1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Cirrus Logic EP93xx SPI controller. 4 * 5 * Copyright (C) 2010-2011 Mika Westerberg 6 * 7 * Explicit FIFO handling code was inspired by amba-pl022 driver. 8 * 9 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten. 10 * 11 * For more information about the SPI controller see documentation on Cirrus 12 * Logic web site: 13 * https://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf 14 */ 15 16 #include <linux/io.h> 17 #include <linux/clk.h> 18 #include <linux/err.h> 19 #include <linux/delay.h> 20 #include <linux/device.h> 21 #include <linux/dma-direction.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/bitops.h> 25 #include <linux/interrupt.h> 26 #include <linux/module.h> 27 #include <linux/property.h> 28 #include <linux/platform_device.h> 29 #include <linux/sched.h> 30 #include <linux/scatterlist.h> 31 #include <linux/spi/spi.h> 32 33 #define SSPCR0 0x0000 34 #define SSPCR0_SPO BIT(6) 35 #define SSPCR0_SPH BIT(7) 36 #define SSPCR0_SCR_SHIFT 8 37 38 #define SSPCR1 0x0004 39 #define SSPCR1_RIE BIT(0) 40 #define SSPCR1_TIE BIT(1) 41 #define SSPCR1_RORIE BIT(2) 42 #define SSPCR1_LBM BIT(3) 43 #define SSPCR1_SSE BIT(4) 44 #define SSPCR1_MS BIT(5) 45 #define SSPCR1_SOD BIT(6) 46 47 #define SSPDR 0x0008 48 49 #define SSPSR 0x000c 50 #define SSPSR_TFE BIT(0) 51 #define SSPSR_TNF BIT(1) 52 #define SSPSR_RNE BIT(2) 53 #define SSPSR_RFF BIT(3) 54 #define SSPSR_BSY BIT(4) 55 #define SSPCPSR 0x0010 56 57 #define SSPIIR 0x0014 58 #define SSPIIR_RIS BIT(0) 59 #define SSPIIR_TIS BIT(1) 60 #define SSPIIR_RORIS BIT(2) 61 #define SSPICR SSPIIR 62 63 /* timeout in milliseconds */ 64 #define SPI_TIMEOUT 5 65 /* maximum depth of RX/TX FIFO */ 66 #define SPI_FIFO_SIZE 8 67 68 /** 69 * struct ep93xx_spi - EP93xx SPI controller structure 70 * @clk: clock for the controller 71 * @mmio: pointer to ioremap()'d registers 72 * @sspdr_phys: physical address of the SSPDR register 73 * @tx: current byte in transfer to transmit 74 * @rx: current byte in transfer to receive 75 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one 76 * frame decreases this level and sending one frame increases it. 77 * @dma_rx: RX DMA channel 78 * @dma_tx: TX DMA channel 79 * @rx_sgt: sg table for RX transfers 80 * @tx_sgt: sg table for TX transfers 81 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by 82 * the client 83 */ 84 struct ep93xx_spi { 85 struct clk *clk; 86 void __iomem *mmio; 87 unsigned long sspdr_phys; 88 size_t tx; 89 size_t rx; 90 size_t fifo_level; 91 struct dma_chan *dma_rx; 92 struct dma_chan *dma_tx; 93 struct sg_table rx_sgt; 94 struct sg_table tx_sgt; 95 void *zeropage; 96 }; 97 98 /* converts bits per word to CR0.DSS value */ 99 #define bits_per_word_to_dss(bpw) ((bpw) - 1) 100 101 /** 102 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors 103 * @host: SPI host 104 * @rate: desired SPI output clock rate 105 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider 106 * @div_scr: pointer to return the scr divider 107 */ 108 static int ep93xx_spi_calc_divisors(struct spi_controller *host, 109 u32 rate, u8 *div_cpsr, u8 *div_scr) 110 { 111 struct ep93xx_spi *espi = spi_controller_get_devdata(host); 112 unsigned long spi_clk_rate = clk_get_rate(espi->clk); 113 int cpsr, scr; 114 115 /* 116 * Make sure that max value is between values supported by the 117 * controller. 118 */ 119 rate = clamp(rate, host->min_speed_hz, host->max_speed_hz); 120 121 /* 122 * Calculate divisors so that we can get speed according the 123 * following formula: 124 * rate = spi_clock_rate / (cpsr * (1 + scr)) 125 * 126 * cpsr must be even number and starts from 2, scr can be any number 127 * between 0 and 255. 128 */ 129 for (cpsr = 2; cpsr <= 254; cpsr += 2) { 130 for (scr = 0; scr <= 255; scr++) { 131 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) { 132 *div_scr = (u8)scr; 133 *div_cpsr = (u8)cpsr; 134 return 0; 135 } 136 } 137 } 138 139 return -EINVAL; 140 } 141 142 static int ep93xx_spi_chip_setup(struct spi_controller *host, 143 struct spi_device *spi, 144 struct spi_transfer *xfer) 145 { 146 struct ep93xx_spi *espi = spi_controller_get_devdata(host); 147 u8 dss = bits_per_word_to_dss(xfer->bits_per_word); 148 u8 div_cpsr = 0; 149 u8 div_scr = 0; 150 u16 cr0; 151 int err; 152 153 err = ep93xx_spi_calc_divisors(host, xfer->speed_hz, 154 &div_cpsr, &div_scr); 155 if (err) 156 return err; 157 158 cr0 = div_scr << SSPCR0_SCR_SHIFT; 159 if (spi->mode & SPI_CPOL) 160 cr0 |= SSPCR0_SPO; 161 if (spi->mode & SPI_CPHA) 162 cr0 |= SSPCR0_SPH; 163 cr0 |= dss; 164 165 dev_dbg(&host->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n", 166 spi->mode, div_cpsr, div_scr, dss); 167 dev_dbg(&host->dev, "setup: cr0 %#x\n", cr0); 168 169 writel(div_cpsr, espi->mmio + SSPCPSR); 170 writel(cr0, espi->mmio + SSPCR0); 171 172 return 0; 173 } 174 175 static void ep93xx_do_write(struct spi_controller *host) 176 { 177 struct ep93xx_spi *espi = spi_controller_get_devdata(host); 178 struct spi_transfer *xfer = host->cur_msg->state; 179 u32 val = 0; 180 181 if (xfer->bits_per_word > 8) { 182 if (xfer->tx_buf) 183 val = ((u16 *)xfer->tx_buf)[espi->tx]; 184 espi->tx += 2; 185 } else { 186 if (xfer->tx_buf) 187 val = ((u8 *)xfer->tx_buf)[espi->tx]; 188 espi->tx += 1; 189 } 190 writel(val, espi->mmio + SSPDR); 191 } 192 193 static void ep93xx_do_read(struct spi_controller *host) 194 { 195 struct ep93xx_spi *espi = spi_controller_get_devdata(host); 196 struct spi_transfer *xfer = host->cur_msg->state; 197 u32 val; 198 199 val = readl(espi->mmio + SSPDR); 200 if (xfer->bits_per_word > 8) { 201 if (xfer->rx_buf) 202 ((u16 *)xfer->rx_buf)[espi->rx] = val; 203 espi->rx += 2; 204 } else { 205 if (xfer->rx_buf) 206 ((u8 *)xfer->rx_buf)[espi->rx] = val; 207 espi->rx += 1; 208 } 209 } 210 211 /** 212 * ep93xx_spi_read_write() - perform next RX/TX transfer 213 * @host: SPI host 214 * 215 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If 216 * called several times, the whole transfer will be completed. Returns 217 * %-EINPROGRESS when current transfer was not yet completed otherwise %0. 218 * 219 * When this function is finished, RX FIFO should be empty and TX FIFO should be 220 * full. 221 */ 222 static int ep93xx_spi_read_write(struct spi_controller *host) 223 { 224 struct ep93xx_spi *espi = spi_controller_get_devdata(host); 225 struct spi_transfer *xfer = host->cur_msg->state; 226 227 /* read as long as RX FIFO has frames in it */ 228 while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) { 229 ep93xx_do_read(host); 230 espi->fifo_level--; 231 } 232 233 /* write as long as TX FIFO has room */ 234 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) { 235 ep93xx_do_write(host); 236 espi->fifo_level++; 237 } 238 239 if (espi->rx == xfer->len) 240 return 0; 241 242 return -EINPROGRESS; 243 } 244 245 static enum dma_transfer_direction 246 ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir) 247 { 248 switch (dir) { 249 case DMA_TO_DEVICE: 250 return DMA_MEM_TO_DEV; 251 case DMA_FROM_DEVICE: 252 return DMA_DEV_TO_MEM; 253 default: 254 return DMA_TRANS_NONE; 255 } 256 } 257 258 /** 259 * ep93xx_spi_dma_prepare() - prepares a DMA transfer 260 * @host: SPI host 261 * @dir: DMA transfer direction 262 * 263 * Function configures the DMA, maps the buffer and prepares the DMA 264 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR 265 * in case of failure. 266 */ 267 static struct dma_async_tx_descriptor * 268 ep93xx_spi_dma_prepare(struct spi_controller *host, 269 enum dma_data_direction dir) 270 { 271 struct ep93xx_spi *espi = spi_controller_get_devdata(host); 272 struct spi_transfer *xfer = host->cur_msg->state; 273 struct dma_async_tx_descriptor *txd; 274 enum dma_slave_buswidth buswidth; 275 struct dma_slave_config conf; 276 struct scatterlist *sg; 277 struct sg_table *sgt; 278 struct dma_chan *chan; 279 const void *buf, *pbuf; 280 size_t len = xfer->len; 281 int i, ret, nents; 282 283 if (xfer->bits_per_word > 8) 284 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; 285 else 286 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; 287 288 memset(&conf, 0, sizeof(conf)); 289 conf.direction = ep93xx_dma_data_to_trans_dir(dir); 290 291 if (dir == DMA_FROM_DEVICE) { 292 chan = espi->dma_rx; 293 buf = xfer->rx_buf; 294 sgt = &espi->rx_sgt; 295 296 conf.src_addr = espi->sspdr_phys; 297 conf.src_addr_width = buswidth; 298 } else { 299 chan = espi->dma_tx; 300 buf = xfer->tx_buf; 301 sgt = &espi->tx_sgt; 302 303 conf.dst_addr = espi->sspdr_phys; 304 conf.dst_addr_width = buswidth; 305 } 306 307 ret = dmaengine_slave_config(chan, &conf); 308 if (ret) 309 return ERR_PTR(ret); 310 311 /* 312 * We need to split the transfer into PAGE_SIZE'd chunks. This is 313 * because we are using @espi->zeropage to provide a zero RX buffer 314 * for the TX transfers and we have only allocated one page for that. 315 * 316 * For performance reasons we allocate a new sg_table only when 317 * needed. Otherwise we will re-use the current one. Eventually the 318 * last sg_table is released in ep93xx_spi_release_dma(). 319 */ 320 321 nents = DIV_ROUND_UP(len, PAGE_SIZE); 322 if (nents != sgt->nents) { 323 sg_free_table(sgt); 324 325 ret = sg_alloc_table(sgt, nents, GFP_KERNEL); 326 if (ret) 327 return ERR_PTR(ret); 328 } 329 330 pbuf = buf; 331 for_each_sg(sgt->sgl, sg, sgt->nents, i) { 332 size_t bytes = min_t(size_t, len, PAGE_SIZE); 333 334 if (buf) { 335 sg_set_page(sg, virt_to_page(pbuf), bytes, 336 offset_in_page(pbuf)); 337 } else { 338 sg_set_page(sg, virt_to_page(espi->zeropage), 339 bytes, 0); 340 } 341 342 pbuf += bytes; 343 len -= bytes; 344 } 345 346 if (WARN_ON(len)) { 347 dev_warn(&host->dev, "len = %zu expected 0!\n", len); 348 return ERR_PTR(-EINVAL); 349 } 350 351 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 352 if (!nents) 353 return ERR_PTR(-ENOMEM); 354 355 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction, 356 DMA_CTRL_ACK); 357 if (!txd) { 358 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 359 return ERR_PTR(-ENOMEM); 360 } 361 return txd; 362 } 363 364 /** 365 * ep93xx_spi_dma_finish() - finishes with a DMA transfer 366 * @host: SPI host 367 * @dir: DMA transfer direction 368 * 369 * Function finishes with the DMA transfer. After this, the DMA buffer is 370 * unmapped. 371 */ 372 static void ep93xx_spi_dma_finish(struct spi_controller *host, 373 enum dma_data_direction dir) 374 { 375 struct ep93xx_spi *espi = spi_controller_get_devdata(host); 376 struct dma_chan *chan; 377 struct sg_table *sgt; 378 379 if (dir == DMA_FROM_DEVICE) { 380 chan = espi->dma_rx; 381 sgt = &espi->rx_sgt; 382 } else { 383 chan = espi->dma_tx; 384 sgt = &espi->tx_sgt; 385 } 386 387 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); 388 } 389 390 static void ep93xx_spi_dma_callback(void *callback_param) 391 { 392 struct spi_controller *host = callback_param; 393 394 ep93xx_spi_dma_finish(host, DMA_TO_DEVICE); 395 ep93xx_spi_dma_finish(host, DMA_FROM_DEVICE); 396 397 spi_finalize_current_transfer(host); 398 } 399 400 static int ep93xx_spi_dma_transfer(struct spi_controller *host) 401 { 402 struct ep93xx_spi *espi = spi_controller_get_devdata(host); 403 struct dma_async_tx_descriptor *rxd, *txd; 404 405 rxd = ep93xx_spi_dma_prepare(host, DMA_FROM_DEVICE); 406 if (IS_ERR(rxd)) { 407 dev_err(&host->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd)); 408 return PTR_ERR(rxd); 409 } 410 411 txd = ep93xx_spi_dma_prepare(host, DMA_TO_DEVICE); 412 if (IS_ERR(txd)) { 413 ep93xx_spi_dma_finish(host, DMA_FROM_DEVICE); 414 dev_err(&host->dev, "DMA TX failed: %ld\n", PTR_ERR(txd)); 415 return PTR_ERR(txd); 416 } 417 418 /* We are ready when RX is done */ 419 rxd->callback = ep93xx_spi_dma_callback; 420 rxd->callback_param = host; 421 422 /* Now submit both descriptors and start DMA */ 423 dmaengine_submit(rxd); 424 dmaengine_submit(txd); 425 426 dma_async_issue_pending(espi->dma_rx); 427 dma_async_issue_pending(espi->dma_tx); 428 429 /* signal that we need to wait for completion */ 430 return 1; 431 } 432 433 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id) 434 { 435 struct spi_controller *host = dev_id; 436 struct ep93xx_spi *espi = spi_controller_get_devdata(host); 437 u32 val; 438 439 /* 440 * If we got ROR (receive overrun) interrupt we know that something is 441 * wrong. Just abort the message. 442 */ 443 if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) { 444 /* clear the overrun interrupt */ 445 writel(0, espi->mmio + SSPICR); 446 dev_warn(&host->dev, 447 "receive overrun, aborting the message\n"); 448 host->cur_msg->status = -EIO; 449 } else { 450 /* 451 * Interrupt is either RX (RIS) or TX (TIS). For both cases we 452 * simply execute next data transfer. 453 */ 454 if (ep93xx_spi_read_write(host)) { 455 /* 456 * In normal case, there still is some processing left 457 * for current transfer. Let's wait for the next 458 * interrupt then. 459 */ 460 return IRQ_HANDLED; 461 } 462 } 463 464 /* 465 * Current transfer is finished, either with error or with success. In 466 * any case we disable interrupts and notify the worker to handle 467 * any post-processing of the message. 468 */ 469 val = readl(espi->mmio + SSPCR1); 470 val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); 471 writel(val, espi->mmio + SSPCR1); 472 473 spi_finalize_current_transfer(host); 474 475 return IRQ_HANDLED; 476 } 477 478 static int ep93xx_spi_transfer_one(struct spi_controller *host, 479 struct spi_device *spi, 480 struct spi_transfer *xfer) 481 { 482 struct ep93xx_spi *espi = spi_controller_get_devdata(host); 483 u32 val; 484 int ret; 485 486 ret = ep93xx_spi_chip_setup(host, spi, xfer); 487 if (ret) { 488 dev_err(&host->dev, "failed to setup chip for transfer\n"); 489 return ret; 490 } 491 492 host->cur_msg->state = xfer; 493 espi->rx = 0; 494 espi->tx = 0; 495 496 /* 497 * There is no point of setting up DMA for the transfers which will 498 * fit into the FIFO and can be transferred with a single interrupt. 499 * So in these cases we will be using PIO and don't bother for DMA. 500 */ 501 if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE) 502 return ep93xx_spi_dma_transfer(host); 503 504 /* Using PIO so prime the TX FIFO and enable interrupts */ 505 ep93xx_spi_read_write(host); 506 507 val = readl(espi->mmio + SSPCR1); 508 val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); 509 writel(val, espi->mmio + SSPCR1); 510 511 /* signal that we need to wait for completion */ 512 return 1; 513 } 514 515 static int ep93xx_spi_prepare_message(struct spi_controller *host, 516 struct spi_message *msg) 517 { 518 struct ep93xx_spi *espi = spi_controller_get_devdata(host); 519 unsigned long timeout; 520 521 /* 522 * Just to be sure: flush any data from RX FIFO. 523 */ 524 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT); 525 while (readl(espi->mmio + SSPSR) & SSPSR_RNE) { 526 if (time_after(jiffies, timeout)) { 527 dev_warn(&host->dev, 528 "timeout while flushing RX FIFO\n"); 529 return -ETIMEDOUT; 530 } 531 readl(espi->mmio + SSPDR); 532 } 533 534 /* 535 * We explicitly handle FIFO level. This way we don't have to check TX 536 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns. 537 */ 538 espi->fifo_level = 0; 539 540 return 0; 541 } 542 543 static int ep93xx_spi_prepare_hardware(struct spi_controller *host) 544 { 545 struct ep93xx_spi *espi = spi_controller_get_devdata(host); 546 u32 val; 547 int ret; 548 549 ret = clk_prepare_enable(espi->clk); 550 if (ret) 551 return ret; 552 553 val = readl(espi->mmio + SSPCR1); 554 val |= SSPCR1_SSE; 555 writel(val, espi->mmio + SSPCR1); 556 557 return 0; 558 } 559 560 static int ep93xx_spi_unprepare_hardware(struct spi_controller *host) 561 { 562 struct ep93xx_spi *espi = spi_controller_get_devdata(host); 563 u32 val; 564 565 val = readl(espi->mmio + SSPCR1); 566 val &= ~SSPCR1_SSE; 567 writel(val, espi->mmio + SSPCR1); 568 569 clk_disable_unprepare(espi->clk); 570 571 return 0; 572 } 573 574 static int ep93xx_spi_setup_dma(struct device *dev, struct ep93xx_spi *espi) 575 { 576 int ret; 577 578 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL); 579 if (!espi->zeropage) 580 return -ENOMEM; 581 582 espi->dma_rx = dma_request_chan(dev, "rx"); 583 if (IS_ERR(espi->dma_rx)) { 584 ret = dev_err_probe(dev, PTR_ERR(espi->dma_rx), "rx DMA setup failed"); 585 goto fail_free_page; 586 } 587 588 espi->dma_tx = dma_request_chan(dev, "tx"); 589 if (IS_ERR(espi->dma_tx)) { 590 ret = dev_err_probe(dev, PTR_ERR(espi->dma_tx), "tx DMA setup failed"); 591 goto fail_release_rx; 592 } 593 594 return 0; 595 596 fail_release_rx: 597 dma_release_channel(espi->dma_rx); 598 espi->dma_rx = NULL; 599 fail_free_page: 600 free_page((unsigned long)espi->zeropage); 601 602 return ret; 603 } 604 605 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi) 606 { 607 if (espi->dma_rx) { 608 dma_release_channel(espi->dma_rx); 609 sg_free_table(&espi->rx_sgt); 610 } 611 if (espi->dma_tx) { 612 dma_release_channel(espi->dma_tx); 613 sg_free_table(&espi->tx_sgt); 614 } 615 616 if (espi->zeropage) 617 free_page((unsigned long)espi->zeropage); 618 } 619 620 static int ep93xx_spi_probe(struct platform_device *pdev) 621 { 622 struct spi_controller *host; 623 struct ep93xx_spi *espi; 624 struct resource *res; 625 int irq; 626 int error; 627 628 irq = platform_get_irq(pdev, 0); 629 if (irq < 0) 630 return irq; 631 632 host = spi_alloc_host(&pdev->dev, sizeof(*espi)); 633 if (!host) 634 return -ENOMEM; 635 636 host->use_gpio_descriptors = true; 637 host->prepare_transfer_hardware = ep93xx_spi_prepare_hardware; 638 host->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware; 639 host->prepare_message = ep93xx_spi_prepare_message; 640 host->transfer_one = ep93xx_spi_transfer_one; 641 host->bus_num = pdev->id; 642 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 643 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 644 /* 645 * The SPI core will count the number of GPIO descriptors to figure 646 * out the number of chip selects available on the platform. 647 */ 648 host->num_chipselect = 0; 649 650 platform_set_drvdata(pdev, host); 651 652 espi = spi_controller_get_devdata(host); 653 654 espi->clk = devm_clk_get(&pdev->dev, NULL); 655 if (IS_ERR(espi->clk)) { 656 dev_err(&pdev->dev, "unable to get spi clock\n"); 657 error = PTR_ERR(espi->clk); 658 goto fail_release_host; 659 } 660 661 /* 662 * Calculate maximum and minimum supported clock rates 663 * for the controller. 664 */ 665 host->max_speed_hz = clk_get_rate(espi->clk) / 2; 666 host->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256); 667 668 espi->mmio = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 669 if (IS_ERR(espi->mmio)) { 670 error = PTR_ERR(espi->mmio); 671 goto fail_release_host; 672 } 673 espi->sspdr_phys = res->start + SSPDR; 674 675 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt, 676 0, "ep93xx-spi", host); 677 if (error) { 678 dev_err(&pdev->dev, "failed to request irq\n"); 679 goto fail_release_host; 680 } 681 682 error = ep93xx_spi_setup_dma(&pdev->dev, espi); 683 if (error == -EPROBE_DEFER) 684 goto fail_release_host; 685 686 if (error) 687 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n"); 688 689 /* make sure that the hardware is disabled */ 690 writel(0, espi->mmio + SSPCR1); 691 692 device_set_node(&host->dev, dev_fwnode(&pdev->dev)); 693 error = devm_spi_register_controller(&pdev->dev, host); 694 if (error) { 695 dev_err(&pdev->dev, "failed to register SPI host\n"); 696 goto fail_free_dma; 697 } 698 699 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n", 700 (unsigned long)res->start, irq); 701 702 return 0; 703 704 fail_free_dma: 705 ep93xx_spi_release_dma(espi); 706 fail_release_host: 707 spi_controller_put(host); 708 709 return error; 710 } 711 712 static void ep93xx_spi_remove(struct platform_device *pdev) 713 { 714 struct spi_controller *host = platform_get_drvdata(pdev); 715 struct ep93xx_spi *espi = spi_controller_get_devdata(host); 716 717 ep93xx_spi_release_dma(espi); 718 } 719 720 static const struct of_device_id ep93xx_spi_of_ids[] = { 721 { .compatible = "cirrus,ep9301-spi" }, 722 { /* sentinel */ } 723 }; 724 MODULE_DEVICE_TABLE(of, ep93xx_spi_of_ids); 725 726 static struct platform_driver ep93xx_spi_driver = { 727 .driver = { 728 .name = "ep93xx-spi", 729 .of_match_table = ep93xx_spi_of_ids, 730 }, 731 .probe = ep93xx_spi_probe, 732 .remove = ep93xx_spi_remove, 733 }; 734 module_platform_driver(ep93xx_spi_driver); 735 736 MODULE_DESCRIPTION("EP93xx SPI Controller driver"); 737 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); 738 MODULE_LICENSE("GPL"); 739 MODULE_ALIAS("platform:ep93xx-spi"); 740