1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Cirrus Logic EP93xx SPI controller. 4 * 5 * Copyright (C) 2010-2011 Mika Westerberg 6 * 7 * Explicit FIFO handling code was inspired by amba-pl022 driver. 8 * 9 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten. 10 * 11 * For more information about the SPI controller see documentation on Cirrus 12 * Logic web site: 13 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf 14 */ 15 16 #include <linux/io.h> 17 #include <linux/clk.h> 18 #include <linux/err.h> 19 #include <linux/delay.h> 20 #include <linux/device.h> 21 #include <linux/dmaengine.h> 22 #include <linux/bitops.h> 23 #include <linux/interrupt.h> 24 #include <linux/module.h> 25 #include <linux/platform_device.h> 26 #include <linux/sched.h> 27 #include <linux/scatterlist.h> 28 #include <linux/spi/spi.h> 29 30 #include <linux/platform_data/dma-ep93xx.h> 31 #include <linux/platform_data/spi-ep93xx.h> 32 33 #define SSPCR0 0x0000 34 #define SSPCR0_SPO BIT(6) 35 #define SSPCR0_SPH BIT(7) 36 #define SSPCR0_SCR_SHIFT 8 37 38 #define SSPCR1 0x0004 39 #define SSPCR1_RIE BIT(0) 40 #define SSPCR1_TIE BIT(1) 41 #define SSPCR1_RORIE BIT(2) 42 #define SSPCR1_LBM BIT(3) 43 #define SSPCR1_SSE BIT(4) 44 #define SSPCR1_MS BIT(5) 45 #define SSPCR1_SOD BIT(6) 46 47 #define SSPDR 0x0008 48 49 #define SSPSR 0x000c 50 #define SSPSR_TFE BIT(0) 51 #define SSPSR_TNF BIT(1) 52 #define SSPSR_RNE BIT(2) 53 #define SSPSR_RFF BIT(3) 54 #define SSPSR_BSY BIT(4) 55 #define SSPCPSR 0x0010 56 57 #define SSPIIR 0x0014 58 #define SSPIIR_RIS BIT(0) 59 #define SSPIIR_TIS BIT(1) 60 #define SSPIIR_RORIS BIT(2) 61 #define SSPICR SSPIIR 62 63 /* timeout in milliseconds */ 64 #define SPI_TIMEOUT 5 65 /* maximum depth of RX/TX FIFO */ 66 #define SPI_FIFO_SIZE 8 67 68 /** 69 * struct ep93xx_spi - EP93xx SPI controller structure 70 * @clk: clock for the controller 71 * @mmio: pointer to ioremap()'d registers 72 * @sspdr_phys: physical address of the SSPDR register 73 * @tx: current byte in transfer to transmit 74 * @rx: current byte in transfer to receive 75 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one 76 * frame decreases this level and sending one frame increases it. 77 * @dma_rx: RX DMA channel 78 * @dma_tx: TX DMA channel 79 * @dma_rx_data: RX parameters passed to the DMA engine 80 * @dma_tx_data: TX parameters passed to the DMA engine 81 * @rx_sgt: sg table for RX transfers 82 * @tx_sgt: sg table for TX transfers 83 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by 84 * the client 85 */ 86 struct ep93xx_spi { 87 struct clk *clk; 88 void __iomem *mmio; 89 unsigned long sspdr_phys; 90 size_t tx; 91 size_t rx; 92 size_t fifo_level; 93 struct dma_chan *dma_rx; 94 struct dma_chan *dma_tx; 95 struct ep93xx_dma_data dma_rx_data; 96 struct ep93xx_dma_data dma_tx_data; 97 struct sg_table rx_sgt; 98 struct sg_table tx_sgt; 99 void *zeropage; 100 }; 101 102 /* converts bits per word to CR0.DSS value */ 103 #define bits_per_word_to_dss(bpw) ((bpw) - 1) 104 105 /** 106 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors 107 * @master: SPI master 108 * @rate: desired SPI output clock rate 109 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider 110 * @div_scr: pointer to return the scr divider 111 */ 112 static int ep93xx_spi_calc_divisors(struct spi_master *master, 113 u32 rate, u8 *div_cpsr, u8 *div_scr) 114 { 115 struct ep93xx_spi *espi = spi_master_get_devdata(master); 116 unsigned long spi_clk_rate = clk_get_rate(espi->clk); 117 int cpsr, scr; 118 119 /* 120 * Make sure that max value is between values supported by the 121 * controller. 122 */ 123 rate = clamp(rate, master->min_speed_hz, master->max_speed_hz); 124 125 /* 126 * Calculate divisors so that we can get speed according the 127 * following formula: 128 * rate = spi_clock_rate / (cpsr * (1 + scr)) 129 * 130 * cpsr must be even number and starts from 2, scr can be any number 131 * between 0 and 255. 132 */ 133 for (cpsr = 2; cpsr <= 254; cpsr += 2) { 134 for (scr = 0; scr <= 255; scr++) { 135 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) { 136 *div_scr = (u8)scr; 137 *div_cpsr = (u8)cpsr; 138 return 0; 139 } 140 } 141 } 142 143 return -EINVAL; 144 } 145 146 static int ep93xx_spi_chip_setup(struct spi_master *master, 147 struct spi_device *spi, 148 struct spi_transfer *xfer) 149 { 150 struct ep93xx_spi *espi = spi_master_get_devdata(master); 151 u8 dss = bits_per_word_to_dss(xfer->bits_per_word); 152 u8 div_cpsr = 0; 153 u8 div_scr = 0; 154 u16 cr0; 155 int err; 156 157 err = ep93xx_spi_calc_divisors(master, xfer->speed_hz, 158 &div_cpsr, &div_scr); 159 if (err) 160 return err; 161 162 cr0 = div_scr << SSPCR0_SCR_SHIFT; 163 if (spi->mode & SPI_CPOL) 164 cr0 |= SSPCR0_SPO; 165 if (spi->mode & SPI_CPHA) 166 cr0 |= SSPCR0_SPH; 167 cr0 |= dss; 168 169 dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n", 170 spi->mode, div_cpsr, div_scr, dss); 171 dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0); 172 173 writel(div_cpsr, espi->mmio + SSPCPSR); 174 writel(cr0, espi->mmio + SSPCR0); 175 176 return 0; 177 } 178 179 static void ep93xx_do_write(struct spi_master *master) 180 { 181 struct ep93xx_spi *espi = spi_master_get_devdata(master); 182 struct spi_transfer *xfer = master->cur_msg->state; 183 u32 val = 0; 184 185 if (xfer->bits_per_word > 8) { 186 if (xfer->tx_buf) 187 val = ((u16 *)xfer->tx_buf)[espi->tx]; 188 espi->tx += 2; 189 } else { 190 if (xfer->tx_buf) 191 val = ((u8 *)xfer->tx_buf)[espi->tx]; 192 espi->tx += 1; 193 } 194 writel(val, espi->mmio + SSPDR); 195 } 196 197 static void ep93xx_do_read(struct spi_master *master) 198 { 199 struct ep93xx_spi *espi = spi_master_get_devdata(master); 200 struct spi_transfer *xfer = master->cur_msg->state; 201 u32 val; 202 203 val = readl(espi->mmio + SSPDR); 204 if (xfer->bits_per_word > 8) { 205 if (xfer->rx_buf) 206 ((u16 *)xfer->rx_buf)[espi->rx] = val; 207 espi->rx += 2; 208 } else { 209 if (xfer->rx_buf) 210 ((u8 *)xfer->rx_buf)[espi->rx] = val; 211 espi->rx += 1; 212 } 213 } 214 215 /** 216 * ep93xx_spi_read_write() - perform next RX/TX transfer 217 * @espi: ep93xx SPI controller struct 218 * 219 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If 220 * called several times, the whole transfer will be completed. Returns 221 * %-EINPROGRESS when current transfer was not yet completed otherwise %0. 222 * 223 * When this function is finished, RX FIFO should be empty and TX FIFO should be 224 * full. 225 */ 226 static int ep93xx_spi_read_write(struct spi_master *master) 227 { 228 struct ep93xx_spi *espi = spi_master_get_devdata(master); 229 struct spi_transfer *xfer = master->cur_msg->state; 230 231 /* read as long as RX FIFO has frames in it */ 232 while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) { 233 ep93xx_do_read(master); 234 espi->fifo_level--; 235 } 236 237 /* write as long as TX FIFO has room */ 238 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) { 239 ep93xx_do_write(master); 240 espi->fifo_level++; 241 } 242 243 if (espi->rx == xfer->len) 244 return 0; 245 246 return -EINPROGRESS; 247 } 248 249 static enum dma_transfer_direction 250 ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir) 251 { 252 switch (dir) { 253 case DMA_TO_DEVICE: 254 return DMA_MEM_TO_DEV; 255 case DMA_FROM_DEVICE: 256 return DMA_DEV_TO_MEM; 257 default: 258 return DMA_TRANS_NONE; 259 } 260 } 261 262 /** 263 * ep93xx_spi_dma_prepare() - prepares a DMA transfer 264 * @master: SPI master 265 * @dir: DMA transfer direction 266 * 267 * Function configures the DMA, maps the buffer and prepares the DMA 268 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR 269 * in case of failure. 270 */ 271 static struct dma_async_tx_descriptor * 272 ep93xx_spi_dma_prepare(struct spi_master *master, 273 enum dma_data_direction dir) 274 { 275 struct ep93xx_spi *espi = spi_master_get_devdata(master); 276 struct spi_transfer *xfer = master->cur_msg->state; 277 struct dma_async_tx_descriptor *txd; 278 enum dma_slave_buswidth buswidth; 279 struct dma_slave_config conf; 280 struct scatterlist *sg; 281 struct sg_table *sgt; 282 struct dma_chan *chan; 283 const void *buf, *pbuf; 284 size_t len = xfer->len; 285 int i, ret, nents; 286 287 if (xfer->bits_per_word > 8) 288 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 289 else 290 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 291 292 memset(&conf, 0, sizeof(conf)); 293 conf.direction = ep93xx_dma_data_to_trans_dir(dir); 294 295 if (dir == DMA_FROM_DEVICE) { 296 chan = espi->dma_rx; 297 buf = xfer->rx_buf; 298 sgt = &espi->rx_sgt; 299 300 conf.src_addr = espi->sspdr_phys; 301 conf.src_addr_width = buswidth; 302 } else { 303 chan = espi->dma_tx; 304 buf = xfer->tx_buf; 305 sgt = &espi->tx_sgt; 306 307 conf.dst_addr = espi->sspdr_phys; 308 conf.dst_addr_width = buswidth; 309 } 310 311 ret = dmaengine_slave_config(chan, &conf); 312 if (ret) 313 return ERR_PTR(ret); 314 315 /* 316 * We need to split the transfer into PAGE_SIZE'd chunks. This is 317 * because we are using @espi->zeropage to provide a zero RX buffer 318 * for the TX transfers and we have only allocated one page for that. 319 * 320 * For performance reasons we allocate a new sg_table only when 321 * needed. Otherwise we will re-use the current one. Eventually the 322 * last sg_table is released in ep93xx_spi_release_dma(). 323 */ 324 325 nents = DIV_ROUND_UP(len, PAGE_SIZE); 326 if (nents != sgt->nents) { 327 sg_free_table(sgt); 328 329 ret = sg_alloc_table(sgt, nents, GFP_KERNEL); 330 if (ret) 331 return ERR_PTR(ret); 332 } 333 334 pbuf = buf; 335 for_each_sg(sgt->sgl, sg, sgt->nents, i) { 336 size_t bytes = min_t(size_t, len, PAGE_SIZE); 337 338 if (buf) { 339 sg_set_page(sg, virt_to_page(pbuf), bytes, 340 offset_in_page(pbuf)); 341 } else { 342 sg_set_page(sg, virt_to_page(espi->zeropage), 343 bytes, 0); 344 } 345 346 pbuf += bytes; 347 len -= bytes; 348 } 349 350 if (WARN_ON(len)) { 351 dev_warn(&master->dev, "len = %zu expected 0!\n", len); 352 return ERR_PTR(-EINVAL); 353 } 354 355 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 356 if (!nents) 357 return ERR_PTR(-ENOMEM); 358 359 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction, 360 DMA_CTRL_ACK); 361 if (!txd) { 362 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 363 return ERR_PTR(-ENOMEM); 364 } 365 return txd; 366 } 367 368 /** 369 * ep93xx_spi_dma_finish() - finishes with a DMA transfer 370 * @master: SPI master 371 * @dir: DMA transfer direction 372 * 373 * Function finishes with the DMA transfer. After this, the DMA buffer is 374 * unmapped. 375 */ 376 static void ep93xx_spi_dma_finish(struct spi_master *master, 377 enum dma_data_direction dir) 378 { 379 struct ep93xx_spi *espi = spi_master_get_devdata(master); 380 struct dma_chan *chan; 381 struct sg_table *sgt; 382 383 if (dir == DMA_FROM_DEVICE) { 384 chan = espi->dma_rx; 385 sgt = &espi->rx_sgt; 386 } else { 387 chan = espi->dma_tx; 388 sgt = &espi->tx_sgt; 389 } 390 391 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 392 } 393 394 static void ep93xx_spi_dma_callback(void *callback_param) 395 { 396 struct spi_master *master = callback_param; 397 398 ep93xx_spi_dma_finish(master, DMA_TO_DEVICE); 399 ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE); 400 401 spi_finalize_current_transfer(master); 402 } 403 404 static int ep93xx_spi_dma_transfer(struct spi_master *master) 405 { 406 struct ep93xx_spi *espi = spi_master_get_devdata(master); 407 struct dma_async_tx_descriptor *rxd, *txd; 408 409 rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE); 410 if (IS_ERR(rxd)) { 411 dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd)); 412 return PTR_ERR(rxd); 413 } 414 415 txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE); 416 if (IS_ERR(txd)) { 417 ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE); 418 dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd)); 419 return PTR_ERR(txd); 420 } 421 422 /* We are ready when RX is done */ 423 rxd->callback = ep93xx_spi_dma_callback; 424 rxd->callback_param = master; 425 426 /* Now submit both descriptors and start DMA */ 427 dmaengine_submit(rxd); 428 dmaengine_submit(txd); 429 430 dma_async_issue_pending(espi->dma_rx); 431 dma_async_issue_pending(espi->dma_tx); 432 433 /* signal that we need to wait for completion */ 434 return 1; 435 } 436 437 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id) 438 { 439 struct spi_master *master = dev_id; 440 struct ep93xx_spi *espi = spi_master_get_devdata(master); 441 u32 val; 442 443 /* 444 * If we got ROR (receive overrun) interrupt we know that something is 445 * wrong. Just abort the message. 446 */ 447 if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) { 448 /* clear the overrun interrupt */ 449 writel(0, espi->mmio + SSPICR); 450 dev_warn(&master->dev, 451 "receive overrun, aborting the message\n"); 452 master->cur_msg->status = -EIO; 453 } else { 454 /* 455 * Interrupt is either RX (RIS) or TX (TIS). For both cases we 456 * simply execute next data transfer. 457 */ 458 if (ep93xx_spi_read_write(master)) { 459 /* 460 * In normal case, there still is some processing left 461 * for current transfer. Let's wait for the next 462 * interrupt then. 463 */ 464 return IRQ_HANDLED; 465 } 466 } 467 468 /* 469 * Current transfer is finished, either with error or with success. In 470 * any case we disable interrupts and notify the worker to handle 471 * any post-processing of the message. 472 */ 473 val = readl(espi->mmio + SSPCR1); 474 val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); 475 writel(val, espi->mmio + SSPCR1); 476 477 spi_finalize_current_transfer(master); 478 479 return IRQ_HANDLED; 480 } 481 482 static int ep93xx_spi_transfer_one(struct spi_master *master, 483 struct spi_device *spi, 484 struct spi_transfer *xfer) 485 { 486 struct ep93xx_spi *espi = spi_master_get_devdata(master); 487 u32 val; 488 int ret; 489 490 ret = ep93xx_spi_chip_setup(master, spi, xfer); 491 if (ret) { 492 dev_err(&master->dev, "failed to setup chip for transfer\n"); 493 return ret; 494 } 495 496 master->cur_msg->state = xfer; 497 espi->rx = 0; 498 espi->tx = 0; 499 500 /* 501 * There is no point of setting up DMA for the transfers which will 502 * fit into the FIFO and can be transferred with a single interrupt. 503 * So in these cases we will be using PIO and don't bother for DMA. 504 */ 505 if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE) 506 return ep93xx_spi_dma_transfer(master); 507 508 /* Using PIO so prime the TX FIFO and enable interrupts */ 509 ep93xx_spi_read_write(master); 510 511 val = readl(espi->mmio + SSPCR1); 512 val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); 513 writel(val, espi->mmio + SSPCR1); 514 515 /* signal that we need to wait for completion */ 516 return 1; 517 } 518 519 static int ep93xx_spi_prepare_message(struct spi_master *master, 520 struct spi_message *msg) 521 { 522 struct ep93xx_spi *espi = spi_master_get_devdata(master); 523 unsigned long timeout; 524 525 /* 526 * Just to be sure: flush any data from RX FIFO. 527 */ 528 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT); 529 while (readl(espi->mmio + SSPSR) & SSPSR_RNE) { 530 if (time_after(jiffies, timeout)) { 531 dev_warn(&master->dev, 532 "timeout while flushing RX FIFO\n"); 533 return -ETIMEDOUT; 534 } 535 readl(espi->mmio + SSPDR); 536 } 537 538 /* 539 * We explicitly handle FIFO level. This way we don't have to check TX 540 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns. 541 */ 542 espi->fifo_level = 0; 543 544 return 0; 545 } 546 547 static int ep93xx_spi_prepare_hardware(struct spi_master *master) 548 { 549 struct ep93xx_spi *espi = spi_master_get_devdata(master); 550 u32 val; 551 int ret; 552 553 ret = clk_enable(espi->clk); 554 if (ret) 555 return ret; 556 557 val = readl(espi->mmio + SSPCR1); 558 val |= SSPCR1_SSE; 559 writel(val, espi->mmio + SSPCR1); 560 561 return 0; 562 } 563 564 static int ep93xx_spi_unprepare_hardware(struct spi_master *master) 565 { 566 struct ep93xx_spi *espi = spi_master_get_devdata(master); 567 u32 val; 568 569 val = readl(espi->mmio + SSPCR1); 570 val &= ~SSPCR1_SSE; 571 writel(val, espi->mmio + SSPCR1); 572 573 clk_disable(espi->clk); 574 575 return 0; 576 } 577 578 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param) 579 { 580 if (ep93xx_dma_chan_is_m2p(chan)) 581 return false; 582 583 chan->private = filter_param; 584 return true; 585 } 586 587 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi) 588 { 589 dma_cap_mask_t mask; 590 int ret; 591 592 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL); 593 if (!espi->zeropage) 594 return -ENOMEM; 595 596 dma_cap_zero(mask); 597 dma_cap_set(DMA_SLAVE, mask); 598 599 espi->dma_rx_data.port = EP93XX_DMA_SSP; 600 espi->dma_rx_data.direction = DMA_DEV_TO_MEM; 601 espi->dma_rx_data.name = "ep93xx-spi-rx"; 602 603 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter, 604 &espi->dma_rx_data); 605 if (!espi->dma_rx) { 606 ret = -ENODEV; 607 goto fail_free_page; 608 } 609 610 espi->dma_tx_data.port = EP93XX_DMA_SSP; 611 espi->dma_tx_data.direction = DMA_MEM_TO_DEV; 612 espi->dma_tx_data.name = "ep93xx-spi-tx"; 613 614 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter, 615 &espi->dma_tx_data); 616 if (!espi->dma_tx) { 617 ret = -ENODEV; 618 goto fail_release_rx; 619 } 620 621 return 0; 622 623 fail_release_rx: 624 dma_release_channel(espi->dma_rx); 625 espi->dma_rx = NULL; 626 fail_free_page: 627 free_page((unsigned long)espi->zeropage); 628 629 return ret; 630 } 631 632 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi) 633 { 634 if (espi->dma_rx) { 635 dma_release_channel(espi->dma_rx); 636 sg_free_table(&espi->rx_sgt); 637 } 638 if (espi->dma_tx) { 639 dma_release_channel(espi->dma_tx); 640 sg_free_table(&espi->tx_sgt); 641 } 642 643 if (espi->zeropage) 644 free_page((unsigned long)espi->zeropage); 645 } 646 647 static int ep93xx_spi_probe(struct platform_device *pdev) 648 { 649 struct spi_master *master; 650 struct ep93xx_spi_info *info; 651 struct ep93xx_spi *espi; 652 struct resource *res; 653 int irq; 654 int error; 655 656 info = dev_get_platdata(&pdev->dev); 657 if (!info) { 658 dev_err(&pdev->dev, "missing platform data\n"); 659 return -EINVAL; 660 } 661 662 irq = platform_get_irq(pdev, 0); 663 if (irq < 0) 664 return -EBUSY; 665 666 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 667 if (!res) { 668 dev_err(&pdev->dev, "unable to get iomem resource\n"); 669 return -ENODEV; 670 } 671 672 master = spi_alloc_master(&pdev->dev, sizeof(*espi)); 673 if (!master) 674 return -ENOMEM; 675 676 master->use_gpio_descriptors = true; 677 master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware; 678 master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware; 679 master->prepare_message = ep93xx_spi_prepare_message; 680 master->transfer_one = ep93xx_spi_transfer_one; 681 master->bus_num = pdev->id; 682 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 683 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 684 /* 685 * The SPI core will count the number of GPIO descriptors to figure 686 * out the number of chip selects available on the platform. 687 */ 688 master->num_chipselect = 0; 689 690 platform_set_drvdata(pdev, master); 691 692 espi = spi_master_get_devdata(master); 693 694 espi->clk = devm_clk_get(&pdev->dev, NULL); 695 if (IS_ERR(espi->clk)) { 696 dev_err(&pdev->dev, "unable to get spi clock\n"); 697 error = PTR_ERR(espi->clk); 698 goto fail_release_master; 699 } 700 701 /* 702 * Calculate maximum and minimum supported clock rates 703 * for the controller. 704 */ 705 master->max_speed_hz = clk_get_rate(espi->clk) / 2; 706 master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256); 707 708 espi->sspdr_phys = res->start + SSPDR; 709 710 espi->mmio = devm_ioremap_resource(&pdev->dev, res); 711 if (IS_ERR(espi->mmio)) { 712 error = PTR_ERR(espi->mmio); 713 goto fail_release_master; 714 } 715 716 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt, 717 0, "ep93xx-spi", master); 718 if (error) { 719 dev_err(&pdev->dev, "failed to request irq\n"); 720 goto fail_release_master; 721 } 722 723 if (info->use_dma && ep93xx_spi_setup_dma(espi)) 724 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n"); 725 726 /* make sure that the hardware is disabled */ 727 writel(0, espi->mmio + SSPCR1); 728 729 error = devm_spi_register_master(&pdev->dev, master); 730 if (error) { 731 dev_err(&pdev->dev, "failed to register SPI master\n"); 732 goto fail_free_dma; 733 } 734 735 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n", 736 (unsigned long)res->start, irq); 737 738 return 0; 739 740 fail_free_dma: 741 ep93xx_spi_release_dma(espi); 742 fail_release_master: 743 spi_master_put(master); 744 745 return error; 746 } 747 748 static int ep93xx_spi_remove(struct platform_device *pdev) 749 { 750 struct spi_master *master = platform_get_drvdata(pdev); 751 struct ep93xx_spi *espi = spi_master_get_devdata(master); 752 753 ep93xx_spi_release_dma(espi); 754 755 return 0; 756 } 757 758 static struct platform_driver ep93xx_spi_driver = { 759 .driver = { 760 .name = "ep93xx-spi", 761 }, 762 .probe = ep93xx_spi_probe, 763 .remove = ep93xx_spi_remove, 764 }; 765 module_platform_driver(ep93xx_spi_driver); 766 767 MODULE_DESCRIPTION("EP93xx SPI Controller driver"); 768 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); 769 MODULE_LICENSE("GPL"); 770 MODULE_ALIAS("platform:ep93xx-spi"); 771