1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Special handling for DW DMA core 4 * 5 * Copyright (c) 2009, 2014 Intel Corporation. 6 */ 7 8 #include <linux/completion.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/dmaengine.h> 11 #include <linux/irqreturn.h> 12 #include <linux/jiffies.h> 13 #include <linux/module.h> 14 #include <linux/pci.h> 15 #include <linux/platform_data/dma-dw.h> 16 #include <linux/spi/spi.h> 17 #include <linux/types.h> 18 19 #include "spi-dw.h" 20 21 #define DW_SPI_RX_BUSY 0 22 #define DW_SPI_RX_BURST_LEVEL 16 23 #define DW_SPI_TX_BUSY 1 24 #define DW_SPI_TX_BURST_LEVEL 16 25 26 static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param) 27 { 28 struct dw_dma_slave *s = param; 29 30 if (s->dma_dev != chan->device->dev) 31 return false; 32 33 chan->private = s; 34 return true; 35 } 36 37 static void dw_spi_dma_maxburst_init(struct dw_spi *dws) 38 { 39 struct dma_slave_caps caps; 40 u32 max_burst, def_burst; 41 int ret; 42 43 def_burst = dws->fifo_len / 2; 44 45 ret = dma_get_slave_caps(dws->rxchan, &caps); 46 if (!ret && caps.max_burst) 47 max_burst = caps.max_burst; 48 else 49 max_burst = DW_SPI_RX_BURST_LEVEL; 50 51 dws->rxburst = min(max_burst, def_burst); 52 dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1); 53 54 ret = dma_get_slave_caps(dws->txchan, &caps); 55 if (!ret && caps.max_burst) 56 max_burst = caps.max_burst; 57 else 58 max_burst = DW_SPI_TX_BURST_LEVEL; 59 60 /* 61 * Having a Rx DMA channel serviced with higher priority than a Tx DMA 62 * channel might not be enough to provide a well balanced DMA-based 63 * SPI transfer interface. There might still be moments when the Tx DMA 64 * channel is occasionally handled faster than the Rx DMA channel. 65 * That in its turn will eventually cause the SPI Rx FIFO overflow if 66 * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's 67 * cleared by the Rx DMA channel. In order to fix the problem the Tx 68 * DMA activity is intentionally slowed down by limiting the SPI Tx 69 * FIFO depth with a value twice bigger than the Tx burst length. 70 */ 71 dws->txburst = min(max_burst, def_burst); 72 dw_writel(dws, DW_SPI_DMATDLR, dws->txburst); 73 } 74 75 static int dw_spi_dma_caps_init(struct dw_spi *dws) 76 { 77 struct dma_slave_caps tx, rx; 78 int ret; 79 80 ret = dma_get_slave_caps(dws->txchan, &tx); 81 if (ret) 82 return ret; 83 84 ret = dma_get_slave_caps(dws->rxchan, &rx); 85 if (ret) 86 return ret; 87 88 if (!(tx.directions & BIT(DMA_MEM_TO_DEV) && 89 rx.directions & BIT(DMA_DEV_TO_MEM))) 90 return -ENXIO; 91 92 if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0) 93 dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst); 94 else if (tx.max_sg_burst > 0) 95 dws->dma_sg_burst = tx.max_sg_burst; 96 else if (rx.max_sg_burst > 0) 97 dws->dma_sg_burst = rx.max_sg_burst; 98 else 99 dws->dma_sg_burst = 0; 100 101 /* 102 * Assuming both channels belong to the same DMA controller hence the 103 * peripheral side address width capabilities most likely would be 104 * the same. 105 */ 106 dws->dma_addr_widths = tx.dst_addr_widths & rx.src_addr_widths; 107 108 return 0; 109 } 110 111 static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws) 112 { 113 struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx; 114 struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx; 115 struct pci_dev *dma_dev; 116 dma_cap_mask_t mask; 117 int ret = -EBUSY; 118 119 /* 120 * Get pci device for DMA controller, currently it could only 121 * be the DMA controller of Medfield 122 */ 123 dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL); 124 if (!dma_dev) 125 return -ENODEV; 126 127 dma_cap_zero(mask); 128 dma_cap_set(DMA_SLAVE, mask); 129 130 /* 1. Init rx channel */ 131 rx->dma_dev = &dma_dev->dev; 132 dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx); 133 if (!dws->rxchan) 134 goto err_exit; 135 136 /* 2. Init tx channel */ 137 tx->dma_dev = &dma_dev->dev; 138 dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx); 139 if (!dws->txchan) 140 goto free_rxchan; 141 142 dws->host->dma_rx = dws->rxchan; 143 dws->host->dma_tx = dws->txchan; 144 145 init_completion(&dws->dma_completion); 146 147 ret = dw_spi_dma_caps_init(dws); 148 if (ret) 149 goto free_txchan; 150 151 dw_spi_dma_maxburst_init(dws); 152 153 pci_dev_put(dma_dev); 154 155 return 0; 156 157 free_txchan: 158 dma_release_channel(dws->txchan); 159 dws->txchan = NULL; 160 free_rxchan: 161 dma_release_channel(dws->rxchan); 162 dws->rxchan = NULL; 163 err_exit: 164 pci_dev_put(dma_dev); 165 return ret; 166 } 167 168 static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws) 169 { 170 int ret; 171 172 dws->rxchan = dma_request_chan(dev, "rx"); 173 if (IS_ERR(dws->rxchan)) { 174 ret = PTR_ERR(dws->rxchan); 175 dws->rxchan = NULL; 176 goto err_exit; 177 } 178 179 dws->txchan = dma_request_chan(dev, "tx"); 180 if (IS_ERR(dws->txchan)) { 181 ret = PTR_ERR(dws->txchan); 182 dws->txchan = NULL; 183 goto free_rxchan; 184 } 185 186 dws->host->dma_rx = dws->rxchan; 187 dws->host->dma_tx = dws->txchan; 188 189 init_completion(&dws->dma_completion); 190 191 ret = dw_spi_dma_caps_init(dws); 192 if (ret) 193 goto free_txchan; 194 195 dw_spi_dma_maxburst_init(dws); 196 197 return 0; 198 199 free_txchan: 200 dma_release_channel(dws->txchan); 201 dws->txchan = NULL; 202 free_rxchan: 203 dma_release_channel(dws->rxchan); 204 dws->rxchan = NULL; 205 err_exit: 206 return ret; 207 } 208 209 static void dw_spi_dma_exit(struct dw_spi *dws) 210 { 211 if (dws->txchan) { 212 dmaengine_terminate_sync(dws->txchan); 213 dma_release_channel(dws->txchan); 214 } 215 216 if (dws->rxchan) { 217 dmaengine_terminate_sync(dws->rxchan); 218 dma_release_channel(dws->rxchan); 219 } 220 } 221 222 static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws) 223 { 224 dw_spi_check_status(dws, false); 225 226 complete(&dws->dma_completion); 227 228 return IRQ_HANDLED; 229 } 230 231 static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes) 232 { 233 switch (n_bytes) { 234 case 1: 235 return DMA_SLAVE_BUSWIDTH_1_BYTE; 236 case 2: 237 return DMA_SLAVE_BUSWIDTH_2_BYTES; 238 case 4: 239 return DMA_SLAVE_BUSWIDTH_4_BYTES; 240 default: 241 return DMA_SLAVE_BUSWIDTH_UNDEFINED; 242 } 243 } 244 245 static bool dw_spi_can_dma(struct spi_controller *host, 246 struct spi_device *spi, struct spi_transfer *xfer) 247 { 248 struct dw_spi *dws = spi_controller_get_devdata(host); 249 enum dma_slave_buswidth dma_bus_width; 250 251 if (xfer->len <= dws->fifo_len) 252 return false; 253 254 dma_bus_width = dw_spi_dma_convert_width(dws->n_bytes); 255 256 return dws->dma_addr_widths & BIT(dma_bus_width); 257 } 258 259 static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed) 260 { 261 unsigned long long ms; 262 263 ms = len * MSEC_PER_SEC * BITS_PER_BYTE; 264 do_div(ms, speed); 265 ms += ms + 200; 266 267 if (ms > UINT_MAX) 268 ms = UINT_MAX; 269 270 ms = wait_for_completion_timeout(&dws->dma_completion, 271 msecs_to_jiffies(ms)); 272 273 if (ms == 0) { 274 dev_err(&dws->host->cur_msg->spi->dev, 275 "DMA transaction timed out\n"); 276 return -ETIMEDOUT; 277 } 278 279 return 0; 280 } 281 282 static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws) 283 { 284 return !(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_TF_EMPT); 285 } 286 287 static int dw_spi_dma_wait_tx_done(struct dw_spi *dws, 288 struct spi_transfer *xfer) 289 { 290 int retry = DW_SPI_WAIT_RETRIES; 291 struct spi_delay delay; 292 u32 nents; 293 294 nents = dw_readl(dws, DW_SPI_TXFLR); 295 delay.unit = SPI_DELAY_UNIT_SCK; 296 delay.value = nents * dws->n_bytes * BITS_PER_BYTE; 297 298 while (dw_spi_dma_tx_busy(dws) && retry--) 299 spi_delay_exec(&delay, xfer); 300 301 if (retry < 0) { 302 dev_err(&dws->host->dev, "Tx hanged up\n"); 303 return -EIO; 304 } 305 306 return 0; 307 } 308 309 /* 310 * dws->dma_chan_busy is set before the dma transfer starts, callback for tx 311 * channel will clear a corresponding bit. 312 */ 313 static void dw_spi_dma_tx_done(void *arg) 314 { 315 struct dw_spi *dws = arg; 316 317 clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy); 318 if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) 319 return; 320 321 complete(&dws->dma_completion); 322 } 323 324 static int dw_spi_dma_config_tx(struct dw_spi *dws) 325 { 326 struct dma_slave_config txconf; 327 328 memset(&txconf, 0, sizeof(txconf)); 329 txconf.direction = DMA_MEM_TO_DEV; 330 txconf.dst_addr = dws->dma_addr; 331 txconf.dst_maxburst = dws->txburst; 332 txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 333 txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes); 334 txconf.device_fc = false; 335 336 return dmaengine_slave_config(dws->txchan, &txconf); 337 } 338 339 static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl, 340 unsigned int nents) 341 { 342 struct dma_async_tx_descriptor *txdesc; 343 dma_cookie_t cookie; 344 int ret; 345 346 txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents, 347 DMA_MEM_TO_DEV, 348 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 349 if (!txdesc) 350 return -ENOMEM; 351 352 txdesc->callback = dw_spi_dma_tx_done; 353 txdesc->callback_param = dws; 354 355 cookie = dmaengine_submit(txdesc); 356 ret = dma_submit_error(cookie); 357 if (ret) { 358 dmaengine_terminate_sync(dws->txchan); 359 return ret; 360 } 361 362 set_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy); 363 364 return 0; 365 } 366 367 static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws) 368 { 369 return !!(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_RF_NOT_EMPT); 370 } 371 372 static int dw_spi_dma_wait_rx_done(struct dw_spi *dws) 373 { 374 int retry = DW_SPI_WAIT_RETRIES; 375 struct spi_delay delay; 376 unsigned long ns, us; 377 u32 nents; 378 379 /* 380 * It's unlikely that DMA engine is still doing the data fetching, but 381 * if it's let's give it some reasonable time. The timeout calculation 382 * is based on the synchronous APB/SSI reference clock rate, on a 383 * number of data entries left in the Rx FIFO, times a number of clock 384 * periods normally needed for a single APB read/write transaction 385 * without PREADY signal utilized (which is true for the DW APB SSI 386 * controller). 387 */ 388 nents = dw_readl(dws, DW_SPI_RXFLR); 389 ns = 4U * NSEC_PER_SEC / dws->max_freq * nents; 390 if (ns <= NSEC_PER_USEC) { 391 delay.unit = SPI_DELAY_UNIT_NSECS; 392 delay.value = ns; 393 } else { 394 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 395 delay.unit = SPI_DELAY_UNIT_USECS; 396 delay.value = clamp_val(us, 0, USHRT_MAX); 397 } 398 399 while (dw_spi_dma_rx_busy(dws) && retry--) 400 spi_delay_exec(&delay, NULL); 401 402 if (retry < 0) { 403 dev_err(&dws->host->dev, "Rx hanged up\n"); 404 return -EIO; 405 } 406 407 return 0; 408 } 409 410 /* 411 * dws->dma_chan_busy is set before the dma transfer starts, callback for rx 412 * channel will clear a corresponding bit. 413 */ 414 static void dw_spi_dma_rx_done(void *arg) 415 { 416 struct dw_spi *dws = arg; 417 418 clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy); 419 if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) 420 return; 421 422 complete(&dws->dma_completion); 423 } 424 425 static int dw_spi_dma_config_rx(struct dw_spi *dws) 426 { 427 struct dma_slave_config rxconf; 428 429 memset(&rxconf, 0, sizeof(rxconf)); 430 rxconf.direction = DMA_DEV_TO_MEM; 431 rxconf.src_addr = dws->dma_addr; 432 rxconf.src_maxburst = dws->rxburst; 433 rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 434 rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes); 435 rxconf.device_fc = false; 436 437 return dmaengine_slave_config(dws->rxchan, &rxconf); 438 } 439 440 static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl, 441 unsigned int nents) 442 { 443 struct dma_async_tx_descriptor *rxdesc; 444 dma_cookie_t cookie; 445 int ret; 446 447 rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents, 448 DMA_DEV_TO_MEM, 449 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 450 if (!rxdesc) 451 return -ENOMEM; 452 453 rxdesc->callback = dw_spi_dma_rx_done; 454 rxdesc->callback_param = dws; 455 456 cookie = dmaengine_submit(rxdesc); 457 ret = dma_submit_error(cookie); 458 if (ret) { 459 dmaengine_terminate_sync(dws->rxchan); 460 return ret; 461 } 462 463 set_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy); 464 465 return 0; 466 } 467 468 static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer) 469 { 470 u16 imr, dma_ctrl; 471 int ret; 472 473 if (!xfer->tx_buf) 474 return -EINVAL; 475 476 /* Setup DMA channels */ 477 ret = dw_spi_dma_config_tx(dws); 478 if (ret) 479 return ret; 480 481 if (xfer->rx_buf) { 482 ret = dw_spi_dma_config_rx(dws); 483 if (ret) 484 return ret; 485 } 486 487 /* Set the DMA handshaking interface */ 488 dma_ctrl = DW_SPI_DMACR_TDMAE; 489 if (xfer->rx_buf) 490 dma_ctrl |= DW_SPI_DMACR_RDMAE; 491 dw_writel(dws, DW_SPI_DMACR, dma_ctrl); 492 493 /* Set the interrupt mask */ 494 imr = DW_SPI_INT_TXOI; 495 if (xfer->rx_buf) 496 imr |= DW_SPI_INT_RXUI | DW_SPI_INT_RXOI; 497 dw_spi_umask_intr(dws, imr); 498 499 reinit_completion(&dws->dma_completion); 500 501 dws->transfer_handler = dw_spi_dma_transfer_handler; 502 503 return 0; 504 } 505 506 static int dw_spi_dma_transfer_all(struct dw_spi *dws, 507 struct spi_transfer *xfer) 508 { 509 int ret; 510 511 /* Submit the DMA Tx transfer */ 512 ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents); 513 if (ret) 514 goto err_clear_dmac; 515 516 /* Submit the DMA Rx transfer if required */ 517 if (xfer->rx_buf) { 518 ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl, 519 xfer->rx_sg.nents); 520 if (ret) 521 goto err_clear_dmac; 522 523 /* rx must be started before tx due to spi instinct */ 524 dma_async_issue_pending(dws->rxchan); 525 } 526 527 dma_async_issue_pending(dws->txchan); 528 529 ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz); 530 531 err_clear_dmac: 532 dw_writel(dws, DW_SPI_DMACR, 0); 533 534 return ret; 535 } 536 537 /* 538 * In case if at least one of the requested DMA channels doesn't support the 539 * hardware accelerated SG list entries traverse, the DMA driver will most 540 * likely work that around by performing the IRQ-based SG list entries 541 * resubmission. That might and will cause a problem if the DMA Tx channel is 542 * recharged and re-executed before the Rx DMA channel. Due to 543 * non-deterministic IRQ-handler execution latency the DMA Tx channel will 544 * start pushing data to the SPI bus before the Rx DMA channel is even 545 * reinitialized with the next inbound SG list entry. By doing so the DMA Tx 546 * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while 547 * the DMA Rx channel being recharged and re-executed will eventually be 548 * overflown. 549 * 550 * In order to solve the problem we have to feed the DMA engine with SG list 551 * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs 552 * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg 553 * and rx_sg lists may have different number of entries of different lengths 554 * (though total length should match) let's virtually split the SG-lists to the 555 * set of DMA transfers, which length is a minimum of the ordered SG-entries 556 * lengths. An ASCII-sketch of the implemented algo is following: 557 * xfer->len 558 * |___________| 559 * tx_sg list: |___|____|__| 560 * rx_sg list: |_|____|____| 561 * DMA transfers: |_|_|__|_|__| 562 * 563 * Note in order to have this workaround solving the denoted problem the DMA 564 * engine driver should properly initialize the max_sg_burst capability and set 565 * the DMA device max segment size parameter with maximum data block size the 566 * DMA engine supports. 567 */ 568 569 static int dw_spi_dma_transfer_one(struct dw_spi *dws, 570 struct spi_transfer *xfer) 571 { 572 struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp; 573 unsigned int tx_len = 0, rx_len = 0; 574 unsigned int base, len; 575 int ret; 576 577 sg_init_table(&tx_tmp, 1); 578 sg_init_table(&rx_tmp, 1); 579 580 for (base = 0; base < xfer->len; base += len) { 581 /* Fetch next Tx DMA data chunk */ 582 if (!tx_len) { 583 tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg); 584 sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg); 585 tx_len = sg_dma_len(tx_sg); 586 } 587 588 /* Fetch next Rx DMA data chunk */ 589 if (!rx_len) { 590 rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg); 591 sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg); 592 rx_len = sg_dma_len(rx_sg); 593 } 594 595 len = min(tx_len, rx_len); 596 597 sg_dma_len(&tx_tmp) = len; 598 sg_dma_len(&rx_tmp) = len; 599 600 /* Submit DMA Tx transfer */ 601 ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1); 602 if (ret) 603 break; 604 605 /* Submit DMA Rx transfer */ 606 ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1); 607 if (ret) 608 break; 609 610 /* Rx must be started before Tx due to SPI instinct */ 611 dma_async_issue_pending(dws->rxchan); 612 613 dma_async_issue_pending(dws->txchan); 614 615 /* 616 * Here we only need to wait for the DMA transfer to be 617 * finished since SPI controller is kept enabled during the 618 * procedure this loop implements and there is no risk to lose 619 * data left in the Tx/Rx FIFOs. 620 */ 621 ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz); 622 if (ret) 623 break; 624 625 reinit_completion(&dws->dma_completion); 626 627 sg_dma_address(&tx_tmp) += len; 628 sg_dma_address(&rx_tmp) += len; 629 tx_len -= len; 630 rx_len -= len; 631 } 632 633 dw_writel(dws, DW_SPI_DMACR, 0); 634 635 return ret; 636 } 637 638 static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer) 639 { 640 unsigned int nents; 641 int ret; 642 643 nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents); 644 645 /* 646 * Execute normal DMA-based transfer (which submits the Rx and Tx SG 647 * lists directly to the DMA engine at once) if either full hardware 648 * accelerated SG list traverse is supported by both channels, or the 649 * Tx-only SPI transfer is requested, or the DMA engine is capable to 650 * handle both SG lists on hardware accelerated basis. 651 */ 652 if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst) 653 ret = dw_spi_dma_transfer_all(dws, xfer); 654 else 655 ret = dw_spi_dma_transfer_one(dws, xfer); 656 if (ret) 657 return ret; 658 659 if (dws->host->cur_msg->status == -EINPROGRESS) { 660 ret = dw_spi_dma_wait_tx_done(dws, xfer); 661 if (ret) 662 return ret; 663 } 664 665 if (xfer->rx_buf && dws->host->cur_msg->status == -EINPROGRESS) 666 ret = dw_spi_dma_wait_rx_done(dws); 667 668 return ret; 669 } 670 671 static void dw_spi_dma_stop(struct dw_spi *dws) 672 { 673 if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) { 674 dmaengine_terminate_sync(dws->txchan); 675 clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy); 676 } 677 if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) { 678 dmaengine_terminate_sync(dws->rxchan); 679 clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy); 680 } 681 } 682 683 static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = { 684 .dma_init = dw_spi_dma_init_mfld, 685 .dma_exit = dw_spi_dma_exit, 686 .dma_setup = dw_spi_dma_setup, 687 .can_dma = dw_spi_can_dma, 688 .dma_transfer = dw_spi_dma_transfer, 689 .dma_stop = dw_spi_dma_stop, 690 }; 691 692 void dw_spi_dma_setup_mfld(struct dw_spi *dws) 693 { 694 dws->dma_ops = &dw_spi_dma_mfld_ops; 695 } 696 EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_mfld, SPI_DW_CORE); 697 698 static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = { 699 .dma_init = dw_spi_dma_init_generic, 700 .dma_exit = dw_spi_dma_exit, 701 .dma_setup = dw_spi_dma_setup, 702 .can_dma = dw_spi_can_dma, 703 .dma_transfer = dw_spi_dma_transfer, 704 .dma_stop = dw_spi_dma_stop, 705 }; 706 707 void dw_spi_dma_setup_generic(struct dw_spi *dws) 708 { 709 dws->dma_ops = &dw_spi_dma_generic_ops; 710 } 711 EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_generic, SPI_DW_CORE); 712