xref: /linux/drivers/spi/spi-dw-bt1.c (revision 89713ce5518eda6b370c7a17edbcab4f97a39f68)
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
4 //
5 // Authors:
6 //   Ramil Zaripov <Ramil.Zaripov@baikalelectronics.ru>
7 //   Serge Semin <Sergey.Semin@baikalelectronics.ru>
8 //
9 // Baikal-T1 DW APB SPI and System Boot SPI driver
10 //
11 
12 #include <linux/clk.h>
13 #include <linux/cpumask.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/mux/consumer.h>
18 #include <linux/of.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/spi/spi-mem.h>
25 #include <linux/spi/spi.h>
26 
27 #include "spi-dw.h"
28 
29 #define BT1_BOOT_DIRMAP		0
30 #define BT1_BOOT_REGS		1
31 
32 struct dw_spi_bt1 {
33 	struct dw_spi		dws;
34 	struct clk		*clk;
35 	struct mux_control	*mux;
36 
37 #ifdef CONFIG_SPI_DW_BT1_DIRMAP
38 	void __iomem		*map;
39 	resource_size_t		map_len;
40 #endif
41 };
42 #define to_dw_spi_bt1(_ctlr) \
43 	container_of(spi_controller_get_devdata(_ctlr), struct dw_spi_bt1, dws)
44 
45 typedef int (*dw_spi_bt1_init_cb)(struct platform_device *pdev,
46 				    struct dw_spi_bt1 *dwsbt1);
47 
48 #ifdef CONFIG_SPI_DW_BT1_DIRMAP
49 
50 static int dw_spi_bt1_dirmap_create(struct spi_mem_dirmap_desc *desc)
51 {
52 	struct dw_spi_bt1 *dwsbt1 = to_dw_spi_bt1(desc->mem->spi->controller);
53 
54 	if (!dwsbt1->map ||
55 	    !dwsbt1->dws.mem_ops.supports_op(desc->mem, &desc->info.op_tmpl))
56 		return -EOPNOTSUPP;
57 
58 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
59 		return -EOPNOTSUPP;
60 
61 	/*
62 	 * Make sure the requested region doesn't go out of the physically
63 	 * mapped flash memory bounds.
64 	 */
65 	if (desc->info.offset + desc->info.length > dwsbt1->map_len)
66 		return -EINVAL;
67 
68 	return 0;
69 }
70 
71 /*
72  * Directly mapped SPI memory region is only accessible in the dword chunks.
73  * That's why we have to create a dedicated read-method to copy data from there
74  * to the passed buffer.
75  */
76 static void dw_spi_bt1_dirmap_copy_from_map(void *to, void __iomem *from, size_t len)
77 {
78 	size_t shift, chunk;
79 	u32 data;
80 
81 	/*
82 	 * We split the copying up into the next three stages: unaligned head,
83 	 * aligned body, unaligned tail.
84 	 */
85 	shift = (size_t)from & 0x3;
86 	if (shift) {
87 		chunk = min_t(size_t, 4 - shift, len);
88 		data = readl_relaxed(from - shift);
89 		memcpy(to, (char *)&data + shift, chunk);
90 		from += chunk;
91 		to += chunk;
92 		len -= chunk;
93 	}
94 
95 	while (len >= 4) {
96 		data = readl_relaxed(from);
97 		memcpy(to, &data, 4);
98 		from += 4;
99 		to += 4;
100 		len -= 4;
101 	}
102 
103 	if (len) {
104 		data = readl_relaxed(from);
105 		memcpy(to, &data, len);
106 	}
107 }
108 
109 static ssize_t dw_spi_bt1_dirmap_read(struct spi_mem_dirmap_desc *desc,
110 				      u64 offs, size_t len, void *buf)
111 {
112 	struct dw_spi_bt1 *dwsbt1 = to_dw_spi_bt1(desc->mem->spi->controller);
113 	struct dw_spi *dws = &dwsbt1->dws;
114 	struct spi_mem *mem = desc->mem;
115 	struct dw_spi_cfg cfg;
116 	int ret;
117 
118 	/*
119 	 * Make sure the requested operation length is valid. Truncate the
120 	 * length if it's greater than the length of the MMIO region.
121 	 */
122 	if (offs >= dwsbt1->map_len || !len)
123 		return 0;
124 
125 	len = min_t(size_t, len, dwsbt1->map_len - offs);
126 
127 	/* Collect the controller configuration required by the operation */
128 	cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD;
129 	cfg.dfs = 8;
130 	cfg.ndf = 4;
131 	cfg.freq = mem->spi->max_speed_hz;
132 
133 	/* Make sure the corresponding CS is de-asserted on transmission */
134 	dw_spi_set_cs(mem->spi, false);
135 
136 	dw_spi_enable_chip(dws, 0);
137 
138 	dw_spi_update_config(dws, mem->spi, &cfg);
139 
140 	dw_spi_umask_intr(dws, DW_SPI_INT_RXFI);
141 
142 	dw_spi_enable_chip(dws, 1);
143 
144 	/*
145 	 * Enable the transparent mode of the System Boot Controller.
146 	 * The SPI core IO should have been locked before calling this method
147 	 * so noone would be touching the controller' registers during the
148 	 * dirmap operation.
149 	 */
150 	ret = mux_control_select(dwsbt1->mux, BT1_BOOT_DIRMAP);
151 	if (ret)
152 		return ret;
153 
154 	dw_spi_bt1_dirmap_copy_from_map(buf, dwsbt1->map + offs, len);
155 
156 	mux_control_deselect(dwsbt1->mux);
157 
158 	dw_spi_set_cs(mem->spi, true);
159 
160 	ret = dw_spi_check_status(dws, true);
161 
162 	return ret ?: len;
163 }
164 
165 #endif /* CONFIG_SPI_DW_BT1_DIRMAP */
166 
167 static int dw_spi_bt1_std_init(struct platform_device *pdev,
168 			       struct dw_spi_bt1 *dwsbt1)
169 {
170 	struct dw_spi *dws = &dwsbt1->dws;
171 
172 	dws->irq = platform_get_irq(pdev, 0);
173 	if (dws->irq < 0)
174 		return dws->irq;
175 
176 	dws->num_cs = 4;
177 
178 	/*
179 	 * Baikal-T1 Normal SPI Controllers don't always keep up with full SPI
180 	 * bus speed especially when it comes to the concurrent access to the
181 	 * APB bus resources. Thus we have no choice but to set a constraint on
182 	 * the SPI bus frequency for the memory operations which require to
183 	 * read/write data as fast as possible.
184 	 */
185 	dws->max_mem_freq = 20000000U;
186 
187 	dw_spi_dma_setup_generic(dws);
188 
189 	return 0;
190 }
191 
192 static int dw_spi_bt1_sys_init(struct platform_device *pdev,
193 			       struct dw_spi_bt1 *dwsbt1)
194 {
195 	struct resource *mem __maybe_unused;
196 	struct dw_spi *dws = &dwsbt1->dws;
197 
198 	/*
199 	 * Baikal-T1 System Boot Controller is equipped with a mux, which
200 	 * switches between the directly mapped SPI flash access mode and
201 	 * IO access to the DW APB SSI registers. Note the mux controller
202 	 * must be setup to preserve the registers being accessible by default
203 	 * (on idle-state).
204 	 */
205 	dwsbt1->mux = devm_mux_control_get(&pdev->dev, NULL);
206 	if (IS_ERR(dwsbt1->mux))
207 		return PTR_ERR(dwsbt1->mux);
208 
209 	/*
210 	 * Directly mapped SPI flash memory is a 16MB MMIO region, which can be
211 	 * used to access a peripheral memory device just by reading/writing
212 	 * data from/to it. Note the system APB bus will stall during each IO
213 	 * from/to the dirmap region until the operation is finished. So don't
214 	 * use it concurrently with time-critical tasks (like the SPI memory
215 	 * operations implemented in the DW APB SSI driver).
216 	 */
217 #ifdef CONFIG_SPI_DW_BT1_DIRMAP
218 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
219 	if (mem) {
220 		dwsbt1->map = devm_ioremap_resource(&pdev->dev, mem);
221 		if (!IS_ERR(dwsbt1->map)) {
222 			dwsbt1->map_len = resource_size(mem);
223 			dws->mem_ops.dirmap_create = dw_spi_bt1_dirmap_create;
224 			dws->mem_ops.dirmap_read = dw_spi_bt1_dirmap_read;
225 		} else {
226 			dwsbt1->map = NULL;
227 		}
228 	}
229 #endif /* CONFIG_SPI_DW_BT1_DIRMAP */
230 
231 	/*
232 	 * There is no IRQ, no DMA and just one CS available on the System Boot
233 	 * SPI controller.
234 	 */
235 	dws->irq = IRQ_NOTCONNECTED;
236 	dws->num_cs = 1;
237 
238 	/*
239 	 * Baikal-T1 System Boot SPI Controller doesn't keep up with the full
240 	 * SPI bus speed due to relatively slow APB bus and races for it'
241 	 * resources from different CPUs. The situation is worsen by a small
242 	 * FIFOs depth (just 8 words). It works better in a single CPU mode
243 	 * though, but still tends to be not fast enough at low CPU
244 	 * frequencies.
245 	 */
246 	if (num_possible_cpus() > 1)
247 		dws->max_mem_freq = 10000000U;
248 	else
249 		dws->max_mem_freq = 20000000U;
250 
251 	return 0;
252 }
253 
254 static int dw_spi_bt1_probe(struct platform_device *pdev)
255 {
256 	dw_spi_bt1_init_cb init_func;
257 	struct dw_spi_bt1 *dwsbt1;
258 	struct resource *mem;
259 	struct dw_spi *dws;
260 	int ret;
261 
262 	dwsbt1 = devm_kzalloc(&pdev->dev, sizeof(struct dw_spi_bt1), GFP_KERNEL);
263 	if (!dwsbt1)
264 		return -ENOMEM;
265 
266 	dws = &dwsbt1->dws;
267 
268 	dws->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
269 	if (IS_ERR(dws->regs))
270 		return PTR_ERR(dws->regs);
271 
272 	dws->paddr = mem->start;
273 
274 	dwsbt1->clk = devm_clk_get_enabled(&pdev->dev, NULL);
275 	if (IS_ERR(dwsbt1->clk))
276 		return PTR_ERR(dwsbt1->clk);
277 
278 	dws->bus_num = pdev->id;
279 	dws->reg_io_width = 4;
280 	dws->max_freq = clk_get_rate(dwsbt1->clk);
281 	if (!dws->max_freq)
282 		return -EINVAL;
283 
284 	init_func = device_get_match_data(&pdev->dev);
285 	ret = init_func(pdev, dwsbt1);
286 	if (ret)
287 		return ret;
288 
289 	pm_runtime_enable(&pdev->dev);
290 
291 	ret = dw_spi_add_host(&pdev->dev, dws);
292 	if (ret) {
293 		pm_runtime_disable(&pdev->dev);
294 		return ret;
295 	}
296 
297 	platform_set_drvdata(pdev, dwsbt1);
298 
299 	return 0;
300 }
301 
302 static void dw_spi_bt1_remove(struct platform_device *pdev)
303 {
304 	struct dw_spi_bt1 *dwsbt1 = platform_get_drvdata(pdev);
305 
306 	dw_spi_remove_host(&dwsbt1->dws);
307 
308 	pm_runtime_disable(&pdev->dev);
309 }
310 
311 static const struct of_device_id dw_spi_bt1_of_match[] = {
312 	{ .compatible = "baikal,bt1-ssi", .data = dw_spi_bt1_std_init},
313 	{ .compatible = "baikal,bt1-sys-ssi", .data = dw_spi_bt1_sys_init},
314 	{ }
315 };
316 MODULE_DEVICE_TABLE(of, dw_spi_bt1_of_match);
317 
318 static struct platform_driver dw_spi_bt1_driver = {
319 	.probe	= dw_spi_bt1_probe,
320 	.remove_new = dw_spi_bt1_remove,
321 	.driver	= {
322 		.name		= "bt1-sys-ssi",
323 		.of_match_table	= dw_spi_bt1_of_match,
324 	},
325 };
326 module_platform_driver(dw_spi_bt1_driver);
327 
328 MODULE_AUTHOR("Serge Semin <Sergey.Semin@baikalelectronics.ru>");
329 MODULE_DESCRIPTION("Baikal-T1 System Boot SPI Controller driver");
330 MODULE_LICENSE("GPL v2");
331 MODULE_IMPORT_NS(SPI_DW_CORE);
332