1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Designware SPI core controller driver (refer pxa2xx_spi.c) 4 * 5 * Copyright (c) 2009, Intel Corporation. 6 */ 7 8 #include <linux/bitfield.h> 9 #include <linux/bitops.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/interrupt.h> 12 #include <linux/module.h> 13 #include <linux/preempt.h> 14 #include <linux/highmem.h> 15 #include <linux/delay.h> 16 #include <linux/slab.h> 17 #include <linux/spi/spi.h> 18 #include <linux/spi/spi-mem.h> 19 #include <linux/string.h> 20 #include <linux/of.h> 21 22 #include "internals.h" 23 #include "spi-dw.h" 24 25 #ifdef CONFIG_DEBUG_FS 26 #include <linux/debugfs.h> 27 #endif 28 29 /* Slave spi_device related */ 30 struct dw_spi_chip_data { 31 u32 cr0; 32 u32 rx_sample_dly; /* RX sample delay */ 33 }; 34 35 #ifdef CONFIG_DEBUG_FS 36 37 #define DW_SPI_DBGFS_REG(_name, _off) \ 38 { \ 39 .name = _name, \ 40 .offset = _off, \ 41 } 42 43 static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = { 44 DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0), 45 DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1), 46 DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR), 47 DW_SPI_DBGFS_REG("SER", DW_SPI_SER), 48 DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR), 49 DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR), 50 DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR), 51 DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR), 52 DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR), 53 DW_SPI_DBGFS_REG("SR", DW_SPI_SR), 54 DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR), 55 DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR), 56 DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR), 57 DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR), 58 DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR), 59 DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY), 60 }; 61 62 static void dw_spi_debugfs_init(struct dw_spi *dws) 63 { 64 char name[32]; 65 66 snprintf(name, 32, "dw_spi%d", dws->host->bus_num); 67 dws->debugfs = debugfs_create_dir(name, NULL); 68 69 dws->regset.regs = dw_spi_dbgfs_regs; 70 dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs); 71 dws->regset.base = dws->regs; 72 debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset); 73 } 74 75 static void dw_spi_debugfs_remove(struct dw_spi *dws) 76 { 77 debugfs_remove_recursive(dws->debugfs); 78 } 79 80 #else 81 static inline void dw_spi_debugfs_init(struct dw_spi *dws) 82 { 83 } 84 85 static inline void dw_spi_debugfs_remove(struct dw_spi *dws) 86 { 87 } 88 #endif /* CONFIG_DEBUG_FS */ 89 90 void dw_spi_set_cs(struct spi_device *spi, bool enable) 91 { 92 struct dw_spi *dws = spi_controller_get_devdata(spi->controller); 93 bool cs_high = !!(spi->mode & SPI_CS_HIGH); 94 95 /* 96 * DW SPI controller demands any native CS being set in order to 97 * proceed with data transfer. So in order to activate the SPI 98 * communications we must set a corresponding bit in the Slave 99 * Enable register no matter whether the SPI core is configured to 100 * support active-high or active-low CS level. 101 */ 102 if (cs_high == enable) 103 dw_writel(dws, DW_SPI_SER, BIT(spi_get_chipselect(spi, 0))); 104 else 105 dw_writel(dws, DW_SPI_SER, 0); 106 } 107 EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs, "SPI_DW_CORE"); 108 109 /* Return the max entries we can fill into tx fifo */ 110 static inline u32 dw_spi_tx_max(struct dw_spi *dws) 111 { 112 u32 tx_room, rxtx_gap; 113 114 tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR); 115 116 /* 117 * Another concern is about the tx/rx mismatch, we 118 * though to use (dws->fifo_len - rxflr - txflr) as 119 * one maximum value for tx, but it doesn't cover the 120 * data which is out of tx/rx fifo and inside the 121 * shift registers. So a control from sw point of 122 * view is taken. 123 */ 124 rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len); 125 126 return min3((u32)dws->tx_len, tx_room, rxtx_gap); 127 } 128 129 /* Return the max entries we should read out of rx fifo */ 130 static inline u32 dw_spi_rx_max(struct dw_spi *dws) 131 { 132 return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR)); 133 } 134 135 static void dw_writer(struct dw_spi *dws) 136 { 137 u32 max = dw_spi_tx_max(dws); 138 u32 txw = 0; 139 140 while (max--) { 141 if (dws->tx) { 142 if (dws->n_bytes == 1) 143 txw = *(u8 *)(dws->tx); 144 else if (dws->n_bytes == 2) 145 txw = *(u16 *)(dws->tx); 146 else 147 txw = *(u32 *)(dws->tx); 148 149 dws->tx += dws->n_bytes; 150 } 151 dw_write_io_reg(dws, DW_SPI_DR, txw); 152 --dws->tx_len; 153 } 154 } 155 156 static void dw_reader(struct dw_spi *dws) 157 { 158 u32 max = dw_spi_rx_max(dws); 159 u32 rxw; 160 161 while (max--) { 162 rxw = dw_read_io_reg(dws, DW_SPI_DR); 163 if (dws->rx) { 164 if (dws->n_bytes == 1) 165 *(u8 *)(dws->rx) = rxw; 166 else if (dws->n_bytes == 2) 167 *(u16 *)(dws->rx) = rxw; 168 else 169 *(u32 *)(dws->rx) = rxw; 170 171 dws->rx += dws->n_bytes; 172 } 173 --dws->rx_len; 174 } 175 } 176 177 int dw_spi_check_status(struct dw_spi *dws, bool raw) 178 { 179 u32 irq_status; 180 int ret = 0; 181 182 if (raw) 183 irq_status = dw_readl(dws, DW_SPI_RISR); 184 else 185 irq_status = dw_readl(dws, DW_SPI_ISR); 186 187 if (irq_status & DW_SPI_INT_RXOI) { 188 dev_err(&dws->host->dev, "RX FIFO overflow detected\n"); 189 ret = -EIO; 190 } 191 192 if (irq_status & DW_SPI_INT_RXUI) { 193 dev_err(&dws->host->dev, "RX FIFO underflow detected\n"); 194 ret = -EIO; 195 } 196 197 if (irq_status & DW_SPI_INT_TXOI) { 198 dev_err(&dws->host->dev, "TX FIFO overflow detected\n"); 199 ret = -EIO; 200 } 201 202 /* Generically handle the erroneous situation */ 203 if (ret) { 204 dw_spi_reset_chip(dws); 205 if (dws->host->cur_msg) 206 dws->host->cur_msg->status = ret; 207 } 208 209 return ret; 210 } 211 EXPORT_SYMBOL_NS_GPL(dw_spi_check_status, "SPI_DW_CORE"); 212 213 static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws) 214 { 215 u16 irq_status = dw_readl(dws, DW_SPI_ISR); 216 217 if (dw_spi_check_status(dws, false)) { 218 spi_finalize_current_transfer(dws->host); 219 return IRQ_HANDLED; 220 } 221 222 /* 223 * Read data from the Rx FIFO every time we've got a chance executing 224 * this method. If there is nothing left to receive, terminate the 225 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a 226 * final stage of the transfer. By doing so we'll get the next IRQ 227 * right when the leftover incoming data is received. 228 */ 229 dw_reader(dws); 230 if (!dws->rx_len) { 231 dw_spi_mask_intr(dws, 0xff); 232 spi_finalize_current_transfer(dws->host); 233 } else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) { 234 dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1); 235 } 236 237 /* 238 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be 239 * disabled after the data transmission is finished so not to 240 * have the TXE IRQ flood at the final stage of the transfer. 241 */ 242 if (irq_status & DW_SPI_INT_TXEI) { 243 dw_writer(dws); 244 if (!dws->tx_len) 245 dw_spi_mask_intr(dws, DW_SPI_INT_TXEI); 246 } 247 248 return IRQ_HANDLED; 249 } 250 251 static irqreturn_t dw_spi_irq(int irq, void *dev_id) 252 { 253 struct spi_controller *host = dev_id; 254 struct dw_spi *dws = spi_controller_get_devdata(host); 255 u16 irq_status = dw_readl(dws, DW_SPI_ISR) & DW_SPI_INT_MASK; 256 257 if (!irq_status) 258 return IRQ_NONE; 259 260 if (!host->cur_msg) { 261 dw_spi_mask_intr(dws, 0xff); 262 return IRQ_HANDLED; 263 } 264 265 return dws->transfer_handler(dws); 266 } 267 268 static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi) 269 { 270 u32 cr0 = 0; 271 272 if (dw_spi_ip_is(dws, PSSI)) { 273 /* CTRLR0[ 5: 4] Frame Format */ 274 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI); 275 276 /* 277 * SPI mode (SCPOL|SCPH) 278 * CTRLR0[ 6] Serial Clock Phase 279 * CTRLR0[ 7] Serial Clock Polarity 280 */ 281 if (spi->mode & SPI_CPOL) 282 cr0 |= DW_PSSI_CTRLR0_SCPOL; 283 if (spi->mode & SPI_CPHA) 284 cr0 |= DW_PSSI_CTRLR0_SCPHA; 285 286 /* CTRLR0[11] Shift Register Loop */ 287 if (spi->mode & SPI_LOOP) 288 cr0 |= DW_PSSI_CTRLR0_SRL; 289 } else { 290 /* CTRLR0[ 7: 6] Frame Format */ 291 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI); 292 293 /* 294 * SPI mode (SCPOL|SCPH) 295 * CTRLR0[ 8] Serial Clock Phase 296 * CTRLR0[ 9] Serial Clock Polarity 297 */ 298 if (spi->mode & SPI_CPOL) 299 cr0 |= DW_HSSI_CTRLR0_SCPOL; 300 if (spi->mode & SPI_CPHA) 301 cr0 |= DW_HSSI_CTRLR0_SCPHA; 302 303 /* CTRLR0[13] Shift Register Loop */ 304 if (spi->mode & SPI_LOOP) 305 cr0 |= DW_HSSI_CTRLR0_SRL; 306 307 /* CTRLR0[31] MST */ 308 if (dw_spi_ver_is_ge(dws, HSSI, 102A)) 309 cr0 |= DW_HSSI_CTRLR0_MST; 310 } 311 312 return cr0; 313 } 314 315 void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi, 316 struct dw_spi_cfg *cfg) 317 { 318 struct dw_spi_chip_data *chip = spi_get_ctldata(spi); 319 u32 cr0 = chip->cr0; 320 u32 speed_hz; 321 u16 clk_div; 322 323 /* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */ 324 cr0 |= (cfg->dfs - 1) << dws->dfs_offset; 325 326 if (dw_spi_ip_is(dws, PSSI)) 327 /* CTRLR0[ 9:8] Transfer Mode */ 328 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK, cfg->tmode); 329 else 330 /* CTRLR0[11:10] Transfer Mode */ 331 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK, cfg->tmode); 332 333 dw_writel(dws, DW_SPI_CTRLR0, cr0); 334 335 if (cfg->tmode == DW_SPI_CTRLR0_TMOD_EPROMREAD || 336 cfg->tmode == DW_SPI_CTRLR0_TMOD_RO) 337 dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0); 338 339 /* Note DW APB SSI clock divider doesn't support odd numbers */ 340 clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe; 341 speed_hz = dws->max_freq / clk_div; 342 343 if (dws->current_freq != speed_hz) { 344 dw_spi_set_clk(dws, clk_div); 345 dws->current_freq = speed_hz; 346 } 347 348 /* Update RX sample delay if required */ 349 if (dws->cur_rx_sample_dly != chip->rx_sample_dly) { 350 dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly); 351 dws->cur_rx_sample_dly = chip->rx_sample_dly; 352 } 353 } 354 EXPORT_SYMBOL_NS_GPL(dw_spi_update_config, "SPI_DW_CORE"); 355 356 static void dw_spi_irq_setup(struct dw_spi *dws) 357 { 358 u16 level; 359 u8 imask; 360 361 /* 362 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level 363 * will be adjusted at the final stage of the IRQ-based SPI transfer 364 * execution so not to lose the leftover of the incoming data. 365 */ 366 level = min_t(unsigned int, dws->fifo_len / 2, dws->tx_len); 367 dw_writel(dws, DW_SPI_TXFTLR, level); 368 dw_writel(dws, DW_SPI_RXFTLR, level - 1); 369 370 dws->transfer_handler = dw_spi_transfer_handler; 371 372 imask = DW_SPI_INT_TXEI | DW_SPI_INT_TXOI | 373 DW_SPI_INT_RXUI | DW_SPI_INT_RXOI | DW_SPI_INT_RXFI; 374 dw_spi_umask_intr(dws, imask); 375 } 376 377 /* 378 * The iterative procedure of the poll-based transfer is simple: write as much 379 * as possible to the Tx FIFO, wait until the pending to receive data is ready 380 * to be read, read it from the Rx FIFO and check whether the performed 381 * procedure has been successful. 382 * 383 * Note this method the same way as the IRQ-based transfer won't work well for 384 * the SPI devices connected to the controller with native CS due to the 385 * automatic CS assertion/de-assertion. 386 */ 387 static int dw_spi_poll_transfer(struct dw_spi *dws, 388 struct spi_transfer *transfer) 389 { 390 struct spi_delay delay; 391 u16 nbits; 392 int ret; 393 394 delay.unit = SPI_DELAY_UNIT_SCK; 395 nbits = dws->n_bytes * BITS_PER_BYTE; 396 397 do { 398 dw_writer(dws); 399 400 delay.value = nbits * (dws->rx_len - dws->tx_len); 401 spi_delay_exec(&delay, transfer); 402 403 dw_reader(dws); 404 405 ret = dw_spi_check_status(dws, true); 406 if (ret) 407 return ret; 408 } while (dws->rx_len); 409 410 return 0; 411 } 412 413 static int dw_spi_transfer_one(struct spi_controller *host, 414 struct spi_device *spi, 415 struct spi_transfer *transfer) 416 { 417 struct dw_spi *dws = spi_controller_get_devdata(host); 418 struct dw_spi_cfg cfg = { 419 .tmode = DW_SPI_CTRLR0_TMOD_TR, 420 .dfs = transfer->bits_per_word, 421 .freq = transfer->speed_hz, 422 }; 423 int ret; 424 425 dws->dma_mapped = 0; 426 dws->n_bytes = roundup_pow_of_two(BITS_TO_BYTES(transfer->bits_per_word)); 427 dws->tx = (void *)transfer->tx_buf; 428 dws->tx_len = transfer->len / dws->n_bytes; 429 dws->rx = transfer->rx_buf; 430 dws->rx_len = dws->tx_len; 431 432 /* Ensure the data above is visible for all CPUs */ 433 smp_mb(); 434 435 dw_spi_enable_chip(dws, 0); 436 437 dw_spi_update_config(dws, spi, &cfg); 438 439 transfer->effective_speed_hz = dws->current_freq; 440 441 /* Check if current transfer is a DMA transaction */ 442 dws->dma_mapped = spi_xfer_is_dma_mapped(host, spi, transfer); 443 444 /* For poll mode just disable all interrupts */ 445 dw_spi_mask_intr(dws, 0xff); 446 447 if (dws->dma_mapped) { 448 ret = dws->dma_ops->dma_setup(dws, transfer); 449 if (ret) 450 return ret; 451 } 452 453 dw_spi_enable_chip(dws, 1); 454 455 if (dws->dma_mapped) 456 return dws->dma_ops->dma_transfer(dws, transfer); 457 else if (dws->irq == IRQ_NOTCONNECTED) 458 return dw_spi_poll_transfer(dws, transfer); 459 460 dw_spi_irq_setup(dws); 461 462 return 1; 463 } 464 465 static void dw_spi_handle_err(struct spi_controller *host, 466 struct spi_message *msg) 467 { 468 struct dw_spi *dws = spi_controller_get_devdata(host); 469 470 if (dws->dma_mapped) 471 dws->dma_ops->dma_stop(dws); 472 473 dw_spi_reset_chip(dws); 474 } 475 476 static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op) 477 { 478 if (op->data.dir == SPI_MEM_DATA_IN) 479 op->data.nbytes = clamp_val(op->data.nbytes, 0, DW_SPI_NDF_MASK + 1); 480 481 return 0; 482 } 483 484 static bool dw_spi_supports_mem_op(struct spi_mem *mem, 485 const struct spi_mem_op *op) 486 { 487 if (op->data.buswidth > 1 || op->addr.buswidth > 1 || 488 op->dummy.buswidth > 1 || op->cmd.buswidth > 1) 489 return false; 490 491 return spi_mem_default_supports_op(mem, op); 492 } 493 494 static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op) 495 { 496 unsigned int i, j, len; 497 u8 *out; 498 499 /* 500 * Calculate the total length of the EEPROM command transfer and 501 * either use the pre-allocated buffer or create a temporary one. 502 */ 503 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; 504 if (op->data.dir == SPI_MEM_DATA_OUT) 505 len += op->data.nbytes; 506 507 if (len <= DW_SPI_BUF_SIZE) { 508 out = dws->buf; 509 } else { 510 out = kzalloc(len, GFP_KERNEL); 511 if (!out) 512 return -ENOMEM; 513 } 514 515 /* 516 * Collect the operation code, address and dummy bytes into the single 517 * buffer. If it's a transfer with data to be sent, also copy it into the 518 * single buffer in order to speed the data transmission up. 519 */ 520 for (i = 0; i < op->cmd.nbytes; ++i) 521 out[i] = DW_SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1); 522 for (j = 0; j < op->addr.nbytes; ++i, ++j) 523 out[i] = DW_SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1); 524 for (j = 0; j < op->dummy.nbytes; ++i, ++j) 525 out[i] = 0x0; 526 527 if (op->data.dir == SPI_MEM_DATA_OUT) 528 memcpy(&out[i], op->data.buf.out, op->data.nbytes); 529 530 dws->n_bytes = 1; 531 dws->tx = out; 532 dws->tx_len = len; 533 if (op->data.dir == SPI_MEM_DATA_IN) { 534 dws->rx = op->data.buf.in; 535 dws->rx_len = op->data.nbytes; 536 } else { 537 dws->rx = NULL; 538 dws->rx_len = 0; 539 } 540 541 return 0; 542 } 543 544 static void dw_spi_free_mem_buf(struct dw_spi *dws) 545 { 546 if (dws->tx != dws->buf) 547 kfree(dws->tx); 548 } 549 550 static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi) 551 { 552 u32 room, entries, sts; 553 unsigned int len; 554 u8 *buf; 555 556 /* 557 * At initial stage we just pre-fill the Tx FIFO in with no rush, 558 * since native CS hasn't been enabled yet and the automatic data 559 * transmission won't start til we do that. 560 */ 561 len = min(dws->fifo_len, dws->tx_len); 562 buf = dws->tx; 563 while (len--) 564 dw_write_io_reg(dws, DW_SPI_DR, *buf++); 565 566 /* 567 * After setting any bit in the SER register the transmission will 568 * start automatically. We have to keep up with that procedure 569 * otherwise the CS de-assertion will happen whereupon the memory 570 * operation will be pre-terminated. 571 */ 572 len = dws->tx_len - ((void *)buf - dws->tx); 573 dw_spi_set_cs(spi, false); 574 while (len) { 575 entries = readl_relaxed(dws->regs + DW_SPI_TXFLR); 576 if (!entries) { 577 dev_err(&dws->host->dev, "CS de-assertion on Tx\n"); 578 return -EIO; 579 } 580 room = min(dws->fifo_len - entries, len); 581 for (; room; --room, --len) 582 dw_write_io_reg(dws, DW_SPI_DR, *buf++); 583 } 584 585 /* 586 * Data fetching will start automatically if the EEPROM-read mode is 587 * activated. We have to keep up with the incoming data pace to 588 * prevent the Rx FIFO overflow causing the inbound data loss. 589 */ 590 len = dws->rx_len; 591 buf = dws->rx; 592 while (len) { 593 entries = readl_relaxed(dws->regs + DW_SPI_RXFLR); 594 if (!entries) { 595 sts = readl_relaxed(dws->regs + DW_SPI_RISR); 596 if (sts & DW_SPI_INT_RXOI) { 597 dev_err(&dws->host->dev, "FIFO overflow on Rx\n"); 598 return -EIO; 599 } 600 continue; 601 } 602 entries = min(entries, len); 603 for (; entries; --entries, --len) 604 *buf++ = dw_read_io_reg(dws, DW_SPI_DR); 605 } 606 607 return 0; 608 } 609 610 static inline bool dw_spi_ctlr_busy(struct dw_spi *dws) 611 { 612 return dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_BUSY; 613 } 614 615 static int dw_spi_wait_mem_op_done(struct dw_spi *dws) 616 { 617 int retry = DW_SPI_WAIT_RETRIES; 618 struct spi_delay delay; 619 unsigned long ns, us; 620 u32 nents; 621 622 nents = dw_readl(dws, DW_SPI_TXFLR); 623 ns = NSEC_PER_SEC / dws->current_freq * nents; 624 ns *= dws->n_bytes * BITS_PER_BYTE; 625 if (ns <= NSEC_PER_USEC) { 626 delay.unit = SPI_DELAY_UNIT_NSECS; 627 delay.value = ns; 628 } else { 629 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 630 delay.unit = SPI_DELAY_UNIT_USECS; 631 delay.value = clamp_val(us, 0, USHRT_MAX); 632 } 633 634 while (dw_spi_ctlr_busy(dws) && retry--) 635 spi_delay_exec(&delay, NULL); 636 637 if (retry < 0) { 638 dev_err(&dws->host->dev, "Mem op hanged up\n"); 639 return -EIO; 640 } 641 642 return 0; 643 } 644 645 static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi) 646 { 647 dw_spi_enable_chip(dws, 0); 648 dw_spi_set_cs(spi, true); 649 dw_spi_enable_chip(dws, 1); 650 } 651 652 /* 653 * The SPI memory operation implementation below is the best choice for the 654 * devices, which are selected by the native chip-select lane. It's 655 * specifically developed to workaround the problem with automatic chip-select 656 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current 657 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is 658 * unavailable. 659 */ 660 static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) 661 { 662 struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller); 663 struct dw_spi_cfg cfg; 664 unsigned long flags; 665 int ret; 666 667 /* 668 * Collect the outbound data into a single buffer to speed the 669 * transmission up at least on the initial stage. 670 */ 671 ret = dw_spi_init_mem_buf(dws, op); 672 if (ret) 673 return ret; 674 675 /* 676 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN 677 * operation. Transmit-only mode is suitable for the rest of them. 678 */ 679 cfg.dfs = 8; 680 cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq); 681 if (op->data.dir == SPI_MEM_DATA_IN) { 682 cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD; 683 cfg.ndf = op->data.nbytes; 684 } else { 685 cfg.tmode = DW_SPI_CTRLR0_TMOD_TO; 686 } 687 688 dw_spi_enable_chip(dws, 0); 689 690 dw_spi_update_config(dws, mem->spi, &cfg); 691 692 dw_spi_mask_intr(dws, 0xff); 693 694 dw_spi_enable_chip(dws, 1); 695 696 /* 697 * DW APB SSI controller has very nasty peculiarities. First originally 698 * (without any vendor-specific modifications) it doesn't provide a 699 * direct way to set and clear the native chip-select signal. Instead 700 * the controller asserts the CS lane if Tx FIFO isn't empty and a 701 * transmission is going on, and automatically de-asserts it back to 702 * the high level if the Tx FIFO doesn't have anything to be pushed 703 * out. Due to that a multi-tasking or heavy IRQs activity might be 704 * fatal, since the transfer procedure preemption may cause the Tx FIFO 705 * getting empty and sudden CS de-assertion, which in the middle of the 706 * transfer will most likely cause the data loss. Secondly the 707 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming 708 * data being automatically pulled in into the Rx FIFO. So if the 709 * driver software is late in fetching the data from the FIFO before 710 * it's overflown, new incoming data will be lost. In order to make 711 * sure the executed memory operations are CS-atomic and to prevent the 712 * Rx FIFO overflow we have to disable the local interrupts so to block 713 * any preemption during the subsequent IO operations. 714 * 715 * Note. At some circumstances disabling IRQs may not help to prevent 716 * the problems described above. The CS de-assertion and Rx FIFO 717 * overflow may still happen due to the relatively slow system bus or 718 * CPU not working fast enough, so the write-then-read algo implemented 719 * here just won't keep up with the SPI bus data transfer. Such 720 * situation is highly platform specific and is supposed to be fixed by 721 * manually restricting the SPI bus frequency using the 722 * dws->max_mem_freq parameter. 723 */ 724 local_irq_save(flags); 725 preempt_disable(); 726 727 ret = dw_spi_write_then_read(dws, mem->spi); 728 729 local_irq_restore(flags); 730 preempt_enable(); 731 732 /* 733 * Wait for the operation being finished and check the controller 734 * status only if there hasn't been any run-time error detected. In the 735 * former case it's just pointless. In the later one to prevent an 736 * additional error message printing since any hw error flag being set 737 * would be due to an error detected on the data transfer. 738 */ 739 if (!ret) { 740 ret = dw_spi_wait_mem_op_done(dws); 741 if (!ret) 742 ret = dw_spi_check_status(dws, true); 743 } 744 745 dw_spi_stop_mem_op(dws, mem->spi); 746 747 dw_spi_free_mem_buf(dws); 748 749 return ret; 750 } 751 752 /* 753 * Initialize the default memory operations if a glue layer hasn't specified 754 * custom ones. Direct mapping operations will be preserved anyway since DW SPI 755 * controller doesn't have an embedded dirmap interface. Note the memory 756 * operations implemented in this driver is the best choice only for the DW APB 757 * SSI controller with standard native CS functionality. If a hardware vendor 758 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will 759 * be safer to use the normal SPI-messages-based transfers implementation. 760 */ 761 static void dw_spi_init_mem_ops(struct dw_spi *dws) 762 { 763 if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) && 764 !dws->set_cs) { 765 dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size; 766 dws->mem_ops.supports_op = dw_spi_supports_mem_op; 767 dws->mem_ops.exec_op = dw_spi_exec_mem_op; 768 if (!dws->max_mem_freq) 769 dws->max_mem_freq = dws->max_freq; 770 } 771 } 772 773 /* This may be called twice for each spi dev */ 774 static int dw_spi_setup(struct spi_device *spi) 775 { 776 struct dw_spi *dws = spi_controller_get_devdata(spi->controller); 777 struct dw_spi_chip_data *chip; 778 779 /* Only alloc on first setup */ 780 chip = spi_get_ctldata(spi); 781 if (!chip) { 782 struct dw_spi *dws = spi_controller_get_devdata(spi->controller); 783 u32 rx_sample_dly_ns; 784 785 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 786 if (!chip) 787 return -ENOMEM; 788 spi_set_ctldata(spi, chip); 789 /* Get specific / default rx-sample-delay */ 790 if (device_property_read_u32(&spi->dev, 791 "rx-sample-delay-ns", 792 &rx_sample_dly_ns) != 0) 793 /* Use default controller value */ 794 rx_sample_dly_ns = dws->def_rx_sample_dly_ns; 795 chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns, 796 NSEC_PER_SEC / 797 dws->max_freq); 798 } 799 800 /* 801 * Update CR0 data each time the setup callback is invoked since 802 * the device parameters could have been changed, for instance, by 803 * the MMC SPI driver or something else. 804 */ 805 chip->cr0 = dw_spi_prepare_cr0(dws, spi); 806 807 return 0; 808 } 809 810 static void dw_spi_cleanup(struct spi_device *spi) 811 { 812 struct dw_spi_chip_data *chip = spi_get_ctldata(spi); 813 814 kfree(chip); 815 spi_set_ctldata(spi, NULL); 816 } 817 818 /* Restart the controller, disable all interrupts, clean rx fifo */ 819 static void dw_spi_hw_init(struct device *dev, struct dw_spi *dws) 820 { 821 dw_spi_reset_chip(dws); 822 823 /* 824 * Retrieve the Synopsys component version if it hasn't been specified 825 * by the platform. CoreKit version ID is encoded as a 3-chars ASCII 826 * code enclosed with '*' (typical for the most of Synopsys IP-cores). 827 */ 828 if (!dws->ver) { 829 dws->ver = dw_readl(dws, DW_SPI_VERSION); 830 831 dev_dbg(dev, "Synopsys DWC%sSSI v%c.%c%c\n", 832 dw_spi_ip_is(dws, PSSI) ? " APB " : " ", 833 DW_SPI_GET_BYTE(dws->ver, 3), DW_SPI_GET_BYTE(dws->ver, 2), 834 DW_SPI_GET_BYTE(dws->ver, 1)); 835 } 836 837 /* 838 * Try to detect the number of native chip-selects if the platform 839 * driver didn't set it up. There can be up to 16 lines configured. 840 */ 841 if (!dws->num_cs) { 842 u32 ser; 843 844 dw_writel(dws, DW_SPI_SER, 0xffff); 845 ser = dw_readl(dws, DW_SPI_SER); 846 dw_writel(dws, DW_SPI_SER, 0); 847 848 dws->num_cs = hweight16(ser); 849 } 850 851 /* 852 * Try to detect the FIFO depth if not set by interface driver, 853 * the depth could be from 2 to 256 from HW spec 854 */ 855 if (!dws->fifo_len) { 856 u32 fifo; 857 858 for (fifo = 1; fifo < 256; fifo++) { 859 dw_writel(dws, DW_SPI_TXFTLR, fifo); 860 if (fifo != dw_readl(dws, DW_SPI_TXFTLR)) 861 break; 862 } 863 dw_writel(dws, DW_SPI_TXFTLR, 0); 864 865 dws->fifo_len = (fifo == 1) ? 0 : fifo; 866 dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len); 867 } 868 869 /* 870 * Detect CTRLR0.DFS field size and offset by testing the lowest bits 871 * writability. Note DWC SSI controller also has the extended DFS, but 872 * with zero offset. 873 */ 874 if (dw_spi_ip_is(dws, PSSI)) { 875 u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0); 876 877 dw_spi_enable_chip(dws, 0); 878 dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff); 879 cr0 = dw_readl(dws, DW_SPI_CTRLR0); 880 dw_writel(dws, DW_SPI_CTRLR0, tmp); 881 dw_spi_enable_chip(dws, 1); 882 883 if (!(cr0 & DW_PSSI_CTRLR0_DFS_MASK)) { 884 dws->caps |= DW_SPI_CAP_DFS32; 885 dws->dfs_offset = __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK); 886 dev_dbg(dev, "Detected 32-bits max data frame size\n"); 887 } 888 } else { 889 dws->caps |= DW_SPI_CAP_DFS32; 890 } 891 892 /* enable HW fixup for explicit CS deselect for Amazon's alpine chip */ 893 if (dws->caps & DW_SPI_CAP_CS_OVERRIDE) 894 dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF); 895 } 896 897 int dw_spi_add_host(struct device *dev, struct dw_spi *dws) 898 { 899 struct spi_controller *host; 900 int ret; 901 902 if (!dws) 903 return -EINVAL; 904 905 host = spi_alloc_host(dev, 0); 906 if (!host) 907 return -ENOMEM; 908 909 device_set_node(&host->dev, dev_fwnode(dev)); 910 911 dws->host = host; 912 dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR); 913 914 spi_controller_set_devdata(host, dws); 915 916 /* Basic HW init */ 917 dw_spi_hw_init(dev, dws); 918 919 ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev), 920 host); 921 if (ret < 0 && ret != -ENOTCONN) { 922 dev_err(dev, "can not get IRQ\n"); 923 goto err_free_host; 924 } 925 926 dw_spi_init_mem_ops(dws); 927 928 host->use_gpio_descriptors = true; 929 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP; 930 if (dws->caps & DW_SPI_CAP_DFS32) 931 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 932 else 933 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 934 host->bus_num = dws->bus_num; 935 host->num_chipselect = dws->num_cs; 936 host->setup = dw_spi_setup; 937 host->cleanup = dw_spi_cleanup; 938 if (dws->set_cs) 939 host->set_cs = dws->set_cs; 940 else 941 host->set_cs = dw_spi_set_cs; 942 host->transfer_one = dw_spi_transfer_one; 943 host->handle_err = dw_spi_handle_err; 944 if (dws->mem_ops.exec_op) 945 host->mem_ops = &dws->mem_ops; 946 host->max_speed_hz = dws->max_freq; 947 host->flags = SPI_CONTROLLER_GPIO_SS; 948 host->auto_runtime_pm = true; 949 950 /* Get default rx sample delay */ 951 device_property_read_u32(dev, "rx-sample-delay-ns", 952 &dws->def_rx_sample_dly_ns); 953 954 if (dws->dma_ops && dws->dma_ops->dma_init) { 955 ret = dws->dma_ops->dma_init(dev, dws); 956 if (ret == -EPROBE_DEFER) { 957 goto err_free_irq; 958 } else if (ret) { 959 dev_warn(dev, "DMA init failed\n"); 960 } else { 961 host->can_dma = dws->dma_ops->can_dma; 962 host->flags |= SPI_CONTROLLER_MUST_TX; 963 } 964 } 965 966 ret = spi_register_controller(host); 967 if (ret) { 968 dev_err_probe(dev, ret, "problem registering spi host\n"); 969 goto err_dma_exit; 970 } 971 972 dw_spi_debugfs_init(dws); 973 return 0; 974 975 err_dma_exit: 976 if (dws->dma_ops && dws->dma_ops->dma_exit) 977 dws->dma_ops->dma_exit(dws); 978 dw_spi_enable_chip(dws, 0); 979 err_free_irq: 980 free_irq(dws->irq, host); 981 err_free_host: 982 spi_controller_put(host); 983 return ret; 984 } 985 EXPORT_SYMBOL_NS_GPL(dw_spi_add_host, "SPI_DW_CORE"); 986 987 void dw_spi_remove_host(struct dw_spi *dws) 988 { 989 dw_spi_debugfs_remove(dws); 990 991 spi_unregister_controller(dws->host); 992 993 if (dws->dma_ops && dws->dma_ops->dma_exit) 994 dws->dma_ops->dma_exit(dws); 995 996 dw_spi_shutdown_chip(dws); 997 998 free_irq(dws->irq, dws->host); 999 } 1000 EXPORT_SYMBOL_NS_GPL(dw_spi_remove_host, "SPI_DW_CORE"); 1001 1002 int dw_spi_suspend_host(struct dw_spi *dws) 1003 { 1004 int ret; 1005 1006 ret = spi_controller_suspend(dws->host); 1007 if (ret) 1008 return ret; 1009 1010 dw_spi_shutdown_chip(dws); 1011 return 0; 1012 } 1013 EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_host, "SPI_DW_CORE"); 1014 1015 int dw_spi_resume_host(struct dw_spi *dws) 1016 { 1017 dw_spi_hw_init(&dws->host->dev, dws); 1018 return spi_controller_resume(dws->host); 1019 } 1020 EXPORT_SYMBOL_NS_GPL(dw_spi_resume_host, "SPI_DW_CORE"); 1021 1022 MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>"); 1023 MODULE_DESCRIPTION("Driver for DesignWare SPI controller core"); 1024 MODULE_LICENSE("GPL v2"); 1025