->words_in_flight = num_words;
835 
836 	spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
837 
838 	dspi_xspi_fifo_write(dspi, num_words);
839 	/*
840 	 * Everything after this point is in a potential race with the next
841 	 * interrupt, so we must never use dspi->words_in_flight again since it
842 	 * might already be modified by the next dspi_fifo_write.
843 	 */
844 
845 	spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
846 				dspi->progress, !dspi->irq);
847 }
848 
849 static int dspi_rxtx(struct fsl_dspi *dspi)
850 {
851 	dspi_fifo_read(dspi);
852 
853 	if (!dspi->len)
854 		/* Success! */
855 		return 0;
856 
857 	dspi_fifo_write(dspi);
858 
859 	return -EINPROGRESS;
860 }
861 
862 static int dspi_poll(struct fsl_dspi *dspi)
863 {
864 	int tries = 1000;
865 	u32 spi_sr;
866 
867 	do {
868 		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
869 		regmap_write(dspi->regmap, SPI_SR, spi_sr);
870 
871 		if (spi_sr & SPI_SR_CMDTCF)
872 			break;
873 	} while (--tries);
874 
875 	if (!tries)
876 		return -ETIMEDOUT;
877 
878 	return dspi_rxtx(dspi);
879 }
880 
881 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
882 {
883 	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
884 	u32 spi_sr;
885 
886 	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
887 	regmap_write(dspi->regmap, SPI_SR, spi_sr);
888 
889 	if (!(spi_sr & SPI_SR_CMDTCF))
890 		return IRQ_NONE;
891 
892 	if (dspi_rxtx(dspi) == 0)
893 		complete(&dspi->xfer_done);
894 
895 	return IRQ_HANDLED;
896 }
897 
898 static void dspi_assert_cs(struct spi_device *spi, bool *cs)
899 {
900 	if (!spi_get_csgpiod(spi, 0) || *cs)
901 		return;
902 
903 	gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), true);
904 	*cs = true;
905 }
906 
907 static void dspi_deassert_cs(struct spi_device *spi, bool *cs)
908 {
909 	if (!spi_get_csgpiod(spi, 0) || !*cs)
910 		return;
911 
912 	gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), false);
913 	*cs = false;
914 }
915 
916 static int dspi_transfer_one_message(struct spi_controller *ctlr,
917 				     struct spi_message *message)
918 {
919 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
920 	struct spi_device *spi = message->spi;
921 	struct spi_transfer *transfer;
922 	bool cs = false;
923 	int status = 0;
924 
925 	message->actual_length = 0;
926 
927 	list_for_each_entry(transfer, &message->transfers, transfer_list) {
928 		dspi->cur_transfer = transfer;
929 		dspi->cur_msg = message;
930 		dspi->cur_chip = spi_get_ctldata(spi);
931 
932 		dspi_assert_cs(spi, &cs);
933 
934 		/* Prepare command word for CMD FIFO */
935 		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0);
936 		if (!spi_get_csgpiod(spi, 0))
937 			dspi->tx_cmd |= SPI_PUSHR_CMD_PCS(spi_get_chipselect(spi, 0));
938 
939 		if (list_is_last(&dspi->cur_transfer->transfer_list,
940 				 &dspi->cur_msg->transfers)) {
941 			/* Leave PCS activated after last transfer when
942 			 * cs_change is set.
943 			 */
944 			if (transfer->cs_change)
945 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
946 		} else {
947 			/* Keep PCS active between transfers in same message
948 			 * when cs_change is not set, and de-activate PCS
949 			 * between transfers in the same message when
950 			 * cs_change is set.
951 			 */
952 			if (!transfer->cs_change)
953 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
954 		}
955 
956 		dspi->tx = transfer->tx_buf;
957 		dspi->rx = transfer->rx_buf;
958 		dspi->len = transfer->len;
959 		dspi->progress = 0;
960 
961 		regmap_update_bits(dspi->regmap, SPI_MCR,
962 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
963 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
964 
965 		spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
966 				       dspi->progress, !dspi->irq);
967 
968 		if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
969 			status = dspi_dma_xfer(dspi);
970 		} else {
971 			dspi_fifo_write(dspi);
972 
973 			if (dspi->irq) {
974 				wait_for_completion(&dspi->xfer_done);
975 				reinit_completion(&dspi->xfer_done);
976 			} else {
977 				do {
978 					status = dspi_poll(dspi);
979 				} while (status == -EINPROGRESS);
980 			}
981 		}
982 		if (status)
983 			break;
984 
985 		spi_transfer_delay_exec(transfer);
986 
987 		if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT))
988 			dspi_deassert_cs(spi, &cs);
989 	}
990 
991 	message->status = status;
992 	spi_finalize_current_message(ctlr);
993 
994 	return status;
995 }
996 
997 static int dspi_setup(struct spi_device *spi)
998 {
999 	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
1000 	u32 period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->max_speed_hz);
1001 	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
1002 	u32 quarter_period_ns = DIV_ROUND_UP(period_ns, 4);
1003 	u32 cs_sck_delay = 0, sck_cs_delay = 0;
1004 	struct fsl_dspi_platform_data *pdata;
1005 	unsigned char pasc = 0, asc = 0;
1006 	struct chip_data *chip;
1007 	unsigned long clkrate;
1008 	bool cs = true;
1009 	int val;
1010 
1011 	/* Only alloc on first setup */
1012 	chip = spi_get_ctldata(spi);
1013 	if (chip == NULL) {
1014 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1015 		if (!chip)
1016 			return -ENOMEM;
1017 	}
1018 
1019 	pdata = dev_get_platdata(&dspi->pdev->dev);
1020 
1021 	if (!pdata) {
1022 		val = spi_delay_to_ns(&spi->cs_setup, NULL);
1023 		cs_sck_delay = val >= 0 ? val : 0;
1024 		if (!cs_sck_delay)
1025 			of_property_read_u32(spi->dev.of_node,
1026 					     "fsl,spi-cs-sck-delay",
1027 					     &cs_sck_delay);
1028 
1029 		val = spi_delay_to_ns(&spi->cs_hold, NULL);
1030 		sck_cs_delay =  val >= 0 ? val : 0;
1031 		if (!sck_cs_delay)
1032 			of_property_read_u32(spi->dev.of_node,
1033 					     "fsl,spi-sck-cs-delay",
1034 					     &sck_cs_delay);
1035 	} else {
1036 		cs_sck_delay = pdata->cs_sck_delay;
1037 		sck_cs_delay = pdata->sck_cs_delay;
1038 	}
1039 
1040 	/* Since tCSC and tASC apply to continuous transfers too, avoid SCK
1041 	 * glitches of half a cycle by never allowing tCSC + tASC to go below
1042 	 * half a SCK period.
1043 	 */
1044 	if (cs_sck_delay < quarter_period_ns)
1045 		cs_sck_delay = quarter_period_ns;
1046 	if (sck_cs_delay < quarter_period_ns)
1047 		sck_cs_delay = quarter_period_ns;
1048 
1049 	dev_dbg(&spi->dev,
1050 		"DSPI controller timing params: CS-to-SCK delay %u ns, SCK-to-CS delay %u ns\n",
1051 		cs_sck_delay, sck_cs_delay);
1052 
1053 	clkrate = clk_get_rate(dspi->clk);
1054 	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1055 
1056 	/* Set PCS to SCK delay scale values */
1057 	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1058 
1059 	/* Set After SCK delay scale values */
1060 	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1061 
1062 	chip->ctar_val = 0;
1063 	if (spi->mode & SPI_CPOL)
1064 		chip->ctar_val |= SPI_CTAR_CPOL;
1065 	if (spi->mode & SPI_CPHA)
1066 		chip->ctar_val |= SPI_CTAR_CPHA;
1067 
1068 	if (!spi_controller_is_target(dspi->ctlr)) {
1069 		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1070 				  SPI_CTAR_CSSCK(cssck) |
1071 				  SPI_CTAR_PASC(pasc) |
1072 				  SPI_CTAR_ASC(asc) |
1073 				  SPI_CTAR_PBR(pbr) |
1074 				  SPI_CTAR_BR(br);
1075 
1076 		if (spi->mode & SPI_LSB_FIRST)
1077 			chip->ctar_val |= SPI_CTAR_LSBFE;
1078 	}
1079 
1080 	gpiod_direction_output(spi_get_csgpiod(spi, 0), false);
1081 	dspi_deassert_cs(spi, &cs);
1082 
1083 	spi_set_ctldata(spi, chip);
1084 
1085 	return 0;
1086 }
1087 
1088 static void dspi_cleanup(struct spi_device *spi)
1089 {
1090 	struct chip_data *chip = spi_get_ctldata(spi);
1091 
1092 	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1093 		spi->controller->bus_num, spi_get_chipselect(spi, 0));
1094 
1095 	kfree(chip);
1096 }
1097 
1098 static const struct of_device_id fsl_dspi_dt_ids[] = {
1099 	{
1100 		.compatible = "fsl,vf610-dspi",
1101 		.data = &devtype_data[VF610],
1102 	}, {
1103 		.compatible = "fsl,ls1021a-v1.0-dspi",
1104 		.data = &devtype_data[LS1021A],
1105 	}, {
1106 		.compatible = "fsl,ls1012a-dspi",
1107 		.data = &devtype_data[LS1012A],
1108 	}, {
1109 		.compatible = "fsl,ls1028a-dspi",
1110 		.data = &devtype_data[LS1028A],
1111 	}, {
1112 		.compatible = "fsl,ls1043a-dspi",
1113 		.data = &devtype_data[LS1043A],
1114 	}, {
1115 		.compatible = "fsl,ls1046a-dspi",
1116 		.data = &devtype_data[LS1046A],
1117 	}, {
1118 		.compatible = "fsl,ls2080a-dspi",
1119 		.data = &devtype_data[LS2080A],
1120 	}, {
1121 		.compatible = "fsl,ls2085a-dspi",
1122 		.data = &devtype_data[LS2085A],
1123 	}, {
1124 		.compatible = "fsl,lx2160a-dspi",
1125 		.data = &devtype_data[LX2160A],
1126 	},
1127 	{ /* sentinel */ }
1128 };
1129 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1130 
1131 #ifdef CONFIG_PM_SLEEP
1132 static int dspi_suspend(struct device *dev)
1133 {
1134 	struct fsl_dspi *dspi = dev_get_drvdata(dev);
1135 
1136 	if (dspi->irq)
1137 		disable_irq(dspi->irq);
1138 	spi_controller_suspend(dspi->ctlr);
1139 	clk_disable_unprepare(dspi->clk);
1140 
1141 	pinctrl_pm_select_sleep_state(dev);
1142 
1143 	return 0;
1144 }
1145 
1146 static int dspi_resume(struct device *dev)
1147 {
1148 	struct fsl_dspi *dspi = dev_get_drvdata(dev);
1149 	int ret;
1150 
1151 	pinctrl_pm_select_default_state(dev);
1152 
1153 	ret = clk_prepare_enable(dspi->clk);
1154 	if (ret)
1155 		return ret;
1156 	spi_controller_resume(dspi->ctlr);
1157 	if (dspi->irq)
1158 		enable_irq(dspi->irq);
1159 
1160 	return 0;
1161 }
1162 #endif /* CONFIG_PM_SLEEP */
1163 
1164 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1165 
1166 static const struct regmap_range dspi_volatile_ranges[] = {
1167 	regmap_reg_range(SPI_MCR, SPI_TCR),
1168 	regmap_reg_range(SPI_SR, SPI_SR),
1169 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1170 };
1171 
1172 static const struct regmap_access_table dspi_volatile_table = {
1173 	.yes_ranges	= dspi_volatile_ranges,
1174 	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
1175 };
1176 
1177 static const struct regmap_config dspi_regmap_config = {
1178 	.reg_bits	= 32,
1179 	.val_bits	= 32,
1180 	.reg_stride	= 4,
1181 	.max_register	= 0x88,
1182 	.volatile_table	= &dspi_volatile_table,
1183 };
1184 
1185 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1186 	regmap_reg_range(SPI_MCR, SPI_TCR),
1187 	regmap_reg_range(SPI_SR, SPI_SR),
1188 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1189 	regmap_reg_range(SPI_SREX, SPI_SREX),
1190 };
1191 
1192 static const struct regmap_access_table dspi_xspi_volatile_table = {
1193 	.yes_ranges	= dspi_xspi_volatile_ranges,
1194 	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
1195 };
1196 
1197 static const struct regmap_config dspi_xspi_regmap_config[] = {
1198 	{
1199 		.reg_bits	= 32,
1200 		.val_bits	= 32,
1201 		.reg_stride	= 4,
1202 		.max_register	= 0x13c,
1203 		.volatile_table	= &dspi_xspi_volatile_table,
1204 	},
1205 	{
1206 		.name		= "pushr",
1207 		.reg_bits	= 16,
1208 		.val_bits	= 16,
1209 		.reg_stride	= 2,
1210 		.max_register	= 0x2,
1211 	},
1212 };
1213 
1214 static int dspi_init(struct fsl_dspi *dspi)
1215 {
1216 	unsigned int mcr;
1217 
1218 	/* Set idle states for all chip select signals to high */
1219 	mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
1220 
1221 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1222 		mcr |= SPI_MCR_XSPI;
1223 	if (!spi_controller_is_target(dspi->ctlr))
1224 		mcr |= SPI_MCR_HOST;
1225 
1226 	regmap_write(dspi->regmap, SPI_MCR, mcr);
1227 	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1228 
1229 	switch (dspi->devtype_data->trans_mode) {
1230 	case DSPI_XSPI_MODE:
1231 		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1232 		break;
1233 	case DSPI_DMA_MODE:
1234 		regmap_write(dspi->regmap, SPI_RSER,
1235 			     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1236 			     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1237 		break;
1238 	default:
1239 		dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1240 			dspi->devtype_data->trans_mode);
1241 		return -EINVAL;
1242 	}
1243 
1244 	return 0;
1245 }
1246 
1247 static int dspi_target_abort(struct spi_controller *host)
1248 {
1249 	struct fsl_dspi *dspi = spi_controller_get_devdata(host);
1250 
1251 	/*
1252 	 * Terminate all pending DMA transactions for the SPI working
1253 	 * in TARGET mode.
1254 	 */
1255 	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1256 		dmaengine_terminate_sync(dspi->dma->chan_rx);
1257 		dmaengine_terminate_sync(dspi->dma->chan_tx);
1258 	}
1259 
1260 	/* Clear the internal DSPI RX and TX FIFO buffers */
1261 	regmap_update_bits(dspi->regmap, SPI_MCR,
1262 			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1263 			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1264 
1265 	return 0;
1266 }
1267 
1268 static int dspi_probe(struct platform_device *pdev)
1269 {
1270 	struct device_node *np = pdev->dev.of_node;
1271 	const struct regmap_config *regmap_config;
1272 	struct fsl_dspi_platform_data *pdata;
1273 	struct spi_controller *ctlr;
1274 	int ret, cs_num, bus_num = -1;
1275 	struct fsl_dspi *dspi;
1276 	struct resource *res;
1277 	void __iomem *base;
1278 	bool big_endian;
1279 
1280 	dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
1281 	if (!dspi)
1282 		return -ENOMEM;
1283 
1284 	ctlr = spi_alloc_host(&pdev->dev, 0);
1285 	if (!ctlr)
1286 		return -ENOMEM;
1287 
1288 	spi_controller_set_devdata(ctlr, dspi);
1289 	platform_set_drvdata(pdev, dspi);
1290 
1291 	dspi->pdev = pdev;
1292 	dspi->ctlr = ctlr;
1293 
1294 	ctlr->setup = dspi_setup;
1295 	ctlr->transfer_one_message = dspi_transfer_one_message;
1296 	ctlr->dev.of_node = pdev->dev.of_node;
1297 
1298 	ctlr->cleanup = dspi_cleanup;
1299 	ctlr->target_abort = dspi_target_abort;
1300 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1301 	ctlr->use_gpio_descriptors = true;
1302 
1303 	pdata = dev_get_platdata(&pdev->dev);
1304 	if (pdata) {
1305 		ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
1306 		ctlr->bus_num = pdata->bus_num;
1307 
1308 		/* Only Coldfire uses platform data */
1309 		dspi->devtype_data = &devtype_data[MCF5441X];
1310 		big_endian = true;
1311 	} else {
1312 
1313 		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1314 		if (ret < 0) {
1315 			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1316 			goto out_ctlr_put;
1317 		}
1318 		ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
1319 
1320 		of_property_read_u32(np, "bus-num", &bus_num);
1321 		ctlr->bus_num = bus_num;
1322 
1323 		if (of_property_read_bool(np, "spi-slave"))
1324 			ctlr->target = true;
1325 
1326 		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1327 		if (!dspi->devtype_data) {
1328 			dev_err(&pdev->dev, "can't get devtype_data\n");
1329 			ret = -EFAULT;
1330 			goto out_ctlr_put;
1331 		}
1332 
1333 		big_endian = of_device_is_big_endian(np);
1334 	}
1335 	if (big_endian) {
1336 		dspi->pushr_cmd = 0;
1337 		dspi->pushr_tx = 2;
1338 	} else {
1339 		dspi->pushr_cmd = 2;
1340 		dspi->pushr_tx = 0;
1341 	}
1342 
1343 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1344 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1345 	else
1346 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1347 
1348 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1349 	if (IS_ERR(base)) {
1350 		ret = PTR_ERR(base);
1351 		goto out_ctlr_put;
1352 	}
1353 
1354 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1355 		regmap_config = &dspi_xspi_regmap_config[0];
1356 	else
1357 		regmap_config = &dspi_regmap_config;
1358 	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1359 	if (IS_ERR(dspi->regmap)) {
1360 		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1361 				PTR_ERR(dspi->regmap));
1362 		ret = PTR_ERR(dspi->regmap);
1363 		goto out_ctlr_put;
1364 	}
1365 
1366 	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1367 		dspi->regmap_pushr = devm_regmap_init_mmio(
1368 			&pdev->dev, base + SPI_PUSHR,
1369 			&dspi_xspi_regmap_config[1]);
1370 		if (IS_ERR(dspi->regmap_pushr)) {
1371 			dev_err(&pdev->dev,
1372 				"failed to init pushr regmap: %ld\n",
1373 				PTR_ERR(dspi->regmap_pushr));
1374 			ret = PTR_ERR(dspi->regmap_pushr);
1375 			goto out_ctlr_put;
1376 		}
1377 	}
1378 
1379 	dspi->clk = devm_clk_get_enabled(&pdev->dev, "dspi");
1380 	if (IS_ERR(dspi->clk)) {
1381 		ret = PTR_ERR(dspi->clk);
1382 		dev_err(&pdev->dev, "unable to get clock\n");
1383 		goto out_ctlr_put;
1384 	}
1385 
1386 	ret = dspi_init(dspi);
1387 	if (ret)
1388 		goto out_ctlr_put;
1389 
1390 	dspi->irq = platform_get_irq(pdev, 0);
1391 	if (dspi->irq <= 0) {
1392 		dev_info(&pdev->dev,
1393 			 "can't get platform irq, using poll mode\n");
1394 		dspi->irq = 0;
1395 		goto poll_mode;
1396 	}
1397 
1398 	init_completion(&dspi->xfer_done);
1399 
1400 	ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1401 				   IRQF_SHARED, pdev->name, dspi);
1402 	if (ret < 0) {
1403 		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1404 		goto out_ctlr_put;
1405 	}
1406 
1407 poll_mode:
1408 
1409 	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1410 		ret = dspi_request_dma(dspi, res->start);
1411 		if (ret < 0) {
1412 			dev_err(&pdev->dev, "can't get dma channels\n");
1413 			goto out_free_irq;
1414 		}
1415 	}
1416 
1417 	ctlr->max_speed_hz =
1418 		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1419 
1420 	if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1421 		ctlr->ptp_sts_supported = true;
1422 
1423 	ret = spi_register_controller(ctlr);
1424 	if (ret != 0) {
1425 		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1426 		goto out_release_dma;
1427 	}
1428 
1429 	return ret;
1430 
1431 out_release_dma:
1432 	dspi_release_dma(dspi);
1433 out_free_irq:
1434 	if (dspi->irq)
1435 		free_irq(dspi->irq, dspi);
1436 out_ctlr_put:
1437 	spi_controller_put(ctlr);
1438 
1439 	return ret;
1440 }
1441 
1442 static void dspi_remove(struct platform_device *pdev)
1443 {
1444 	struct fsl_dspi *dspi = platform_get_drvdata(pdev);
1445 
1446 	/* Disconnect from the SPI framework */
1447 	spi_unregister_controller(dspi->ctlr);
1448 
1449 	/* Disable RX and TX */
1450 	regmap_update_bits(dspi->regmap, SPI_MCR,
1451 			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1452 			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1453 
1454 	/* Stop Running */
1455 	regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1456 
1457 	dspi_release_dma(dspi);
1458 	if (dspi->irq)
1459 		free_irq(dspi->irq, dspi);
1460 }
1461 
1462 static void dspi_shutdown(struct platform_device *pdev)
1463 {
1464 	dspi_remove(pdev);
1465 }
1466 
1467 static struct platform_driver fsl_dspi_driver = {
1468 	.driver.name		= DRIVER_NAME,
1469 	.driver.of_match_table	= fsl_dspi_dt_ids,
1470 	.driver.pm		= &dspi_pm,
1471 	.probe			= dspi_probe,
1472 	.remove_new		= dspi_remove,
1473 	.shutdown		= dspi_shutdown,
1474 };
1475 module_platform_driver(fsl_dspi_driver);
1476 
1477 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1478 MODULE_LICENSE("GPL");
1479 MODULE_ALIAS("platform:" DRIVER_NAME);
1480