xref: /linux/drivers/spi/spi-fsl-dspi.c (revision 0df2c90eba60791148cee1823c0bf5fc66e3465c)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 //
5 // Freescale DSPI driver
6 // This file contains a driver for the Freescale DSPI
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/regmap.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/spi-fsl-dspi.h>
20 
21 #define DRIVER_NAME			"fsl-dspi"
22 
23 #ifdef CONFIG_M5441x
24 #define DSPI_FIFO_SIZE			16
25 #else
26 #define DSPI_FIFO_SIZE			4
27 #endif
28 #define DSPI_DMA_BUFSIZE		(DSPI_FIFO_SIZE * 1024)
29 
30 #define SPI_MCR				0x00
31 #define SPI_MCR_MASTER			BIT(31)
32 #define SPI_MCR_PCSIS			(0x3F << 16)
33 #define SPI_MCR_CLR_TXF			BIT(11)
34 #define SPI_MCR_CLR_RXF			BIT(10)
35 #define SPI_MCR_XSPI			BIT(3)
36 
37 #define SPI_TCR				0x08
38 #define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
39 
40 #define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
41 #define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
42 #define SPI_CTAR_CPOL			BIT(26)
43 #define SPI_CTAR_CPHA			BIT(25)
44 #define SPI_CTAR_LSBFE			BIT(24)
45 #define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
46 #define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
47 #define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
48 #define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
49 #define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
50 #define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
51 #define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
52 #define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
53 #define SPI_CTAR_SCALE_BITS		0xf
54 
55 #define SPI_CTAR0_SLAVE			0x0c
56 
57 #define SPI_SR				0x2c
58 #define SPI_SR_TCFQF			BIT(31)
59 #define SPI_SR_EOQF			BIT(28)
60 #define SPI_SR_TFUF			BIT(27)
61 #define SPI_SR_TFFF			BIT(25)
62 #define SPI_SR_CMDTCF			BIT(23)
63 #define SPI_SR_SPEF			BIT(21)
64 #define SPI_SR_RFOF			BIT(19)
65 #define SPI_SR_TFIWF			BIT(18)
66 #define SPI_SR_RFDF			BIT(17)
67 #define SPI_SR_CMDFFF			BIT(16)
68 #define SPI_SR_CLEAR			(SPI_SR_TCFQF | SPI_SR_EOQF | \
69 					SPI_SR_TFUF | SPI_SR_TFFF | \
70 					SPI_SR_CMDTCF | SPI_SR_SPEF | \
71 					SPI_SR_RFOF | SPI_SR_TFIWF | \
72 					SPI_SR_RFDF | SPI_SR_CMDFFF)
73 
74 #define SPI_RSER_TFFFE			BIT(25)
75 #define SPI_RSER_TFFFD			BIT(24)
76 #define SPI_RSER_RFDFE			BIT(17)
77 #define SPI_RSER_RFDFD			BIT(16)
78 
79 #define SPI_RSER			0x30
80 #define SPI_RSER_TCFQE			BIT(31)
81 #define SPI_RSER_EOQFE			BIT(28)
82 
83 #define SPI_PUSHR			0x34
84 #define SPI_PUSHR_CMD_CONT		BIT(15)
85 #define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
86 #define SPI_PUSHR_CMD_EOQ		BIT(11)
87 #define SPI_PUSHR_CMD_CTCNT		BIT(10)
88 #define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
89 
90 #define SPI_PUSHR_SLAVE			0x34
91 
92 #define SPI_POPR			0x38
93 
94 #define SPI_TXFR0			0x3c
95 #define SPI_TXFR1			0x40
96 #define SPI_TXFR2			0x44
97 #define SPI_TXFR3			0x48
98 #define SPI_RXFR0			0x7c
99 #define SPI_RXFR1			0x80
100 #define SPI_RXFR2			0x84
101 #define SPI_RXFR3			0x88
102 
103 #define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
104 #define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
105 #define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
106 
107 #define SPI_SREX			0x13c
108 
109 #define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
110 #define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
111 
112 /* Register offsets for regmap_pushr */
113 #define PUSHR_CMD			0x0
114 #define PUSHR_TX			0x2
115 
116 #define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
117 
118 struct chip_data {
119 	u32			ctar_val;
120 	u16			void_write_data;
121 };
122 
123 enum dspi_trans_mode {
124 	DSPI_EOQ_MODE = 0,
125 	DSPI_TCFQ_MODE,
126 	DSPI_DMA_MODE,
127 };
128 
129 struct fsl_dspi_devtype_data {
130 	enum dspi_trans_mode	trans_mode;
131 	u8			max_clock_factor;
132 	bool			xspi_mode;
133 };
134 
135 static const struct fsl_dspi_devtype_data vf610_data = {
136 	.trans_mode		= DSPI_DMA_MODE,
137 	.max_clock_factor	= 2,
138 };
139 
140 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
141 	.trans_mode		= DSPI_TCFQ_MODE,
142 	.max_clock_factor	= 8,
143 	.xspi_mode		= true,
144 };
145 
146 static const struct fsl_dspi_devtype_data ls2085a_data = {
147 	.trans_mode		= DSPI_TCFQ_MODE,
148 	.max_clock_factor	= 8,
149 };
150 
151 static const struct fsl_dspi_devtype_data coldfire_data = {
152 	.trans_mode		= DSPI_EOQ_MODE,
153 	.max_clock_factor	= 8,
154 };
155 
156 struct fsl_dspi_dma {
157 	/* Length of transfer in words of DSPI_FIFO_SIZE */
158 	u32					curr_xfer_len;
159 
160 	u32					*tx_dma_buf;
161 	struct dma_chan				*chan_tx;
162 	dma_addr_t				tx_dma_phys;
163 	struct completion			cmd_tx_complete;
164 	struct dma_async_tx_descriptor		*tx_desc;
165 
166 	u32					*rx_dma_buf;
167 	struct dma_chan				*chan_rx;
168 	dma_addr_t				rx_dma_phys;
169 	struct completion			cmd_rx_complete;
170 	struct dma_async_tx_descriptor		*rx_desc;
171 };
172 
173 struct fsl_dspi {
174 	struct spi_controller			*ctlr;
175 	struct platform_device			*pdev;
176 
177 	struct regmap				*regmap;
178 	struct regmap				*regmap_pushr;
179 	int					irq;
180 	struct clk				*clk;
181 
182 	struct spi_transfer			*cur_transfer;
183 	struct spi_message			*cur_msg;
184 	struct chip_data			*cur_chip;
185 	size_t					len;
186 	const void				*tx;
187 	void					*rx;
188 	void					*rx_end;
189 	u16					void_write_data;
190 	u16					tx_cmd;
191 	u8					bits_per_word;
192 	u8					bytes_per_word;
193 	const struct fsl_dspi_devtype_data	*devtype_data;
194 
195 	wait_queue_head_t			waitq;
196 	u32					waitflags;
197 
198 	struct fsl_dspi_dma			*dma;
199 };
200 
201 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
202 {
203 	u32 txdata = 0;
204 
205 	if (dspi->tx) {
206 		if (dspi->bytes_per_word == 1)
207 			txdata = *(u8 *)dspi->tx;
208 		else if (dspi->bytes_per_word == 2)
209 			txdata = *(u16 *)dspi->tx;
210 		else  /* dspi->bytes_per_word == 4 */
211 			txdata = *(u32 *)dspi->tx;
212 		dspi->tx += dspi->bytes_per_word;
213 	}
214 	dspi->len -= dspi->bytes_per_word;
215 	return txdata;
216 }
217 
218 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
219 {
220 	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
221 
222 	if (spi_controller_is_slave(dspi->ctlr))
223 		return data;
224 
225 	if (dspi->len > 0)
226 		cmd |= SPI_PUSHR_CMD_CONT;
227 	return cmd << 16 | data;
228 }
229 
230 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
231 {
232 	if (!dspi->rx)
233 		return;
234 
235 	/* Mask off undefined bits */
236 	rxdata &= (1 << dspi->bits_per_word) - 1;
237 
238 	if (dspi->bytes_per_word == 1)
239 		*(u8 *)dspi->rx = rxdata;
240 	else if (dspi->bytes_per_word == 2)
241 		*(u16 *)dspi->rx = rxdata;
242 	else /* dspi->bytes_per_word == 4 */
243 		*(u32 *)dspi->rx = rxdata;
244 	dspi->rx += dspi->bytes_per_word;
245 }
246 
247 static void dspi_tx_dma_callback(void *arg)
248 {
249 	struct fsl_dspi *dspi = arg;
250 	struct fsl_dspi_dma *dma = dspi->dma;
251 
252 	complete(&dma->cmd_tx_complete);
253 }
254 
255 static void dspi_rx_dma_callback(void *arg)
256 {
257 	struct fsl_dspi *dspi = arg;
258 	struct fsl_dspi_dma *dma = dspi->dma;
259 	int i;
260 
261 	if (dspi->rx) {
262 		for (i = 0; i < dma->curr_xfer_len; i++)
263 			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
264 	}
265 
266 	complete(&dma->cmd_rx_complete);
267 }
268 
269 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
270 {
271 	struct device *dev = &dspi->pdev->dev;
272 	struct fsl_dspi_dma *dma = dspi->dma;
273 	int time_left;
274 	int i;
275 
276 	for (i = 0; i < dma->curr_xfer_len; i++)
277 		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
278 
279 	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
280 					dma->tx_dma_phys,
281 					dma->curr_xfer_len *
282 					DMA_SLAVE_BUSWIDTH_4_BYTES,
283 					DMA_MEM_TO_DEV,
284 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
285 	if (!dma->tx_desc) {
286 		dev_err(dev, "Not able to get desc for DMA xfer\n");
287 		return -EIO;
288 	}
289 
290 	dma->tx_desc->callback = dspi_tx_dma_callback;
291 	dma->tx_desc->callback_param = dspi;
292 	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
293 		dev_err(dev, "DMA submit failed\n");
294 		return -EINVAL;
295 	}
296 
297 	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
298 					dma->rx_dma_phys,
299 					dma->curr_xfer_len *
300 					DMA_SLAVE_BUSWIDTH_4_BYTES,
301 					DMA_DEV_TO_MEM,
302 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
303 	if (!dma->rx_desc) {
304 		dev_err(dev, "Not able to get desc for DMA xfer\n");
305 		return -EIO;
306 	}
307 
308 	dma->rx_desc->callback = dspi_rx_dma_callback;
309 	dma->rx_desc->callback_param = dspi;
310 	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
311 		dev_err(dev, "DMA submit failed\n");
312 		return -EINVAL;
313 	}
314 
315 	reinit_completion(&dspi->dma->cmd_rx_complete);
316 	reinit_completion(&dspi->dma->cmd_tx_complete);
317 
318 	dma_async_issue_pending(dma->chan_rx);
319 	dma_async_issue_pending(dma->chan_tx);
320 
321 	if (spi_controller_is_slave(dspi->ctlr)) {
322 		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
323 		return 0;
324 	}
325 
326 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
327 						DMA_COMPLETION_TIMEOUT);
328 	if (time_left == 0) {
329 		dev_err(dev, "DMA tx timeout\n");
330 		dmaengine_terminate_all(dma->chan_tx);
331 		dmaengine_terminate_all(dma->chan_rx);
332 		return -ETIMEDOUT;
333 	}
334 
335 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
336 						DMA_COMPLETION_TIMEOUT);
337 	if (time_left == 0) {
338 		dev_err(dev, "DMA rx timeout\n");
339 		dmaengine_terminate_all(dma->chan_tx);
340 		dmaengine_terminate_all(dma->chan_rx);
341 		return -ETIMEDOUT;
342 	}
343 
344 	return 0;
345 }
346 
347 static int dspi_dma_xfer(struct fsl_dspi *dspi)
348 {
349 	struct spi_message *message = dspi->cur_msg;
350 	struct device *dev = &dspi->pdev->dev;
351 	struct fsl_dspi_dma *dma = dspi->dma;
352 	int curr_remaining_bytes;
353 	int bytes_per_buffer;
354 	int ret = 0;
355 
356 	curr_remaining_bytes = dspi->len;
357 	bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
358 	while (curr_remaining_bytes) {
359 		/* Check if current transfer fits the DMA buffer */
360 		dma->curr_xfer_len = curr_remaining_bytes
361 			/ dspi->bytes_per_word;
362 		if (dma->curr_xfer_len > bytes_per_buffer)
363 			dma->curr_xfer_len = bytes_per_buffer;
364 
365 		ret = dspi_next_xfer_dma_submit(dspi);
366 		if (ret) {
367 			dev_err(dev, "DMA transfer failed\n");
368 			goto exit;
369 
370 		} else {
371 			const int len =
372 				dma->curr_xfer_len * dspi->bytes_per_word;
373 			curr_remaining_bytes -= len;
374 			message->actual_length += len;
375 			if (curr_remaining_bytes < 0)
376 				curr_remaining_bytes = 0;
377 		}
378 	}
379 
380 exit:
381 	return ret;
382 }
383 
384 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
385 {
386 	struct device *dev = &dspi->pdev->dev;
387 	struct dma_slave_config cfg;
388 	struct fsl_dspi_dma *dma;
389 	int ret;
390 
391 	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
392 	if (!dma)
393 		return -ENOMEM;
394 
395 	dma->chan_rx = dma_request_slave_channel(dev, "rx");
396 	if (!dma->chan_rx) {
397 		dev_err(dev, "rx dma channel not available\n");
398 		ret = -ENODEV;
399 		return ret;
400 	}
401 
402 	dma->chan_tx = dma_request_slave_channel(dev, "tx");
403 	if (!dma->chan_tx) {
404 		dev_err(dev, "tx dma channel not available\n");
405 		ret = -ENODEV;
406 		goto err_tx_channel;
407 	}
408 
409 	dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
410 					     &dma->tx_dma_phys, GFP_KERNEL);
411 	if (!dma->tx_dma_buf) {
412 		ret = -ENOMEM;
413 		goto err_tx_dma_buf;
414 	}
415 
416 	dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
417 					     &dma->rx_dma_phys, GFP_KERNEL);
418 	if (!dma->rx_dma_buf) {
419 		ret = -ENOMEM;
420 		goto err_rx_dma_buf;
421 	}
422 
423 	cfg.src_addr = phy_addr + SPI_POPR;
424 	cfg.dst_addr = phy_addr + SPI_PUSHR;
425 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
426 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
427 	cfg.src_maxburst = 1;
428 	cfg.dst_maxburst = 1;
429 
430 	cfg.direction = DMA_DEV_TO_MEM;
431 	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
432 	if (ret) {
433 		dev_err(dev, "can't configure rx dma channel\n");
434 		ret = -EINVAL;
435 		goto err_slave_config;
436 	}
437 
438 	cfg.direction = DMA_MEM_TO_DEV;
439 	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
440 	if (ret) {
441 		dev_err(dev, "can't configure tx dma channel\n");
442 		ret = -EINVAL;
443 		goto err_slave_config;
444 	}
445 
446 	dspi->dma = dma;
447 	init_completion(&dma->cmd_tx_complete);
448 	init_completion(&dma->cmd_rx_complete);
449 
450 	return 0;
451 
452 err_slave_config:
453 	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
454 			dma->rx_dma_buf, dma->rx_dma_phys);
455 err_rx_dma_buf:
456 	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
457 			dma->tx_dma_buf, dma->tx_dma_phys);
458 err_tx_dma_buf:
459 	dma_release_channel(dma->chan_tx);
460 err_tx_channel:
461 	dma_release_channel(dma->chan_rx);
462 
463 	devm_kfree(dev, dma);
464 	dspi->dma = NULL;
465 
466 	return ret;
467 }
468 
469 static void dspi_release_dma(struct fsl_dspi *dspi)
470 {
471 	struct fsl_dspi_dma *dma = dspi->dma;
472 	struct device *dev = &dspi->pdev->dev;
473 
474 	if (!dma)
475 		return;
476 
477 	if (dma->chan_tx) {
478 		dma_unmap_single(dev, dma->tx_dma_phys,
479 				 DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
480 		dma_release_channel(dma->chan_tx);
481 	}
482 
483 	if (dma->chan_rx) {
484 		dma_unmap_single(dev, dma->rx_dma_phys,
485 				 DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
486 		dma_release_channel(dma->chan_rx);
487 	}
488 }
489 
490 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
491 			   unsigned long clkrate)
492 {
493 	/* Valid baud rate pre-scaler values */
494 	int pbr_tbl[4] = {2, 3, 5, 7};
495 	int brs[16] = {	2,	4,	6,	8,
496 			16,	32,	64,	128,
497 			256,	512,	1024,	2048,
498 			4096,	8192,	16384,	32768 };
499 	int scale_needed, scale, minscale = INT_MAX;
500 	int i, j;
501 
502 	scale_needed = clkrate / speed_hz;
503 	if (clkrate % speed_hz)
504 		scale_needed++;
505 
506 	for (i = 0; i < ARRAY_SIZE(brs); i++)
507 		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
508 			scale = brs[i] * pbr_tbl[j];
509 			if (scale >= scale_needed) {
510 				if (scale < minscale) {
511 					minscale = scale;
512 					*br = i;
513 					*pbr = j;
514 				}
515 				break;
516 			}
517 		}
518 
519 	if (minscale == INT_MAX) {
520 		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
521 			speed_hz, clkrate);
522 		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
523 		*br =  ARRAY_SIZE(brs) - 1;
524 	}
525 }
526 
527 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
528 			   unsigned long clkrate)
529 {
530 	int scale_needed, scale, minscale = INT_MAX;
531 	int pscale_tbl[4] = {1, 3, 5, 7};
532 	u32 remainder;
533 	int i, j;
534 
535 	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
536 				   &remainder);
537 	if (remainder)
538 		scale_needed++;
539 
540 	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
541 		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
542 			scale = pscale_tbl[i] * (2 << j);
543 			if (scale >= scale_needed) {
544 				if (scale < minscale) {
545 					minscale = scale;
546 					*psc = i;
547 					*sc = j;
548 				}
549 				break;
550 			}
551 		}
552 
553 	if (minscale == INT_MAX) {
554 		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
555 			delay_ns, clkrate);
556 		*psc = ARRAY_SIZE(pscale_tbl) - 1;
557 		*sc = SPI_CTAR_SCALE_BITS;
558 	}
559 }
560 
561 static void fifo_write(struct fsl_dspi *dspi)
562 {
563 	regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
564 }
565 
566 static void cmd_fifo_write(struct fsl_dspi *dspi)
567 {
568 	u16 cmd = dspi->tx_cmd;
569 
570 	if (dspi->len > 0)
571 		cmd |= SPI_PUSHR_CMD_CONT;
572 	regmap_write(dspi->regmap_pushr, PUSHR_CMD, cmd);
573 }
574 
575 static void tx_fifo_write(struct fsl_dspi *dspi, u16 txdata)
576 {
577 	regmap_write(dspi->regmap_pushr, PUSHR_TX, txdata);
578 }
579 
580 static void dspi_tcfq_write(struct fsl_dspi *dspi)
581 {
582 	/* Clear transfer count */
583 	dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
584 
585 	if (dspi->devtype_data->xspi_mode && dspi->bits_per_word > 16) {
586 		/* Write two TX FIFO entries first, and then the corresponding
587 		 * CMD FIFO entry.
588 		 */
589 		u32 data = dspi_pop_tx(dspi);
590 
591 		if (dspi->cur_chip->ctar_val & SPI_CTAR_LSBFE) {
592 			/* LSB */
593 			tx_fifo_write(dspi, data & 0xFFFF);
594 			tx_fifo_write(dspi, data >> 16);
595 		} else {
596 			/* MSB */
597 			tx_fifo_write(dspi, data >> 16);
598 			tx_fifo_write(dspi, data & 0xFFFF);
599 		}
600 		cmd_fifo_write(dspi);
601 	} else {
602 		/* Write one entry to both TX FIFO and CMD FIFO
603 		 * simultaneously.
604 		 */
605 		fifo_write(dspi);
606 	}
607 }
608 
609 static u32 fifo_read(struct fsl_dspi *dspi)
610 {
611 	u32 rxdata = 0;
612 
613 	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
614 	return rxdata;
615 }
616 
617 static void dspi_tcfq_read(struct fsl_dspi *dspi)
618 {
619 	dspi_push_rx(dspi, fifo_read(dspi));
620 }
621 
622 static void dspi_eoq_write(struct fsl_dspi *dspi)
623 {
624 	int fifo_size = DSPI_FIFO_SIZE;
625 	u16 xfer_cmd = dspi->tx_cmd;
626 
627 	/* Fill TX FIFO with as many transfers as possible */
628 	while (dspi->len && fifo_size--) {
629 		dspi->tx_cmd = xfer_cmd;
630 		/* Request EOQF for last transfer in FIFO */
631 		if (dspi->len == dspi->bytes_per_word || fifo_size == 0)
632 			dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
633 		/* Clear transfer count for first transfer in FIFO */
634 		if (fifo_size == (DSPI_FIFO_SIZE - 1))
635 			dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
636 		/* Write combined TX FIFO and CMD FIFO entry */
637 		fifo_write(dspi);
638 	}
639 }
640 
641 static void dspi_eoq_read(struct fsl_dspi *dspi)
642 {
643 	int fifo_size = DSPI_FIFO_SIZE;
644 
645 	/* Read one FIFO entry and push to rx buffer */
646 	while ((dspi->rx < dspi->rx_end) && fifo_size--)
647 		dspi_push_rx(dspi, fifo_read(dspi));
648 }
649 
650 static int dspi_rxtx(struct fsl_dspi *dspi)
651 {
652 	struct spi_message *msg = dspi->cur_msg;
653 	enum dspi_trans_mode trans_mode;
654 	u16 spi_tcnt;
655 	u32 spi_tcr;
656 
657 	/* Get transfer counter (in number of SPI transfers). It was
658 	 * reset to 0 when transfer(s) were started.
659 	 */
660 	regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
661 	spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
662 	/* Update total number of bytes that were transferred */
663 	msg->actual_length += spi_tcnt * dspi->bytes_per_word;
664 
665 	trans_mode = dspi->devtype_data->trans_mode;
666 	if (trans_mode == DSPI_EOQ_MODE)
667 		dspi_eoq_read(dspi);
668 	else if (trans_mode == DSPI_TCFQ_MODE)
669 		dspi_tcfq_read(dspi);
670 
671 	if (!dspi->len)
672 		/* Success! */
673 		return 0;
674 
675 	if (trans_mode == DSPI_EOQ_MODE)
676 		dspi_eoq_write(dspi);
677 	else if (trans_mode == DSPI_TCFQ_MODE)
678 		dspi_tcfq_write(dspi);
679 
680 	return -EINPROGRESS;
681 }
682 
683 static int dspi_poll(struct fsl_dspi *dspi)
684 {
685 	int tries = 1000;
686 	u32 spi_sr;
687 
688 	do {
689 		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
690 		regmap_write(dspi->regmap, SPI_SR, spi_sr);
691 
692 		if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF))
693 			break;
694 	} while (--tries);
695 
696 	if (!tries)
697 		return -ETIMEDOUT;
698 
699 	return dspi_rxtx(dspi);
700 }
701 
702 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
703 {
704 	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
705 	u32 spi_sr;
706 
707 	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
708 	regmap_write(dspi->regmap, SPI_SR, spi_sr);
709 
710 	if (!(spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)))
711 		return IRQ_NONE;
712 
713 	if (dspi_rxtx(dspi) == 0) {
714 		dspi->waitflags = 1;
715 		wake_up_interruptible(&dspi->waitq);
716 	}
717 
718 	return IRQ_HANDLED;
719 }
720 
721 static int dspi_transfer_one_message(struct spi_controller *ctlr,
722 				     struct spi_message *message)
723 {
724 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
725 	struct spi_device *spi = message->spi;
726 	enum dspi_trans_mode trans_mode;
727 	struct spi_transfer *transfer;
728 	int status = 0;
729 
730 	message->actual_length = 0;
731 
732 	list_for_each_entry(transfer, &message->transfers, transfer_list) {
733 		dspi->cur_transfer = transfer;
734 		dspi->cur_msg = message;
735 		dspi->cur_chip = spi_get_ctldata(spi);
736 		/* Prepare command word for CMD FIFO */
737 		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
738 			       SPI_PUSHR_CMD_PCS(spi->chip_select);
739 		if (list_is_last(&dspi->cur_transfer->transfer_list,
740 				 &dspi->cur_msg->transfers)) {
741 			/* Leave PCS activated after last transfer when
742 			 * cs_change is set.
743 			 */
744 			if (transfer->cs_change)
745 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
746 		} else {
747 			/* Keep PCS active between transfers in same message
748 			 * when cs_change is not set, and de-activate PCS
749 			 * between transfers in the same message when
750 			 * cs_change is set.
751 			 */
752 			if (!transfer->cs_change)
753 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
754 		}
755 
756 		dspi->void_write_data = dspi->cur_chip->void_write_data;
757 
758 		dspi->tx = transfer->tx_buf;
759 		dspi->rx = transfer->rx_buf;
760 		dspi->rx_end = dspi->rx + transfer->len;
761 		dspi->len = transfer->len;
762 		/* Validated transfer specific frame size (defaults applied) */
763 		dspi->bits_per_word = transfer->bits_per_word;
764 		if (transfer->bits_per_word <= 8)
765 			dspi->bytes_per_word = 1;
766 		else if (transfer->bits_per_word <= 16)
767 			dspi->bytes_per_word = 2;
768 		else
769 			dspi->bytes_per_word = 4;
770 
771 		regmap_update_bits(dspi->regmap, SPI_MCR,
772 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
773 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
774 		regmap_write(dspi->regmap, SPI_CTAR(0),
775 			     dspi->cur_chip->ctar_val |
776 			     SPI_FRAME_BITS(transfer->bits_per_word));
777 		if (dspi->devtype_data->xspi_mode)
778 			regmap_write(dspi->regmap, SPI_CTARE(0),
779 				     SPI_FRAME_EBITS(transfer->bits_per_word) |
780 				     SPI_CTARE_DTCP(1));
781 
782 		trans_mode = dspi->devtype_data->trans_mode;
783 		switch (trans_mode) {
784 		case DSPI_EOQ_MODE:
785 			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
786 			dspi_eoq_write(dspi);
787 			break;
788 		case DSPI_TCFQ_MODE:
789 			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
790 			dspi_tcfq_write(dspi);
791 			break;
792 		case DSPI_DMA_MODE:
793 			regmap_write(dspi->regmap, SPI_RSER,
794 				     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
795 				     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
796 			status = dspi_dma_xfer(dspi);
797 			break;
798 		default:
799 			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
800 				trans_mode);
801 			status = -EINVAL;
802 			goto out;
803 		}
804 
805 		if (!dspi->irq) {
806 			do {
807 				status = dspi_poll(dspi);
808 			} while (status == -EINPROGRESS);
809 		} else if (trans_mode != DSPI_DMA_MODE) {
810 			status = wait_event_interruptible(dspi->waitq,
811 							  dspi->waitflags);
812 			dspi->waitflags = 0;
813 		}
814 		if (status)
815 			dev_err(&dspi->pdev->dev,
816 				"Waiting for transfer to complete failed!\n");
817 
818 		if (transfer->delay_usecs)
819 			udelay(transfer->delay_usecs);
820 	}
821 
822 out:
823 	message->status = status;
824 	spi_finalize_current_message(ctlr);
825 
826 	return status;
827 }
828 
829 static int dspi_setup(struct spi_device *spi)
830 {
831 	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
832 	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
833 	u32 cs_sck_delay = 0, sck_cs_delay = 0;
834 	struct fsl_dspi_platform_data *pdata;
835 	unsigned char pasc = 0, asc = 0;
836 	struct chip_data *chip;
837 	unsigned long clkrate;
838 
839 	/* Only alloc on first setup */
840 	chip = spi_get_ctldata(spi);
841 	if (chip == NULL) {
842 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
843 		if (!chip)
844 			return -ENOMEM;
845 	}
846 
847 	pdata = dev_get_platdata(&dspi->pdev->dev);
848 
849 	if (!pdata) {
850 		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
851 				     &cs_sck_delay);
852 
853 		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
854 				     &sck_cs_delay);
855 	} else {
856 		cs_sck_delay = pdata->cs_sck_delay;
857 		sck_cs_delay = pdata->sck_cs_delay;
858 	}
859 
860 	chip->void_write_data = 0;
861 
862 	clkrate = clk_get_rate(dspi->clk);
863 	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
864 
865 	/* Set PCS to SCK delay scale values */
866 	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
867 
868 	/* Set After SCK delay scale values */
869 	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
870 
871 	chip->ctar_val = 0;
872 	if (spi->mode & SPI_CPOL)
873 		chip->ctar_val |= SPI_CTAR_CPOL;
874 	if (spi->mode & SPI_CPHA)
875 		chip->ctar_val |= SPI_CTAR_CPHA;
876 
877 	if (!spi_controller_is_slave(dspi->ctlr)) {
878 		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
879 				  SPI_CTAR_CSSCK(cssck) |
880 				  SPI_CTAR_PASC(pasc) |
881 				  SPI_CTAR_ASC(asc) |
882 				  SPI_CTAR_PBR(pbr) |
883 				  SPI_CTAR_BR(br);
884 
885 		if (spi->mode & SPI_LSB_FIRST)
886 			chip->ctar_val |= SPI_CTAR_LSBFE;
887 	}
888 
889 	spi_set_ctldata(spi, chip);
890 
891 	return 0;
892 }
893 
894 static void dspi_cleanup(struct spi_device *spi)
895 {
896 	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
897 
898 	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
899 		spi->controller->bus_num, spi->chip_select);
900 
901 	kfree(chip);
902 }
903 
904 static const struct of_device_id fsl_dspi_dt_ids[] = {
905 	{ .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
906 	{ .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
907 	{ .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
908 	{ /* sentinel */ }
909 };
910 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
911 
912 #ifdef CONFIG_PM_SLEEP
913 static int dspi_suspend(struct device *dev)
914 {
915 	struct spi_controller *ctlr = dev_get_drvdata(dev);
916 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
917 
918 	spi_controller_suspend(ctlr);
919 	clk_disable_unprepare(dspi->clk);
920 
921 	pinctrl_pm_select_sleep_state(dev);
922 
923 	return 0;
924 }
925 
926 static int dspi_resume(struct device *dev)
927 {
928 	struct spi_controller *ctlr = dev_get_drvdata(dev);
929 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
930 	int ret;
931 
932 	pinctrl_pm_select_default_state(dev);
933 
934 	ret = clk_prepare_enable(dspi->clk);
935 	if (ret)
936 		return ret;
937 	spi_controller_resume(ctlr);
938 
939 	return 0;
940 }
941 #endif /* CONFIG_PM_SLEEP */
942 
943 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
944 
945 static const struct regmap_range dspi_volatile_ranges[] = {
946 	regmap_reg_range(SPI_MCR, SPI_TCR),
947 	regmap_reg_range(SPI_SR, SPI_SR),
948 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
949 };
950 
951 static const struct regmap_access_table dspi_volatile_table = {
952 	.yes_ranges	= dspi_volatile_ranges,
953 	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
954 };
955 
956 static const struct regmap_config dspi_regmap_config = {
957 	.reg_bits	= 32,
958 	.val_bits	= 32,
959 	.reg_stride	= 4,
960 	.max_register	= 0x88,
961 	.volatile_table	= &dspi_volatile_table,
962 };
963 
964 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
965 	regmap_reg_range(SPI_MCR, SPI_TCR),
966 	regmap_reg_range(SPI_SR, SPI_SR),
967 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
968 	regmap_reg_range(SPI_SREX, SPI_SREX),
969 };
970 
971 static const struct regmap_access_table dspi_xspi_volatile_table = {
972 	.yes_ranges	= dspi_xspi_volatile_ranges,
973 	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
974 };
975 
976 static const struct regmap_config dspi_xspi_regmap_config[] = {
977 	{
978 		.reg_bits	= 32,
979 		.val_bits	= 32,
980 		.reg_stride	= 4,
981 		.max_register	= 0x13c,
982 		.volatile_table	= &dspi_xspi_volatile_table,
983 	},
984 	{
985 		.name		= "pushr",
986 		.reg_bits	= 16,
987 		.val_bits	= 16,
988 		.reg_stride	= 2,
989 		.max_register	= 0x2,
990 	},
991 };
992 
993 static void dspi_init(struct fsl_dspi *dspi)
994 {
995 	unsigned int mcr = SPI_MCR_PCSIS;
996 
997 	if (dspi->devtype_data->xspi_mode)
998 		mcr |= SPI_MCR_XSPI;
999 	if (!spi_controller_is_slave(dspi->ctlr))
1000 		mcr |= SPI_MCR_MASTER;
1001 
1002 	regmap_write(dspi->regmap, SPI_MCR, mcr);
1003 	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1004 	if (dspi->devtype_data->xspi_mode)
1005 		regmap_write(dspi->regmap, SPI_CTARE(0),
1006 			     SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1));
1007 }
1008 
1009 static int dspi_probe(struct platform_device *pdev)
1010 {
1011 	struct device_node *np = pdev->dev.of_node;
1012 	const struct regmap_config *regmap_config;
1013 	struct fsl_dspi_platform_data *pdata;
1014 	struct spi_controller *ctlr;
1015 	int ret, cs_num, bus_num;
1016 	struct fsl_dspi *dspi;
1017 	struct resource *res;
1018 	void __iomem *base;
1019 
1020 	ctlr = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
1021 	if (!ctlr)
1022 		return -ENOMEM;
1023 
1024 	dspi = spi_controller_get_devdata(ctlr);
1025 	dspi->pdev = pdev;
1026 	dspi->ctlr = ctlr;
1027 
1028 	ctlr->setup = dspi_setup;
1029 	ctlr->transfer_one_message = dspi_transfer_one_message;
1030 	ctlr->dev.of_node = pdev->dev.of_node;
1031 
1032 	ctlr->cleanup = dspi_cleanup;
1033 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1034 
1035 	pdata = dev_get_platdata(&pdev->dev);
1036 	if (pdata) {
1037 		ctlr->num_chipselect = pdata->cs_num;
1038 		ctlr->bus_num = pdata->bus_num;
1039 
1040 		dspi->devtype_data = &coldfire_data;
1041 	} else {
1042 
1043 		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1044 		if (ret < 0) {
1045 			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1046 			goto out_ctlr_put;
1047 		}
1048 		ctlr->num_chipselect = cs_num;
1049 
1050 		ret = of_property_read_u32(np, "bus-num", &bus_num);
1051 		if (ret < 0) {
1052 			dev_err(&pdev->dev, "can't get bus-num\n");
1053 			goto out_ctlr_put;
1054 		}
1055 		ctlr->bus_num = bus_num;
1056 
1057 		if (of_property_read_bool(np, "spi-slave"))
1058 			ctlr->slave = true;
1059 
1060 		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1061 		if (!dspi->devtype_data) {
1062 			dev_err(&pdev->dev, "can't get devtype_data\n");
1063 			ret = -EFAULT;
1064 			goto out_ctlr_put;
1065 		}
1066 	}
1067 
1068 	if (dspi->devtype_data->xspi_mode)
1069 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1070 	else
1071 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1072 
1073 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1074 	base = devm_ioremap_resource(&pdev->dev, res);
1075 	if (IS_ERR(base)) {
1076 		ret = PTR_ERR(base);
1077 		goto out_ctlr_put;
1078 	}
1079 
1080 	if (dspi->devtype_data->xspi_mode)
1081 		regmap_config = &dspi_xspi_regmap_config[0];
1082 	else
1083 		regmap_config = &dspi_regmap_config;
1084 	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1085 	if (IS_ERR(dspi->regmap)) {
1086 		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1087 				PTR_ERR(dspi->regmap));
1088 		ret = PTR_ERR(dspi->regmap);
1089 		goto out_ctlr_put;
1090 	}
1091 
1092 	if (dspi->devtype_data->xspi_mode) {
1093 		dspi->regmap_pushr = devm_regmap_init_mmio(
1094 			&pdev->dev, base + SPI_PUSHR,
1095 			&dspi_xspi_regmap_config[1]);
1096 		if (IS_ERR(dspi->regmap_pushr)) {
1097 			dev_err(&pdev->dev,
1098 				"failed to init pushr regmap: %ld\n",
1099 				PTR_ERR(dspi->regmap_pushr));
1100 			ret = PTR_ERR(dspi->regmap_pushr);
1101 			goto out_ctlr_put;
1102 		}
1103 	}
1104 
1105 	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1106 	if (IS_ERR(dspi->clk)) {
1107 		ret = PTR_ERR(dspi->clk);
1108 		dev_err(&pdev->dev, "unable to get clock\n");
1109 		goto out_ctlr_put;
1110 	}
1111 	ret = clk_prepare_enable(dspi->clk);
1112 	if (ret)
1113 		goto out_ctlr_put;
1114 
1115 	dspi_init(dspi);
1116 
1117 	dspi->irq = platform_get_irq(pdev, 0);
1118 	if (dspi->irq <= 0) {
1119 		dev_info(&pdev->dev,
1120 			 "can't get platform irq, using poll mode\n");
1121 		dspi->irq = 0;
1122 		goto poll_mode;
1123 	}
1124 
1125 	ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt,
1126 			       IRQF_SHARED, pdev->name, dspi);
1127 	if (ret < 0) {
1128 		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1129 		goto out_clk_put;
1130 	}
1131 
1132 	init_waitqueue_head(&dspi->waitq);
1133 
1134 poll_mode:
1135 	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1136 		ret = dspi_request_dma(dspi, res->start);
1137 		if (ret < 0) {
1138 			dev_err(&pdev->dev, "can't get dma channels\n");
1139 			goto out_clk_put;
1140 		}
1141 	}
1142 
1143 	ctlr->max_speed_hz =
1144 		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1145 
1146 	platform_set_drvdata(pdev, ctlr);
1147 
1148 	ret = spi_register_controller(ctlr);
1149 	if (ret != 0) {
1150 		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1151 		goto out_clk_put;
1152 	}
1153 
1154 	return ret;
1155 
1156 out_clk_put:
1157 	clk_disable_unprepare(dspi->clk);
1158 out_ctlr_put:
1159 	spi_controller_put(ctlr);
1160 
1161 	return ret;
1162 }
1163 
1164 static int dspi_remove(struct platform_device *pdev)
1165 {
1166 	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1167 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1168 
1169 	/* Disconnect from the SPI framework */
1170 	dspi_release_dma(dspi);
1171 	clk_disable_unprepare(dspi->clk);
1172 	spi_unregister_controller(dspi->ctlr);
1173 
1174 	return 0;
1175 }
1176 
1177 static struct platform_driver fsl_dspi_driver = {
1178 	.driver.name		= DRIVER_NAME,
1179 	.driver.of_match_table	= fsl_dspi_dt_ids,
1180 	.driver.owner		= THIS_MODULE,
1181 	.driver.pm		= &dspi_pm,
1182 	.probe			= dspi_probe,
1183 	.remove			= dspi_remove,
1184 };
1185 module_platform_driver(fsl_dspi_driver);
1186 
1187 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1188 MODULE_LICENSE("GPL");
1189 MODULE_ALIAS("platform:" DRIVER_NAME);
1190