xref: /linux/drivers/spi/spi-dw-dma.c (revision c358f53871605a1a8d7ed6e544a05ea00e9c80cb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Special handling for DW DMA core
4  *
5  * Copyright (c) 2009, 2014 Intel Corporation.
6  */
7 
8 #include <linux/completion.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/irqreturn.h>
12 #include <linux/jiffies.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/platform_data/dma-dw.h>
16 #include <linux/spi/spi.h>
17 #include <linux/types.h>
18 
19 #include "spi-dw.h"
20 
21 #define DW_SPI_RX_BUSY		0
22 #define DW_SPI_RX_BURST_LEVEL	16
23 #define DW_SPI_TX_BUSY		1
24 #define DW_SPI_TX_BURST_LEVEL	16
25 
26 static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
27 {
28 	struct dw_dma_slave *s = param;
29 
30 	if (s->dma_dev != chan->device->dev)
31 		return false;
32 
33 	chan->private = s;
34 	return true;
35 }
36 
37 static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
38 {
39 	struct dma_slave_caps caps;
40 	u32 max_burst, def_burst;
41 	int ret;
42 
43 	def_burst = dws->fifo_len / 2;
44 
45 	ret = dma_get_slave_caps(dws->rxchan, &caps);
46 	if (!ret && caps.max_burst)
47 		max_burst = caps.max_burst;
48 	else
49 		max_burst = DW_SPI_RX_BURST_LEVEL;
50 
51 	dws->rxburst = min(max_burst, def_burst);
52 	dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
53 
54 	ret = dma_get_slave_caps(dws->txchan, &caps);
55 	if (!ret && caps.max_burst)
56 		max_burst = caps.max_burst;
57 	else
58 		max_burst = DW_SPI_TX_BURST_LEVEL;
59 
60 	/*
61 	 * Having a Rx DMA channel serviced with higher priority than a Tx DMA
62 	 * channel might not be enough to provide a well balanced DMA-based
63 	 * SPI transfer interface. There might still be moments when the Tx DMA
64 	 * channel is occasionally handled faster than the Rx DMA channel.
65 	 * That in its turn will eventually cause the SPI Rx FIFO overflow if
66 	 * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
67 	 * cleared by the Rx DMA channel. In order to fix the problem the Tx
68 	 * DMA activity is intentionally slowed down by limiting the SPI Tx
69 	 * FIFO depth with a value twice bigger than the Tx burst length.
70 	 */
71 	dws->txburst = min(max_burst, def_burst);
72 	dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
73 }
74 
75 static void dw_spi_dma_sg_burst_init(struct dw_spi *dws)
76 {
77 	struct dma_slave_caps tx = {0}, rx = {0};
78 
79 	dma_get_slave_caps(dws->txchan, &tx);
80 	dma_get_slave_caps(dws->rxchan, &rx);
81 
82 	if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
83 		dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
84 	else if (tx.max_sg_burst > 0)
85 		dws->dma_sg_burst = tx.max_sg_burst;
86 	else if (rx.max_sg_burst > 0)
87 		dws->dma_sg_burst = rx.max_sg_burst;
88 	else
89 		dws->dma_sg_burst = 0;
90 }
91 
92 static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
93 {
94 	struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
95 	struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
96 	struct pci_dev *dma_dev;
97 	dma_cap_mask_t mask;
98 
99 	/*
100 	 * Get pci device for DMA controller, currently it could only
101 	 * be the DMA controller of Medfield
102 	 */
103 	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
104 	if (!dma_dev)
105 		return -ENODEV;
106 
107 	dma_cap_zero(mask);
108 	dma_cap_set(DMA_SLAVE, mask);
109 
110 	/* 1. Init rx channel */
111 	rx->dma_dev = &dma_dev->dev;
112 	dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
113 	if (!dws->rxchan)
114 		goto err_exit;
115 
116 	/* 2. Init tx channel */
117 	tx->dma_dev = &dma_dev->dev;
118 	dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
119 	if (!dws->txchan)
120 		goto free_rxchan;
121 
122 	dws->master->dma_rx = dws->rxchan;
123 	dws->master->dma_tx = dws->txchan;
124 
125 	init_completion(&dws->dma_completion);
126 
127 	dw_spi_dma_maxburst_init(dws);
128 
129 	dw_spi_dma_sg_burst_init(dws);
130 
131 	return 0;
132 
133 free_rxchan:
134 	dma_release_channel(dws->rxchan);
135 	dws->rxchan = NULL;
136 err_exit:
137 	return -EBUSY;
138 }
139 
140 static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
141 {
142 	int ret;
143 
144 	dws->rxchan = dma_request_chan(dev, "rx");
145 	if (IS_ERR(dws->rxchan)) {
146 		ret = PTR_ERR(dws->rxchan);
147 		dws->rxchan = NULL;
148 		goto err_exit;
149 	}
150 
151 	dws->txchan = dma_request_chan(dev, "tx");
152 	if (IS_ERR(dws->txchan)) {
153 		ret = PTR_ERR(dws->txchan);
154 		dws->txchan = NULL;
155 		goto free_rxchan;
156 	}
157 
158 	dws->master->dma_rx = dws->rxchan;
159 	dws->master->dma_tx = dws->txchan;
160 
161 	init_completion(&dws->dma_completion);
162 
163 	dw_spi_dma_maxburst_init(dws);
164 
165 	dw_spi_dma_sg_burst_init(dws);
166 
167 	return 0;
168 
169 free_rxchan:
170 	dma_release_channel(dws->rxchan);
171 	dws->rxchan = NULL;
172 err_exit:
173 	return ret;
174 }
175 
176 static void dw_spi_dma_exit(struct dw_spi *dws)
177 {
178 	if (dws->txchan) {
179 		dmaengine_terminate_sync(dws->txchan);
180 		dma_release_channel(dws->txchan);
181 	}
182 
183 	if (dws->rxchan) {
184 		dmaengine_terminate_sync(dws->rxchan);
185 		dma_release_channel(dws->rxchan);
186 	}
187 }
188 
189 static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
190 {
191 	dw_spi_check_status(dws, false);
192 
193 	complete(&dws->dma_completion);
194 
195 	return IRQ_HANDLED;
196 }
197 
198 static bool dw_spi_can_dma(struct spi_controller *master,
199 			   struct spi_device *spi, struct spi_transfer *xfer)
200 {
201 	struct dw_spi *dws = spi_controller_get_devdata(master);
202 
203 	return xfer->len > dws->fifo_len;
204 }
205 
206 static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
207 {
208 	if (n_bytes == 1)
209 		return DMA_SLAVE_BUSWIDTH_1_BYTE;
210 	else if (n_bytes == 2)
211 		return DMA_SLAVE_BUSWIDTH_2_BYTES;
212 
213 	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
214 }
215 
216 static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
217 {
218 	unsigned long long ms;
219 
220 	ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
221 	do_div(ms, speed);
222 	ms += ms + 200;
223 
224 	if (ms > UINT_MAX)
225 		ms = UINT_MAX;
226 
227 	ms = wait_for_completion_timeout(&dws->dma_completion,
228 					 msecs_to_jiffies(ms));
229 
230 	if (ms == 0) {
231 		dev_err(&dws->master->cur_msg->spi->dev,
232 			"DMA transaction timed out\n");
233 		return -ETIMEDOUT;
234 	}
235 
236 	return 0;
237 }
238 
239 static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
240 {
241 	return !(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_TF_EMPT);
242 }
243 
244 static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
245 				   struct spi_transfer *xfer)
246 {
247 	int retry = DW_SPI_WAIT_RETRIES;
248 	struct spi_delay delay;
249 	u32 nents;
250 
251 	nents = dw_readl(dws, DW_SPI_TXFLR);
252 	delay.unit = SPI_DELAY_UNIT_SCK;
253 	delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
254 
255 	while (dw_spi_dma_tx_busy(dws) && retry--)
256 		spi_delay_exec(&delay, xfer);
257 
258 	if (retry < 0) {
259 		dev_err(&dws->master->dev, "Tx hanged up\n");
260 		return -EIO;
261 	}
262 
263 	return 0;
264 }
265 
266 /*
267  * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
268  * channel will clear a corresponding bit.
269  */
270 static void dw_spi_dma_tx_done(void *arg)
271 {
272 	struct dw_spi *dws = arg;
273 
274 	clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
275 	if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy))
276 		return;
277 
278 	complete(&dws->dma_completion);
279 }
280 
281 static int dw_spi_dma_config_tx(struct dw_spi *dws)
282 {
283 	struct dma_slave_config txconf;
284 
285 	memset(&txconf, 0, sizeof(txconf));
286 	txconf.direction = DMA_MEM_TO_DEV;
287 	txconf.dst_addr = dws->dma_addr;
288 	txconf.dst_maxburst = dws->txburst;
289 	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
290 	txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
291 	txconf.device_fc = false;
292 
293 	return dmaengine_slave_config(dws->txchan, &txconf);
294 }
295 
296 static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
297 				unsigned int nents)
298 {
299 	struct dma_async_tx_descriptor *txdesc;
300 	dma_cookie_t cookie;
301 	int ret;
302 
303 	txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
304 					 DMA_MEM_TO_DEV,
305 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
306 	if (!txdesc)
307 		return -ENOMEM;
308 
309 	txdesc->callback = dw_spi_dma_tx_done;
310 	txdesc->callback_param = dws;
311 
312 	cookie = dmaengine_submit(txdesc);
313 	ret = dma_submit_error(cookie);
314 	if (ret) {
315 		dmaengine_terminate_sync(dws->txchan);
316 		return ret;
317 	}
318 
319 	set_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
320 
321 	return 0;
322 }
323 
324 static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
325 {
326 	return !!(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_RF_NOT_EMPT);
327 }
328 
329 static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
330 {
331 	int retry = DW_SPI_WAIT_RETRIES;
332 	struct spi_delay delay;
333 	unsigned long ns, us;
334 	u32 nents;
335 
336 	/*
337 	 * It's unlikely that DMA engine is still doing the data fetching, but
338 	 * if it's let's give it some reasonable time. The timeout calculation
339 	 * is based on the synchronous APB/SSI reference clock rate, on a
340 	 * number of data entries left in the Rx FIFO, times a number of clock
341 	 * periods normally needed for a single APB read/write transaction
342 	 * without PREADY signal utilized (which is true for the DW APB SSI
343 	 * controller).
344 	 */
345 	nents = dw_readl(dws, DW_SPI_RXFLR);
346 	ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
347 	if (ns <= NSEC_PER_USEC) {
348 		delay.unit = SPI_DELAY_UNIT_NSECS;
349 		delay.value = ns;
350 	} else {
351 		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
352 		delay.unit = SPI_DELAY_UNIT_USECS;
353 		delay.value = clamp_val(us, 0, USHRT_MAX);
354 	}
355 
356 	while (dw_spi_dma_rx_busy(dws) && retry--)
357 		spi_delay_exec(&delay, NULL);
358 
359 	if (retry < 0) {
360 		dev_err(&dws->master->dev, "Rx hanged up\n");
361 		return -EIO;
362 	}
363 
364 	return 0;
365 }
366 
367 /*
368  * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
369  * channel will clear a corresponding bit.
370  */
371 static void dw_spi_dma_rx_done(void *arg)
372 {
373 	struct dw_spi *dws = arg;
374 
375 	clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
376 	if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy))
377 		return;
378 
379 	complete(&dws->dma_completion);
380 }
381 
382 static int dw_spi_dma_config_rx(struct dw_spi *dws)
383 {
384 	struct dma_slave_config rxconf;
385 
386 	memset(&rxconf, 0, sizeof(rxconf));
387 	rxconf.direction = DMA_DEV_TO_MEM;
388 	rxconf.src_addr = dws->dma_addr;
389 	rxconf.src_maxburst = dws->rxburst;
390 	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
391 	rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
392 	rxconf.device_fc = false;
393 
394 	return dmaengine_slave_config(dws->rxchan, &rxconf);
395 }
396 
397 static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
398 				unsigned int nents)
399 {
400 	struct dma_async_tx_descriptor *rxdesc;
401 	dma_cookie_t cookie;
402 	int ret;
403 
404 	rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
405 					 DMA_DEV_TO_MEM,
406 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
407 	if (!rxdesc)
408 		return -ENOMEM;
409 
410 	rxdesc->callback = dw_spi_dma_rx_done;
411 	rxdesc->callback_param = dws;
412 
413 	cookie = dmaengine_submit(rxdesc);
414 	ret = dma_submit_error(cookie);
415 	if (ret) {
416 		dmaengine_terminate_sync(dws->rxchan);
417 		return ret;
418 	}
419 
420 	set_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
421 
422 	return 0;
423 }
424 
425 static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
426 {
427 	u16 imr, dma_ctrl;
428 	int ret;
429 
430 	if (!xfer->tx_buf)
431 		return -EINVAL;
432 
433 	/* Setup DMA channels */
434 	ret = dw_spi_dma_config_tx(dws);
435 	if (ret)
436 		return ret;
437 
438 	if (xfer->rx_buf) {
439 		ret = dw_spi_dma_config_rx(dws);
440 		if (ret)
441 			return ret;
442 	}
443 
444 	/* Set the DMA handshaking interface */
445 	dma_ctrl = DW_SPI_DMACR_TDMAE;
446 	if (xfer->rx_buf)
447 		dma_ctrl |= DW_SPI_DMACR_RDMAE;
448 	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
449 
450 	/* Set the interrupt mask */
451 	imr = DW_SPI_INT_TXOI;
452 	if (xfer->rx_buf)
453 		imr |= DW_SPI_INT_RXUI | DW_SPI_INT_RXOI;
454 	dw_spi_umask_intr(dws, imr);
455 
456 	reinit_completion(&dws->dma_completion);
457 
458 	dws->transfer_handler = dw_spi_dma_transfer_handler;
459 
460 	return 0;
461 }
462 
463 static int dw_spi_dma_transfer_all(struct dw_spi *dws,
464 				   struct spi_transfer *xfer)
465 {
466 	int ret;
467 
468 	/* Submit the DMA Tx transfer */
469 	ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
470 	if (ret)
471 		goto err_clear_dmac;
472 
473 	/* Submit the DMA Rx transfer if required */
474 	if (xfer->rx_buf) {
475 		ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
476 					   xfer->rx_sg.nents);
477 		if (ret)
478 			goto err_clear_dmac;
479 
480 		/* rx must be started before tx due to spi instinct */
481 		dma_async_issue_pending(dws->rxchan);
482 	}
483 
484 	dma_async_issue_pending(dws->txchan);
485 
486 	ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
487 
488 err_clear_dmac:
489 	dw_writel(dws, DW_SPI_DMACR, 0);
490 
491 	return ret;
492 }
493 
494 /*
495  * In case if at least one of the requested DMA channels doesn't support the
496  * hardware accelerated SG list entries traverse, the DMA driver will most
497  * likely work that around by performing the IRQ-based SG list entries
498  * resubmission. That might and will cause a problem if the DMA Tx channel is
499  * recharged and re-executed before the Rx DMA channel. Due to
500  * non-deterministic IRQ-handler execution latency the DMA Tx channel will
501  * start pushing data to the SPI bus before the Rx DMA channel is even
502  * reinitialized with the next inbound SG list entry. By doing so the DMA Tx
503  * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
504  * the DMA Rx channel being recharged and re-executed will eventually be
505  * overflown.
506  *
507  * In order to solve the problem we have to feed the DMA engine with SG list
508  * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
509  * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
510  * and rx_sg lists may have different number of entries of different lengths
511  * (though total length should match) let's virtually split the SG-lists to the
512  * set of DMA transfers, which length is a minimum of the ordered SG-entries
513  * lengths. An ASCII-sketch of the implemented algo is following:
514  *                  xfer->len
515  *                |___________|
516  * tx_sg list:    |___|____|__|
517  * rx_sg list:    |_|____|____|
518  * DMA transfers: |_|_|__|_|__|
519  *
520  * Note in order to have this workaround solving the denoted problem the DMA
521  * engine driver should properly initialize the max_sg_burst capability and set
522  * the DMA device max segment size parameter with maximum data block size the
523  * DMA engine supports.
524  */
525 
526 static int dw_spi_dma_transfer_one(struct dw_spi *dws,
527 				   struct spi_transfer *xfer)
528 {
529 	struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
530 	unsigned int tx_len = 0, rx_len = 0;
531 	unsigned int base, len;
532 	int ret;
533 
534 	sg_init_table(&tx_tmp, 1);
535 	sg_init_table(&rx_tmp, 1);
536 
537 	for (base = 0, len = 0; base < xfer->len; base += len) {
538 		/* Fetch next Tx DMA data chunk */
539 		if (!tx_len) {
540 			tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
541 			sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
542 			tx_len = sg_dma_len(tx_sg);
543 		}
544 
545 		/* Fetch next Rx DMA data chunk */
546 		if (!rx_len) {
547 			rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
548 			sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
549 			rx_len = sg_dma_len(rx_sg);
550 		}
551 
552 		len = min(tx_len, rx_len);
553 
554 		sg_dma_len(&tx_tmp) = len;
555 		sg_dma_len(&rx_tmp) = len;
556 
557 		/* Submit DMA Tx transfer */
558 		ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
559 		if (ret)
560 			break;
561 
562 		/* Submit DMA Rx transfer */
563 		ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
564 		if (ret)
565 			break;
566 
567 		/* Rx must be started before Tx due to SPI instinct */
568 		dma_async_issue_pending(dws->rxchan);
569 
570 		dma_async_issue_pending(dws->txchan);
571 
572 		/*
573 		 * Here we only need to wait for the DMA transfer to be
574 		 * finished since SPI controller is kept enabled during the
575 		 * procedure this loop implements and there is no risk to lose
576 		 * data left in the Tx/Rx FIFOs.
577 		 */
578 		ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
579 		if (ret)
580 			break;
581 
582 		reinit_completion(&dws->dma_completion);
583 
584 		sg_dma_address(&tx_tmp) += len;
585 		sg_dma_address(&rx_tmp) += len;
586 		tx_len -= len;
587 		rx_len -= len;
588 	}
589 
590 	dw_writel(dws, DW_SPI_DMACR, 0);
591 
592 	return ret;
593 }
594 
595 static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
596 {
597 	unsigned int nents;
598 	int ret;
599 
600 	nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
601 
602 	/*
603 	 * Execute normal DMA-based transfer (which submits the Rx and Tx SG
604 	 * lists directly to the DMA engine at once) if either full hardware
605 	 * accelerated SG list traverse is supported by both channels, or the
606 	 * Tx-only SPI transfer is requested, or the DMA engine is capable to
607 	 * handle both SG lists on hardware accelerated basis.
608 	 */
609 	if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
610 		ret = dw_spi_dma_transfer_all(dws, xfer);
611 	else
612 		ret = dw_spi_dma_transfer_one(dws, xfer);
613 	if (ret)
614 		return ret;
615 
616 	if (dws->master->cur_msg->status == -EINPROGRESS) {
617 		ret = dw_spi_dma_wait_tx_done(dws, xfer);
618 		if (ret)
619 			return ret;
620 	}
621 
622 	if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS)
623 		ret = dw_spi_dma_wait_rx_done(dws);
624 
625 	return ret;
626 }
627 
628 static void dw_spi_dma_stop(struct dw_spi *dws)
629 {
630 	if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) {
631 		dmaengine_terminate_sync(dws->txchan);
632 		clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
633 	}
634 	if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) {
635 		dmaengine_terminate_sync(dws->rxchan);
636 		clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
637 	}
638 }
639 
640 static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
641 	.dma_init	= dw_spi_dma_init_mfld,
642 	.dma_exit	= dw_spi_dma_exit,
643 	.dma_setup	= dw_spi_dma_setup,
644 	.can_dma	= dw_spi_can_dma,
645 	.dma_transfer	= dw_spi_dma_transfer,
646 	.dma_stop	= dw_spi_dma_stop,
647 };
648 
649 void dw_spi_dma_setup_mfld(struct dw_spi *dws)
650 {
651 	dws->dma_ops = &dw_spi_dma_mfld_ops;
652 }
653 EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_mfld, SPI_DW_CORE);
654 
655 static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
656 	.dma_init	= dw_spi_dma_init_generic,
657 	.dma_exit	= dw_spi_dma_exit,
658 	.dma_setup	= dw_spi_dma_setup,
659 	.can_dma	= dw_spi_can_dma,
660 	.dma_transfer	= dw_spi_dma_transfer,
661 	.dma_stop	= dw_spi_dma_stop,
662 };
663 
664 void dw_spi_dma_setup_generic(struct dw_spi *dws)
665 {
666 	dws->dma_ops = &dw_spi_dma_generic_ops;
667 }
668 EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_generic, SPI_DW_CORE);
669