xref: /linux/drivers/spi/spi-ep93xx.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Cirrus Logic EP93xx SPI controller.
4  *
5  * Copyright (C) 2010-2011 Mika Westerberg
6  *
7  * Explicit FIFO handling code was inspired by amba-pl022 driver.
8  *
9  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
10  *
11  * For more information about the SPI controller see documentation on Cirrus
12  * Logic web site:
13  *     https://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
14  */
15 
16 #include <linux/io.h>
17 #include <linux/clk.h>
18 #include <linux/err.h>
19 #include <linux/delay.h>
20 #include <linux/device.h>
21 #include <linux/dma-direction.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/bitops.h>
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27 #include <linux/property.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/spi/spi.h>
32 
33 #define SSPCR0			0x0000
34 #define SSPCR0_SPO		BIT(6)
35 #define SSPCR0_SPH		BIT(7)
36 #define SSPCR0_SCR_SHIFT	8
37 
38 #define SSPCR1			0x0004
39 #define SSPCR1_RIE		BIT(0)
40 #define SSPCR1_TIE		BIT(1)
41 #define SSPCR1_RORIE		BIT(2)
42 #define SSPCR1_LBM		BIT(3)
43 #define SSPCR1_SSE		BIT(4)
44 #define SSPCR1_MS		BIT(5)
45 #define SSPCR1_SOD		BIT(6)
46 
47 #define SSPDR			0x0008
48 
49 #define SSPSR			0x000c
50 #define SSPSR_TFE		BIT(0)
51 #define SSPSR_TNF		BIT(1)
52 #define SSPSR_RNE		BIT(2)
53 #define SSPSR_RFF		BIT(3)
54 #define SSPSR_BSY		BIT(4)
55 #define SSPCPSR			0x0010
56 
57 #define SSPIIR			0x0014
58 #define SSPIIR_RIS		BIT(0)
59 #define SSPIIR_TIS		BIT(1)
60 #define SSPIIR_RORIS		BIT(2)
61 #define SSPICR			SSPIIR
62 
63 /* timeout in milliseconds */
64 #define SPI_TIMEOUT		5
65 /* maximum depth of RX/TX FIFO */
66 #define SPI_FIFO_SIZE		8
67 
68 /**
69  * struct ep93xx_spi - EP93xx SPI controller structure
70  * @clk: clock for the controller
71  * @mmio: pointer to ioremap()'d registers
72  * @sspdr_phys: physical address of the SSPDR register
73  * @tx: current byte in transfer to transmit
74  * @rx: current byte in transfer to receive
75  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
76  *              frame decreases this level and sending one frame increases it.
77  * @dma_rx: RX DMA channel
78  * @dma_tx: TX DMA channel
79  * @rx_sgt: sg table for RX transfers
80  * @tx_sgt: sg table for TX transfers
81  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
82  *            the client
83  */
84 struct ep93xx_spi {
85 	struct clk			*clk;
86 	void __iomem			*mmio;
87 	unsigned long			sspdr_phys;
88 	size_t				tx;
89 	size_t				rx;
90 	size_t				fifo_level;
91 	struct dma_chan			*dma_rx;
92 	struct dma_chan			*dma_tx;
93 	struct sg_table			rx_sgt;
94 	struct sg_table			tx_sgt;
95 	void				*zeropage;
96 };
97 
98 /* converts bits per word to CR0.DSS value */
99 #define bits_per_word_to_dss(bpw)	((bpw) - 1)
100 
101 /**
102  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
103  * @host: SPI host
104  * @rate: desired SPI output clock rate
105  * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
106  * @div_scr: pointer to return the scr divider
107  */
108 static int ep93xx_spi_calc_divisors(struct spi_controller *host,
109 				    u32 rate, u8 *div_cpsr, u8 *div_scr)
110 {
111 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
112 	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
113 	int cpsr, scr;
114 
115 	/*
116 	 * Make sure that max value is between values supported by the
117 	 * controller.
118 	 */
119 	rate = clamp(rate, host->min_speed_hz, host->max_speed_hz);
120 
121 	/*
122 	 * Calculate divisors so that we can get speed according the
123 	 * following formula:
124 	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
125 	 *
126 	 * cpsr must be even number and starts from 2, scr can be any number
127 	 * between 0 and 255.
128 	 */
129 	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
130 		for (scr = 0; scr <= 255; scr++) {
131 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
132 				*div_scr = (u8)scr;
133 				*div_cpsr = (u8)cpsr;
134 				return 0;
135 			}
136 		}
137 	}
138 
139 	return -EINVAL;
140 }
141 
142 static int ep93xx_spi_chip_setup(struct spi_controller *host,
143 				 struct spi_device *spi,
144 				 struct spi_transfer *xfer)
145 {
146 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
147 	u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
148 	u8 div_cpsr = 0;
149 	u8 div_scr = 0;
150 	u16 cr0;
151 	int err;
152 
153 	err = ep93xx_spi_calc_divisors(host, xfer->speed_hz,
154 				       &div_cpsr, &div_scr);
155 	if (err)
156 		return err;
157 
158 	cr0 = div_scr << SSPCR0_SCR_SHIFT;
159 	if (spi->mode & SPI_CPOL)
160 		cr0 |= SSPCR0_SPO;
161 	if (spi->mode & SPI_CPHA)
162 		cr0 |= SSPCR0_SPH;
163 	cr0 |= dss;
164 
165 	dev_dbg(&host->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
166 		spi->mode, div_cpsr, div_scr, dss);
167 	dev_dbg(&host->dev, "setup: cr0 %#x\n", cr0);
168 
169 	writel(div_cpsr, espi->mmio + SSPCPSR);
170 	writel(cr0, espi->mmio + SSPCR0);
171 
172 	return 0;
173 }
174 
175 static void ep93xx_do_write(struct spi_controller *host)
176 {
177 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
178 	struct spi_transfer *xfer = host->cur_msg->state;
179 	u32 val = 0;
180 
181 	if (xfer->bits_per_word > 8) {
182 		if (xfer->tx_buf)
183 			val = ((u16 *)xfer->tx_buf)[espi->tx];
184 		espi->tx += 2;
185 	} else {
186 		if (xfer->tx_buf)
187 			val = ((u8 *)xfer->tx_buf)[espi->tx];
188 		espi->tx += 1;
189 	}
190 	writel(val, espi->mmio + SSPDR);
191 }
192 
193 static void ep93xx_do_read(struct spi_controller *host)
194 {
195 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
196 	struct spi_transfer *xfer = host->cur_msg->state;
197 	u32 val;
198 
199 	val = readl(espi->mmio + SSPDR);
200 	if (xfer->bits_per_word > 8) {
201 		if (xfer->rx_buf)
202 			((u16 *)xfer->rx_buf)[espi->rx] = val;
203 		espi->rx += 2;
204 	} else {
205 		if (xfer->rx_buf)
206 			((u8 *)xfer->rx_buf)[espi->rx] = val;
207 		espi->rx += 1;
208 	}
209 }
210 
211 /**
212  * ep93xx_spi_read_write() - perform next RX/TX transfer
213  * @host: SPI host
214  *
215  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
216  * called several times, the whole transfer will be completed. Returns
217  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
218  *
219  * When this function is finished, RX FIFO should be empty and TX FIFO should be
220  * full.
221  */
222 static int ep93xx_spi_read_write(struct spi_controller *host)
223 {
224 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
225 	struct spi_transfer *xfer = host->cur_msg->state;
226 
227 	/* read as long as RX FIFO has frames in it */
228 	while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
229 		ep93xx_do_read(host);
230 		espi->fifo_level--;
231 	}
232 
233 	/* write as long as TX FIFO has room */
234 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
235 		ep93xx_do_write(host);
236 		espi->fifo_level++;
237 	}
238 
239 	if (espi->rx == xfer->len)
240 		return 0;
241 
242 	return -EINPROGRESS;
243 }
244 
245 static enum dma_transfer_direction
246 ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
247 {
248 	switch (dir) {
249 	case DMA_TO_DEVICE:
250 		return DMA_MEM_TO_DEV;
251 	case DMA_FROM_DEVICE:
252 		return DMA_DEV_TO_MEM;
253 	default:
254 		return DMA_TRANS_NONE;
255 	}
256 }
257 
258 /**
259  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
260  * @host: SPI host
261  * @dir: DMA transfer direction
262  *
263  * Function configures the DMA, maps the buffer and prepares the DMA
264  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
265  * in case of failure.
266  */
267 static struct dma_async_tx_descriptor *
268 ep93xx_spi_dma_prepare(struct spi_controller *host,
269 		       enum dma_data_direction dir)
270 {
271 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
272 	struct spi_transfer *xfer = host->cur_msg->state;
273 	struct dma_async_tx_descriptor *txd;
274 	enum dma_slave_buswidth buswidth;
275 	struct dma_slave_config conf;
276 	struct scatterlist *sg;
277 	struct sg_table *sgt;
278 	struct dma_chan *chan;
279 	const void *buf, *pbuf;
280 	size_t len = xfer->len;
281 	int i, ret, nents;
282 
283 	if (xfer->bits_per_word > 8)
284 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
285 	else
286 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
287 
288 	memset(&conf, 0, sizeof(conf));
289 	conf.direction = ep93xx_dma_data_to_trans_dir(dir);
290 
291 	if (dir == DMA_FROM_DEVICE) {
292 		chan = espi->dma_rx;
293 		buf = xfer->rx_buf;
294 		sgt = &espi->rx_sgt;
295 
296 		conf.src_addr = espi->sspdr_phys;
297 		conf.src_addr_width = buswidth;
298 	} else {
299 		chan = espi->dma_tx;
300 		buf = xfer->tx_buf;
301 		sgt = &espi->tx_sgt;
302 
303 		conf.dst_addr = espi->sspdr_phys;
304 		conf.dst_addr_width = buswidth;
305 	}
306 
307 	ret = dmaengine_slave_config(chan, &conf);
308 	if (ret)
309 		return ERR_PTR(ret);
310 
311 	/*
312 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
313 	 * because we are using @espi->zeropage to provide a zero RX buffer
314 	 * for the TX transfers and we have only allocated one page for that.
315 	 *
316 	 * For performance reasons we allocate a new sg_table only when
317 	 * needed. Otherwise we will re-use the current one. Eventually the
318 	 * last sg_table is released in ep93xx_spi_release_dma().
319 	 */
320 
321 	nents = DIV_ROUND_UP(len, PAGE_SIZE);
322 	if (nents != sgt->nents) {
323 		sg_free_table(sgt);
324 
325 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
326 		if (ret)
327 			return ERR_PTR(ret);
328 	}
329 
330 	pbuf = buf;
331 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
332 		size_t bytes = min_t(size_t, len, PAGE_SIZE);
333 
334 		if (buf) {
335 			sg_set_page(sg, virt_to_page(pbuf), bytes,
336 				    offset_in_page(pbuf));
337 		} else {
338 			sg_set_page(sg, virt_to_page(espi->zeropage),
339 				    bytes, 0);
340 		}
341 
342 		pbuf += bytes;
343 		len -= bytes;
344 	}
345 
346 	if (WARN_ON(len)) {
347 		dev_warn(&host->dev, "len = %zu expected 0!\n", len);
348 		return ERR_PTR(-EINVAL);
349 	}
350 
351 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
352 	if (!nents)
353 		return ERR_PTR(-ENOMEM);
354 
355 	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
356 				      DMA_CTRL_ACK);
357 	if (!txd) {
358 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
359 		return ERR_PTR(-ENOMEM);
360 	}
361 	return txd;
362 }
363 
364 /**
365  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
366  * @host: SPI host
367  * @dir: DMA transfer direction
368  *
369  * Function finishes with the DMA transfer. After this, the DMA buffer is
370  * unmapped.
371  */
372 static void ep93xx_spi_dma_finish(struct spi_controller *host,
373 				  enum dma_data_direction dir)
374 {
375 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
376 	struct dma_chan *chan;
377 	struct sg_table *sgt;
378 
379 	if (dir == DMA_FROM_DEVICE) {
380 		chan = espi->dma_rx;
381 		sgt = &espi->rx_sgt;
382 	} else {
383 		chan = espi->dma_tx;
384 		sgt = &espi->tx_sgt;
385 	}
386 
387 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
388 }
389 
390 static void ep93xx_spi_dma_callback(void *callback_param)
391 {
392 	struct spi_controller *host = callback_param;
393 
394 	ep93xx_spi_dma_finish(host, DMA_TO_DEVICE);
395 	ep93xx_spi_dma_finish(host, DMA_FROM_DEVICE);
396 
397 	spi_finalize_current_transfer(host);
398 }
399 
400 static int ep93xx_spi_dma_transfer(struct spi_controller *host)
401 {
402 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
403 	struct dma_async_tx_descriptor *rxd, *txd;
404 
405 	rxd = ep93xx_spi_dma_prepare(host, DMA_FROM_DEVICE);
406 	if (IS_ERR(rxd)) {
407 		dev_err(&host->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
408 		return PTR_ERR(rxd);
409 	}
410 
411 	txd = ep93xx_spi_dma_prepare(host, DMA_TO_DEVICE);
412 	if (IS_ERR(txd)) {
413 		ep93xx_spi_dma_finish(host, DMA_FROM_DEVICE);
414 		dev_err(&host->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
415 		return PTR_ERR(txd);
416 	}
417 
418 	/* We are ready when RX is done */
419 	rxd->callback = ep93xx_spi_dma_callback;
420 	rxd->callback_param = host;
421 
422 	/* Now submit both descriptors and start DMA */
423 	dmaengine_submit(rxd);
424 	dmaengine_submit(txd);
425 
426 	dma_async_issue_pending(espi->dma_rx);
427 	dma_async_issue_pending(espi->dma_tx);
428 
429 	/* signal that we need to wait for completion */
430 	return 1;
431 }
432 
433 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
434 {
435 	struct spi_controller *host = dev_id;
436 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
437 	u32 val;
438 
439 	/*
440 	 * If we got ROR (receive overrun) interrupt we know that something is
441 	 * wrong. Just abort the message.
442 	 */
443 	if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
444 		/* clear the overrun interrupt */
445 		writel(0, espi->mmio + SSPICR);
446 		dev_warn(&host->dev,
447 			 "receive overrun, aborting the message\n");
448 		host->cur_msg->status = -EIO;
449 	} else {
450 		/*
451 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
452 		 * simply execute next data transfer.
453 		 */
454 		if (ep93xx_spi_read_write(host)) {
455 			/*
456 			 * In normal case, there still is some processing left
457 			 * for current transfer. Let's wait for the next
458 			 * interrupt then.
459 			 */
460 			return IRQ_HANDLED;
461 		}
462 	}
463 
464 	/*
465 	 * Current transfer is finished, either with error or with success. In
466 	 * any case we disable interrupts and notify the worker to handle
467 	 * any post-processing of the message.
468 	 */
469 	val = readl(espi->mmio + SSPCR1);
470 	val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
471 	writel(val, espi->mmio + SSPCR1);
472 
473 	spi_finalize_current_transfer(host);
474 
475 	return IRQ_HANDLED;
476 }
477 
478 static int ep93xx_spi_transfer_one(struct spi_controller *host,
479 				   struct spi_device *spi,
480 				   struct spi_transfer *xfer)
481 {
482 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
483 	u32 val;
484 	int ret;
485 
486 	ret = ep93xx_spi_chip_setup(host, spi, xfer);
487 	if (ret) {
488 		dev_err(&host->dev, "failed to setup chip for transfer\n");
489 		return ret;
490 	}
491 
492 	host->cur_msg->state = xfer;
493 	espi->rx = 0;
494 	espi->tx = 0;
495 
496 	/*
497 	 * There is no point of setting up DMA for the transfers which will
498 	 * fit into the FIFO and can be transferred with a single interrupt.
499 	 * So in these cases we will be using PIO and don't bother for DMA.
500 	 */
501 	if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
502 		return ep93xx_spi_dma_transfer(host);
503 
504 	/* Using PIO so prime the TX FIFO and enable interrupts */
505 	ep93xx_spi_read_write(host);
506 
507 	val = readl(espi->mmio + SSPCR1);
508 	val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
509 	writel(val, espi->mmio + SSPCR1);
510 
511 	/* signal that we need to wait for completion */
512 	return 1;
513 }
514 
515 static int ep93xx_spi_prepare_message(struct spi_controller *host,
516 				      struct spi_message *msg)
517 {
518 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
519 	unsigned long timeout;
520 
521 	/*
522 	 * Just to be sure: flush any data from RX FIFO.
523 	 */
524 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
525 	while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
526 		if (time_after(jiffies, timeout)) {
527 			dev_warn(&host->dev,
528 				 "timeout while flushing RX FIFO\n");
529 			return -ETIMEDOUT;
530 		}
531 		readl(espi->mmio + SSPDR);
532 	}
533 
534 	/*
535 	 * We explicitly handle FIFO level. This way we don't have to check TX
536 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
537 	 */
538 	espi->fifo_level = 0;
539 
540 	return 0;
541 }
542 
543 static int ep93xx_spi_prepare_hardware(struct spi_controller *host)
544 {
545 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
546 	u32 val;
547 	int ret;
548 
549 	ret = clk_prepare_enable(espi->clk);
550 	if (ret)
551 		return ret;
552 
553 	val = readl(espi->mmio + SSPCR1);
554 	val |= SSPCR1_SSE;
555 	writel(val, espi->mmio + SSPCR1);
556 
557 	return 0;
558 }
559 
560 static int ep93xx_spi_unprepare_hardware(struct spi_controller *host)
561 {
562 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
563 	u32 val;
564 
565 	val = readl(espi->mmio + SSPCR1);
566 	val &= ~SSPCR1_SSE;
567 	writel(val, espi->mmio + SSPCR1);
568 
569 	clk_disable_unprepare(espi->clk);
570 
571 	return 0;
572 }
573 
574 static int ep93xx_spi_setup_dma(struct device *dev, struct ep93xx_spi *espi)
575 {
576 	int ret;
577 
578 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
579 	if (!espi->zeropage)
580 		return -ENOMEM;
581 
582 	espi->dma_rx = dma_request_chan(dev, "rx");
583 	if (IS_ERR(espi->dma_rx)) {
584 		ret = dev_err_probe(dev, PTR_ERR(espi->dma_rx), "rx DMA setup failed");
585 		goto fail_free_page;
586 	}
587 
588 	espi->dma_tx = dma_request_chan(dev, "tx");
589 	if (IS_ERR(espi->dma_tx)) {
590 		ret = dev_err_probe(dev, PTR_ERR(espi->dma_tx), "tx DMA setup failed");
591 		goto fail_release_rx;
592 	}
593 
594 	return 0;
595 
596 fail_release_rx:
597 	dma_release_channel(espi->dma_rx);
598 	espi->dma_rx = NULL;
599 fail_free_page:
600 	free_page((unsigned long)espi->zeropage);
601 
602 	return ret;
603 }
604 
605 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
606 {
607 	if (espi->dma_rx) {
608 		dma_release_channel(espi->dma_rx);
609 		sg_free_table(&espi->rx_sgt);
610 	}
611 	if (espi->dma_tx) {
612 		dma_release_channel(espi->dma_tx);
613 		sg_free_table(&espi->tx_sgt);
614 	}
615 
616 	if (espi->zeropage)
617 		free_page((unsigned long)espi->zeropage);
618 }
619 
620 static int ep93xx_spi_probe(struct platform_device *pdev)
621 {
622 	struct spi_controller *host;
623 	struct ep93xx_spi *espi;
624 	struct resource *res;
625 	int irq;
626 	int error;
627 
628 	irq = platform_get_irq(pdev, 0);
629 	if (irq < 0)
630 		return irq;
631 
632 	host = spi_alloc_host(&pdev->dev, sizeof(*espi));
633 	if (!host)
634 		return -ENOMEM;
635 
636 	host->use_gpio_descriptors = true;
637 	host->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
638 	host->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
639 	host->prepare_message = ep93xx_spi_prepare_message;
640 	host->transfer_one = ep93xx_spi_transfer_one;
641 	host->bus_num = pdev->id;
642 	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
643 	host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
644 	/*
645 	 * The SPI core will count the number of GPIO descriptors to figure
646 	 * out the number of chip selects available on the platform.
647 	 */
648 	host->num_chipselect = 0;
649 
650 	platform_set_drvdata(pdev, host);
651 
652 	espi = spi_controller_get_devdata(host);
653 
654 	espi->clk = devm_clk_get(&pdev->dev, NULL);
655 	if (IS_ERR(espi->clk)) {
656 		dev_err(&pdev->dev, "unable to get spi clock\n");
657 		error = PTR_ERR(espi->clk);
658 		goto fail_release_host;
659 	}
660 
661 	/*
662 	 * Calculate maximum and minimum supported clock rates
663 	 * for the controller.
664 	 */
665 	host->max_speed_hz = clk_get_rate(espi->clk) / 2;
666 	host->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
667 
668 	espi->mmio = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
669 	if (IS_ERR(espi->mmio)) {
670 		error = PTR_ERR(espi->mmio);
671 		goto fail_release_host;
672 	}
673 	espi->sspdr_phys = res->start + SSPDR;
674 
675 	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
676 				0, "ep93xx-spi", host);
677 	if (error) {
678 		dev_err(&pdev->dev, "failed to request irq\n");
679 		goto fail_release_host;
680 	}
681 
682 	error = ep93xx_spi_setup_dma(&pdev->dev, espi);
683 	if (error == -EPROBE_DEFER)
684 		goto fail_release_host;
685 
686 	if (error)
687 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
688 
689 	/* make sure that the hardware is disabled */
690 	writel(0, espi->mmio + SSPCR1);
691 
692 	device_set_node(&host->dev, dev_fwnode(&pdev->dev));
693 	error = devm_spi_register_controller(&pdev->dev, host);
694 	if (error) {
695 		dev_err(&pdev->dev, "failed to register SPI host\n");
696 		goto fail_free_dma;
697 	}
698 
699 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
700 		 (unsigned long)res->start, irq);
701 
702 	return 0;
703 
704 fail_free_dma:
705 	ep93xx_spi_release_dma(espi);
706 fail_release_host:
707 	spi_controller_put(host);
708 
709 	return error;
710 }
711 
712 static void ep93xx_spi_remove(struct platform_device *pdev)
713 {
714 	struct spi_controller *host = platform_get_drvdata(pdev);
715 	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
716 
717 	ep93xx_spi_release_dma(espi);
718 }
719 
720 static const struct of_device_id ep93xx_spi_of_ids[] = {
721 	{ .compatible = "cirrus,ep9301-spi" },
722 	{ /* sentinel */ }
723 };
724 MODULE_DEVICE_TABLE(of, ep93xx_spi_of_ids);
725 
726 static struct platform_driver ep93xx_spi_driver = {
727 	.driver		= {
728 		.name	= "ep93xx-spi",
729 		.of_match_table = ep93xx_spi_of_ids,
730 	},
731 	.probe		= ep93xx_spi_probe,
732 	.remove		= ep93xx_spi_remove,
733 };
734 module_platform_driver(ep93xx_spi_driver);
735 
736 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
737 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
738 MODULE_LICENSE("GPL");
739 MODULE_ALIAS("platform:ep93xx-spi");
740