xref: /linux/drivers/spi/spi-cadence-quadspi.c (revision f4e0ff7e45c30f4665cfbbe2f0538e9c5789bebc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32 
33 #define CQSPI_NAME			"cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT		4
35 
36 static_assert(CQSPI_MAX_CHIPSELECT <= SPI_CS_CNT_MAX);
37 
38 /* Quirks */
39 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
40 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
41 #define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
42 #define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
43 #define CQSPI_SLOW_SRAM		BIT(4)
44 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR	BIT(5)
45 #define CQSPI_RD_NO_IRQ			BIT(6)
46 #define CQSPI_DMA_SET_MASK		BIT(7)
47 #define CQSPI_SUPPORT_DEVICE_RESET	BIT(8)
48 #define CQSPI_DISABLE_STIG_MODE		BIT(9)
49 #define CQSPI_DISABLE_RUNTIME_PM	BIT(10)
50 
51 /* Capabilities */
52 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
53 #define CQSPI_SUPPORTS_QUAD		BIT(1)
54 
55 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
56 
57 enum {
58 	CLK_QSPI_APB = 0,
59 	CLK_QSPI_AHB,
60 	CLK_QSPI_NUM,
61 };
62 
63 struct cqspi_st;
64 
65 struct cqspi_flash_pdata {
66 	struct cqspi_st	*cqspi;
67 	u32		clk_rate;
68 	u32		read_delay;
69 	u32		tshsl_ns;
70 	u32		tsd2d_ns;
71 	u32		tchsh_ns;
72 	u32		tslch_ns;
73 	u8		cs;
74 };
75 
76 struct cqspi_st {
77 	struct platform_device	*pdev;
78 	struct spi_controller	*host;
79 	struct clk		*clk;
80 	struct clk		*clks[CLK_QSPI_NUM];
81 	unsigned int		sclk;
82 
83 	void __iomem		*iobase;
84 	void __iomem		*ahb_base;
85 	resource_size_t		ahb_size;
86 	struct completion	transfer_complete;
87 
88 	struct dma_chan		*rx_chan;
89 	struct completion	rx_dma_complete;
90 	dma_addr_t		mmap_phys_base;
91 
92 	int			current_cs;
93 	unsigned long		master_ref_clk_hz;
94 	bool			is_decoded_cs;
95 	u32			fifo_depth;
96 	u32			fifo_width;
97 	u32			num_chipselect;
98 	bool			rclk_en;
99 	u32			trigger_address;
100 	u32			wr_delay;
101 	bool			use_direct_mode;
102 	bool			use_direct_mode_wr;
103 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
104 	bool			use_dma_read;
105 	u32			pd_dev_id;
106 	bool			wr_completion;
107 	bool			slow_sram;
108 	bool			apb_ahb_hazard;
109 
110 	bool			is_jh7110; /* Flag for StarFive JH7110 SoC */
111 	bool			disable_stig_mode;
112 	refcount_t		refcount;
113 	refcount_t		inflight_ops;
114 
115 	const struct cqspi_driver_platdata *ddata;
116 };
117 
118 struct cqspi_driver_platdata {
119 	u32 hwcaps_mask;
120 	u16 quirks;
121 	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
122 				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
123 	u32 (*get_dma_status)(struct cqspi_st *cqspi);
124 	int (*jh7110_clk_init)(struct platform_device *pdev,
125 			       struct cqspi_st *cqspi);
126 };
127 
128 /* Operation timeout value */
129 #define CQSPI_TIMEOUT_MS			500
130 #define CQSPI_READ_TIMEOUT_MS			10
131 #define CQSPI_BUSYWAIT_TIMEOUT_US		500
132 
133 /* Runtime_pm autosuspend delay */
134 #define CQSPI_AUTOSUSPEND_TIMEOUT		2000
135 
136 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
137 #define CQSPI_DUMMY_BYTES_MAX			4
138 #define CQSPI_DUMMY_CLKS_MAX			31
139 
140 #define CQSPI_STIG_DATA_LEN_MAX			8
141 
142 /* Register map */
143 #define CQSPI_REG_CONFIG			0x00
144 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
145 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
146 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
147 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
148 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
149 #define CQSPI_REG_CONFIG_BAUD_LSB		19
150 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
151 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
152 #define CQSPI_REG_CONFIG_IDLE_LSB		31
153 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
154 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
155 #define CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK    BIT(5)
156 #define CQSPI_REG_CONFIG_RESET_CFG_FLD_MASK    BIT(6)
157 
158 #define CQSPI_REG_RD_INSTR			0x04
159 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
160 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
161 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
162 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
163 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
164 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
165 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
166 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
167 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
168 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
169 
170 #define CQSPI_REG_WR_INSTR			0x08
171 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
172 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
173 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
174 
175 #define CQSPI_REG_DELAY				0x0C
176 #define CQSPI_REG_DELAY_TSLCH_LSB		0
177 #define CQSPI_REG_DELAY_TCHSH_LSB		8
178 #define CQSPI_REG_DELAY_TSD2D_LSB		16
179 #define CQSPI_REG_DELAY_TSHSL_LSB		24
180 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
181 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
182 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
183 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
184 
185 #define CQSPI_REG_READCAPTURE			0x10
186 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
187 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
188 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
189 
190 #define CQSPI_REG_SIZE				0x14
191 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
192 #define CQSPI_REG_SIZE_PAGE_LSB			4
193 #define CQSPI_REG_SIZE_BLOCK_LSB		16
194 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
195 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
196 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
197 
198 #define CQSPI_REG_SRAMPARTITION			0x18
199 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
200 
201 #define CQSPI_REG_DMA				0x20
202 #define CQSPI_REG_DMA_SINGLE_LSB		0
203 #define CQSPI_REG_DMA_BURST_LSB			8
204 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
205 #define CQSPI_REG_DMA_BURST_MASK		0xFF
206 
207 #define CQSPI_REG_REMAP				0x24
208 #define CQSPI_REG_MODE_BIT			0x28
209 
210 #define CQSPI_REG_SDRAMLEVEL			0x2C
211 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
212 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
213 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
214 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
215 
216 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
217 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
218 
219 #define CQSPI_REG_IRQSTATUS			0x40
220 #define CQSPI_REG_IRQMASK			0x44
221 
222 #define CQSPI_REG_INDIRECTRD			0x60
223 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
224 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
225 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
226 
227 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
228 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
229 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
230 
231 #define CQSPI_REG_CMDCTRL			0x90
232 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
233 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
234 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
235 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
236 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
237 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
238 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
239 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
240 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
241 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
242 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
243 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
244 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
245 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
246 
247 #define CQSPI_REG_INDIRECTWR			0x70
248 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
249 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
250 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
251 
252 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
253 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
254 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
255 
256 #define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
257 
258 #define CQSPI_REG_CMDADDRESS			0x94
259 #define CQSPI_REG_CMDREADDATALOWER		0xA0
260 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
261 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
262 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
263 
264 #define CQSPI_REG_POLLING_STATUS		0xB0
265 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
266 
267 #define CQSPI_REG_OP_EXT_LOWER			0xE0
268 #define CQSPI_REG_OP_EXT_READ_LSB		24
269 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
270 #define CQSPI_REG_OP_EXT_STIG_LSB		0
271 
272 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
273 
274 #define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
275 #define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
276 
277 #define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
278 
279 #define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
280 #define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
281 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
282 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
283 
284 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
285 
286 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
287 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
288 
289 /* Interrupt status bits */
290 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
291 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
292 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
293 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
294 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
295 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
296 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
297 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
298 
299 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
300 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
301 					 CQSPI_REG_IRQ_IND_COMP)
302 
303 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
304 					 CQSPI_REG_IRQ_WATERMARK	| \
305 					 CQSPI_REG_IRQ_UNDERFLOW)
306 
307 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
308 #define CQSPI_DMA_UNALIGN		0x3
309 
310 #define CQSPI_REG_VERSAL_DMA_VAL		0x602
311 
312 static int cqspi_wait_for_bit(const struct cqspi_driver_platdata *ddata,
313 			      void __iomem *reg, const u32 mask, bool clr,
314 			      bool busywait)
315 {
316 	u64 timeout_us = CQSPI_TIMEOUT_MS * USEC_PER_MSEC;
317 	u32 val;
318 
319 	if (busywait) {
320 		int ret = readl_relaxed_poll_timeout(reg, val,
321 						     (((clr ? ~val : val) & mask) == mask),
322 						     0, CQSPI_BUSYWAIT_TIMEOUT_US);
323 
324 		if (ret != -ETIMEDOUT)
325 			return ret;
326 
327 		timeout_us -= CQSPI_BUSYWAIT_TIMEOUT_US;
328 	}
329 
330 	return readl_relaxed_poll_timeout(reg, val,
331 					  (((clr ? ~val : val) & mask) == mask),
332 					  10, timeout_us);
333 }
334 
335 static bool cqspi_is_idle(struct cqspi_st *cqspi)
336 {
337 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
338 
339 	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
340 }
341 
342 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
343 {
344 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
345 
346 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
347 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
348 }
349 
350 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
351 {
352 	u32 dma_status;
353 
354 	dma_status = readl(cqspi->iobase +
355 					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
356 	writel(dma_status, cqspi->iobase +
357 		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
358 
359 	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
360 }
361 
362 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
363 {
364 	struct cqspi_st *cqspi = dev;
365 	const struct cqspi_driver_platdata *ddata = cqspi->ddata;
366 	unsigned int irq_status;
367 
368 	/* Read interrupt status */
369 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
370 
371 	/* Clear interrupt */
372 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
373 
374 	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
375 		if (ddata->get_dma_status(cqspi)) {
376 			complete(&cqspi->transfer_complete);
377 			return IRQ_HANDLED;
378 		}
379 	}
380 
381 	else if (!cqspi->slow_sram)
382 		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
383 	else
384 		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
385 
386 	if (irq_status)
387 		complete(&cqspi->transfer_complete);
388 
389 	return IRQ_HANDLED;
390 }
391 
392 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
393 {
394 	u32 rdreg = 0;
395 
396 	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
397 	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
398 	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
399 
400 	return rdreg;
401 }
402 
403 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
404 {
405 	unsigned int dummy_clk;
406 
407 	if (!op->dummy.nbytes)
408 		return 0;
409 
410 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
411 	if (op->cmd.dtr)
412 		dummy_clk /= 2;
413 
414 	return dummy_clk;
415 }
416 
417 static int cqspi_wait_idle(struct cqspi_st *cqspi)
418 {
419 	const unsigned int poll_idle_retry = 3;
420 	unsigned int count = 0;
421 	unsigned long timeout;
422 
423 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
424 	while (1) {
425 		/*
426 		 * Read few times in succession to ensure the controller
427 		 * is indeed idle, that is, the bit does not transition
428 		 * low again.
429 		 */
430 		if (cqspi_is_idle(cqspi))
431 			count++;
432 		else
433 			count = 0;
434 
435 		if (count >= poll_idle_retry)
436 			return 0;
437 
438 		if (time_after(jiffies, timeout)) {
439 			/* Timeout, in busy mode. */
440 			dev_err(&cqspi->pdev->dev,
441 				"QSPI is still busy after %dms timeout.\n",
442 				CQSPI_TIMEOUT_MS);
443 			return -ETIMEDOUT;
444 		}
445 
446 		cpu_relax();
447 	}
448 }
449 
450 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
451 {
452 	void __iomem *reg_base = cqspi->iobase;
453 	int ret;
454 
455 	/* Write the CMDCTRL without start execution. */
456 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
457 	/* Start execute */
458 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
459 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
460 
461 	/* Polling for completion. */
462 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_CMDCTRL,
463 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1, true);
464 	if (ret) {
465 		dev_err(&cqspi->pdev->dev,
466 			"Flash command execution timed out.\n");
467 		return ret;
468 	}
469 
470 	/* Polling QSPI idle status. */
471 	return cqspi_wait_idle(cqspi);
472 }
473 
474 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
475 				  const struct spi_mem_op *op,
476 				  unsigned int shift)
477 {
478 	struct cqspi_st *cqspi = f_pdata->cqspi;
479 	void __iomem *reg_base = cqspi->iobase;
480 	unsigned int reg;
481 	u8 ext;
482 
483 	if (op->cmd.nbytes != 2)
484 		return -EINVAL;
485 
486 	/* Opcode extension is the LSB. */
487 	ext = op->cmd.opcode & 0xff;
488 
489 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
490 	reg &= ~(0xff << shift);
491 	reg |= ext << shift;
492 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
493 
494 	return 0;
495 }
496 
497 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
498 			    const struct spi_mem_op *op, unsigned int shift)
499 {
500 	struct cqspi_st *cqspi = f_pdata->cqspi;
501 	void __iomem *reg_base = cqspi->iobase;
502 	unsigned int reg;
503 	int ret;
504 
505 	reg = readl(reg_base + CQSPI_REG_CONFIG);
506 
507 	/*
508 	 * We enable dual byte opcode here. The callers have to set up the
509 	 * extension opcode based on which type of operation it is.
510 	 */
511 	if (op->cmd.dtr) {
512 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
513 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
514 
515 		/* Set up command opcode extension. */
516 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
517 		if (ret)
518 			return ret;
519 	} else {
520 		unsigned int mask = CQSPI_REG_CONFIG_DTR_PROTO | CQSPI_REG_CONFIG_DUAL_OPCODE;
521 		/* Shortcut if DTR is already disabled. */
522 		if ((reg & mask) == 0)
523 			return 0;
524 		reg &= ~mask;
525 	}
526 
527 	writel(reg, reg_base + CQSPI_REG_CONFIG);
528 
529 	return cqspi_wait_idle(cqspi);
530 }
531 
532 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
533 			      const struct spi_mem_op *op)
534 {
535 	struct cqspi_st *cqspi = f_pdata->cqspi;
536 	void __iomem *reg_base = cqspi->iobase;
537 	u8 *rxbuf = op->data.buf.in;
538 	u8 opcode;
539 	size_t n_rx = op->data.nbytes;
540 	unsigned int rdreg;
541 	unsigned int reg;
542 	unsigned int dummy_clk;
543 	size_t read_len;
544 	int status;
545 
546 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
547 	if (status)
548 		return status;
549 
550 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
551 		dev_err(&cqspi->pdev->dev,
552 			"Invalid input argument, len %zu rxbuf 0x%p\n",
553 			n_rx, rxbuf);
554 		return -EINVAL;
555 	}
556 
557 	if (op->cmd.dtr)
558 		opcode = op->cmd.opcode >> 8;
559 	else
560 		opcode = op->cmd.opcode;
561 
562 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
563 
564 	rdreg = cqspi_calc_rdreg(op);
565 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
566 
567 	dummy_clk = cqspi_calc_dummy(op);
568 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
569 		return -EOPNOTSUPP;
570 
571 	if (dummy_clk)
572 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
573 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
574 
575 	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
576 
577 	/* 0 means 1 byte. */
578 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
579 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
580 
581 	/* setup ADDR BIT field */
582 	if (op->addr.nbytes) {
583 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
584 		reg |= ((op->addr.nbytes - 1) &
585 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
586 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
587 
588 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
589 	}
590 
591 	status = cqspi_exec_flash_cmd(cqspi, reg);
592 	if (status)
593 		return status;
594 
595 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
596 
597 	/* Put the read value into rx_buf */
598 	read_len = (n_rx > 4) ? 4 : n_rx;
599 	memcpy(rxbuf, &reg, read_len);
600 	rxbuf += read_len;
601 
602 	if (n_rx > 4) {
603 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
604 
605 		read_len = n_rx - read_len;
606 		memcpy(rxbuf, &reg, read_len);
607 	}
608 
609 	/* Reset CMD_CTRL Reg once command read completes */
610 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
611 
612 	return 0;
613 }
614 
615 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
616 			       const struct spi_mem_op *op)
617 {
618 	struct cqspi_st *cqspi = f_pdata->cqspi;
619 	void __iomem *reg_base = cqspi->iobase;
620 	u8 opcode;
621 	const u8 *txbuf = op->data.buf.out;
622 	size_t n_tx = op->data.nbytes;
623 	unsigned int reg;
624 	unsigned int data;
625 	size_t write_len;
626 	int ret;
627 
628 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
629 	if (ret)
630 		return ret;
631 
632 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
633 		dev_err(&cqspi->pdev->dev,
634 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
635 			n_tx, txbuf);
636 		return -EINVAL;
637 	}
638 
639 	reg = cqspi_calc_rdreg(op);
640 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
641 
642 	if (op->cmd.dtr)
643 		opcode = op->cmd.opcode >> 8;
644 	else
645 		opcode = op->cmd.opcode;
646 
647 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
648 
649 	if (op->addr.nbytes) {
650 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
651 		reg |= ((op->addr.nbytes - 1) &
652 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
653 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
654 
655 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
656 	}
657 
658 	if (n_tx) {
659 		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
660 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
661 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
662 		data = 0;
663 		write_len = (n_tx > 4) ? 4 : n_tx;
664 		memcpy(&data, txbuf, write_len);
665 		txbuf += write_len;
666 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
667 
668 		if (n_tx > 4) {
669 			data = 0;
670 			write_len = n_tx - 4;
671 			memcpy(&data, txbuf, write_len);
672 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
673 		}
674 	}
675 
676 	ret = cqspi_exec_flash_cmd(cqspi, reg);
677 
678 	/* Reset CMD_CTRL Reg once command write completes */
679 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
680 
681 	return ret;
682 }
683 
684 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
685 			    const struct spi_mem_op *op)
686 {
687 	struct cqspi_st *cqspi = f_pdata->cqspi;
688 	void __iomem *reg_base = cqspi->iobase;
689 	unsigned int dummy_clk = 0;
690 	unsigned int reg;
691 	int ret;
692 	u8 opcode;
693 
694 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
695 	if (ret)
696 		return ret;
697 
698 	if (op->cmd.dtr)
699 		opcode = op->cmd.opcode >> 8;
700 	else
701 		opcode = op->cmd.opcode;
702 
703 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
704 	reg |= cqspi_calc_rdreg(op);
705 
706 	/* Setup dummy clock cycles */
707 	dummy_clk = cqspi_calc_dummy(op);
708 
709 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
710 		return -EOPNOTSUPP;
711 
712 	if (dummy_clk)
713 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
714 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
715 
716 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
717 
718 	/* Set address width */
719 	reg = readl(reg_base + CQSPI_REG_SIZE);
720 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
721 	reg |= (op->addr.nbytes - 1);
722 	writel(reg, reg_base + CQSPI_REG_SIZE);
723 	return 0;
724 }
725 
726 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
727 				       u8 *rxbuf, loff_t from_addr,
728 				       const size_t n_rx)
729 {
730 	struct cqspi_st *cqspi = f_pdata->cqspi;
731 	bool use_irq = !(cqspi->ddata && cqspi->ddata->quirks & CQSPI_RD_NO_IRQ);
732 	struct device *dev = &cqspi->pdev->dev;
733 	void __iomem *reg_base = cqspi->iobase;
734 	void __iomem *ahb_base = cqspi->ahb_base;
735 	unsigned int remaining = n_rx;
736 	unsigned int mod_bytes = n_rx % 4;
737 	unsigned int bytes_to_read = 0;
738 	u8 *rxbuf_end = rxbuf + n_rx;
739 	int ret = 0;
740 
741 	if (!refcount_read(&cqspi->refcount))
742 		return -ENODEV;
743 
744 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
745 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
746 
747 	/* Clear all interrupts. */
748 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
749 
750 	/*
751 	 * On SoCFPGA platform reading the SRAM is slow due to
752 	 * hardware limitation and causing read interrupt storm to CPU,
753 	 * so enabling only watermark interrupt to disable all read
754 	 * interrupts later as we want to run "bytes to read" loop with
755 	 * all the read interrupts disabled for max performance.
756 	 */
757 
758 	if (use_irq && cqspi->slow_sram)
759 		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
760 	else if (use_irq)
761 		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
762 	else
763 		writel(0, reg_base + CQSPI_REG_IRQMASK);
764 
765 	reinit_completion(&cqspi->transfer_complete);
766 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
767 	       reg_base + CQSPI_REG_INDIRECTRD);
768 
769 	while (remaining > 0) {
770 		if (use_irq &&
771 		    !wait_for_completion_timeout(&cqspi->transfer_complete,
772 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
773 			ret = -ETIMEDOUT;
774 
775 		/*
776 		 * Disable all read interrupts until
777 		 * we are out of "bytes to read"
778 		 */
779 		if (cqspi->slow_sram)
780 			writel(0x0, reg_base + CQSPI_REG_IRQMASK);
781 
782 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
783 
784 		if (ret && bytes_to_read == 0) {
785 			dev_err(dev, "Indirect read timeout, no bytes\n");
786 			goto failrd;
787 		}
788 
789 		while (bytes_to_read != 0) {
790 			unsigned int word_remain = round_down(remaining, 4);
791 
792 			bytes_to_read *= cqspi->fifo_width;
793 			bytes_to_read = bytes_to_read > remaining ?
794 					remaining : bytes_to_read;
795 			bytes_to_read = round_down(bytes_to_read, 4);
796 			/* Read 4 byte word chunks then single bytes */
797 			if (bytes_to_read) {
798 				ioread32_rep(ahb_base, rxbuf,
799 					     (bytes_to_read / 4));
800 			} else if (!word_remain && mod_bytes) {
801 				unsigned int temp = ioread32(ahb_base);
802 
803 				bytes_to_read = mod_bytes;
804 				memcpy(rxbuf, &temp, min((unsigned int)
805 							 (rxbuf_end - rxbuf),
806 							 bytes_to_read));
807 			}
808 			rxbuf += bytes_to_read;
809 			remaining -= bytes_to_read;
810 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
811 		}
812 
813 		if (use_irq && remaining > 0) {
814 			reinit_completion(&cqspi->transfer_complete);
815 			if (cqspi->slow_sram)
816 				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
817 		}
818 	}
819 
820 	/* Check indirect done status */
821 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTRD,
822 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0, true);
823 	if (ret) {
824 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
825 		goto failrd;
826 	}
827 
828 	/* Disable interrupt */
829 	writel(0, reg_base + CQSPI_REG_IRQMASK);
830 
831 	/* Clear indirect completion status */
832 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
833 
834 	return 0;
835 
836 failrd:
837 	/* Disable interrupt */
838 	writel(0, reg_base + CQSPI_REG_IRQMASK);
839 
840 	/* Cancel the indirect read */
841 	writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
842 	       reg_base + CQSPI_REG_INDIRECTRD);
843 	return ret;
844 }
845 
846 static void cqspi_device_reset(struct cqspi_st *cqspi)
847 {
848 	u32 reg;
849 
850 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
851 	reg |= CQSPI_REG_CONFIG_RESET_CFG_FLD_MASK;
852 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
853 	/*
854 	 * NOTE: Delay timing implementation is derived from
855 	 * spi_nor_hw_reset()
856 	 */
857 	writel(reg & ~CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
858 	usleep_range(1, 5);
859 	writel(reg | CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
860 	usleep_range(100, 150);
861 	writel(reg & ~CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
862 	usleep_range(1000, 1200);
863 }
864 
865 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
866 {
867 	void __iomem *reg_base = cqspi->iobase;
868 	unsigned int reg;
869 
870 	reg = readl(reg_base + CQSPI_REG_CONFIG);
871 
872 	if (enable)
873 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
874 	else
875 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
876 
877 	writel(reg, reg_base + CQSPI_REG_CONFIG);
878 }
879 
880 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
881 					  u_char *rxbuf, loff_t from_addr,
882 					  size_t n_rx)
883 {
884 	struct cqspi_st *cqspi = f_pdata->cqspi;
885 	struct device *dev = &cqspi->pdev->dev;
886 	void __iomem *reg_base = cqspi->iobase;
887 	u32 reg, bytes_to_dma;
888 	loff_t addr = from_addr;
889 	void *buf = rxbuf;
890 	dma_addr_t dma_addr;
891 	u8 bytes_rem;
892 	int ret = 0;
893 
894 	bytes_rem = n_rx % 4;
895 	bytes_to_dma = (n_rx - bytes_rem);
896 
897 	if (!bytes_to_dma)
898 		goto nondmard;
899 
900 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
901 	if (ret)
902 		return ret;
903 
904 	cqspi_controller_enable(cqspi, 0);
905 
906 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
907 	reg |= CQSPI_REG_CONFIG_DMA_MASK;
908 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
909 
910 	cqspi_controller_enable(cqspi, 1);
911 
912 	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
913 	if (dma_mapping_error(dev, dma_addr)) {
914 		dev_err(dev, "dma mapping failed\n");
915 		return -ENOMEM;
916 	}
917 
918 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
919 	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
920 	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
921 	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
922 
923 	/* Clear all interrupts. */
924 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
925 
926 	/* Enable DMA done interrupt */
927 	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
928 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
929 
930 	/* Default DMA periph configuration */
931 	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
932 
933 	/* Configure DMA Dst address */
934 	writel(lower_32_bits(dma_addr),
935 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
936 	writel(upper_32_bits(dma_addr),
937 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
938 
939 	/* Configure DMA Src address */
940 	writel(cqspi->trigger_address, reg_base +
941 	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
942 
943 	/* Set DMA destination size */
944 	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
945 
946 	/* Set DMA destination control */
947 	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
948 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
949 
950 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
951 	       reg_base + CQSPI_REG_INDIRECTRD);
952 
953 	reinit_completion(&cqspi->transfer_complete);
954 
955 	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
956 					 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
957 		ret = -ETIMEDOUT;
958 		goto failrd;
959 	}
960 
961 	/* Disable DMA interrupt */
962 	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
963 
964 	/* Clear indirect completion status */
965 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
966 	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
967 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
968 
969 	cqspi_controller_enable(cqspi, 0);
970 
971 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
972 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
973 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
974 
975 	cqspi_controller_enable(cqspi, 1);
976 
977 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
978 					PM_OSPI_MUX_SEL_LINEAR);
979 	if (ret)
980 		return ret;
981 
982 nondmard:
983 	if (bytes_rem) {
984 		addr += bytes_to_dma;
985 		buf += bytes_to_dma;
986 		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
987 						  bytes_rem);
988 		if (ret)
989 			return ret;
990 	}
991 
992 	return 0;
993 
994 failrd:
995 	/* Disable DMA interrupt */
996 	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
997 
998 	/* Cancel the indirect read */
999 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1000 	       reg_base + CQSPI_REG_INDIRECTRD);
1001 
1002 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
1003 
1004 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1005 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
1006 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1007 
1008 	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
1009 
1010 	return ret;
1011 }
1012 
1013 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
1014 			     const struct spi_mem_op *op)
1015 {
1016 	unsigned int reg;
1017 	int ret;
1018 	struct cqspi_st *cqspi = f_pdata->cqspi;
1019 	void __iomem *reg_base = cqspi->iobase;
1020 	u8 opcode;
1021 
1022 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
1023 	if (ret)
1024 		return ret;
1025 
1026 	if (op->cmd.dtr)
1027 		opcode = op->cmd.opcode >> 8;
1028 	else
1029 		opcode = op->cmd.opcode;
1030 
1031 	/* Set opcode. */
1032 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
1033 	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
1034 	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
1035 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
1036 	reg = cqspi_calc_rdreg(op);
1037 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
1038 
1039 	/*
1040 	 * SPI NAND flashes require the address of the status register to be
1041 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
1042 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
1043 	 * command in DTR mode.
1044 	 *
1045 	 * But this controller does not support address phase in the Read SR
1046 	 * command when doing auto-HW polling. So, disable write completion
1047 	 * polling on the controller's side. spinand and spi-nor will take
1048 	 * care of polling the status register.
1049 	 */
1050 	if (cqspi->wr_completion) {
1051 		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1052 		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
1053 		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1054 		/*
1055 		 * DAC mode require auto polling as flash needs to be polled
1056 		 * for write completion in case of bubble in SPI transaction
1057 		 * due to slow CPU/DMA master.
1058 		 */
1059 		cqspi->use_direct_mode_wr = false;
1060 	}
1061 
1062 	reg = readl(reg_base + CQSPI_REG_SIZE);
1063 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1064 	reg |= (op->addr.nbytes - 1);
1065 	writel(reg, reg_base + CQSPI_REG_SIZE);
1066 	return 0;
1067 }
1068 
1069 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1070 					loff_t to_addr, const u8 *txbuf,
1071 					const size_t n_tx)
1072 {
1073 	struct cqspi_st *cqspi = f_pdata->cqspi;
1074 	struct device *dev = &cqspi->pdev->dev;
1075 	void __iomem *reg_base = cqspi->iobase;
1076 	unsigned int remaining = n_tx;
1077 	unsigned int write_bytes;
1078 	int ret;
1079 
1080 	if (!refcount_read(&cqspi->refcount))
1081 		return -ENODEV;
1082 
1083 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1084 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1085 
1086 	/* Clear all interrupts. */
1087 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1088 
1089 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1090 
1091 	reinit_completion(&cqspi->transfer_complete);
1092 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1093 	       reg_base + CQSPI_REG_INDIRECTWR);
1094 	/*
1095 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1096 	 * Controller programming sequence, couple of cycles of
1097 	 * QSPI_REF_CLK delay is required for the above bit to
1098 	 * be internally synchronized by the QSPI module. Provide 5
1099 	 * cycles of delay.
1100 	 */
1101 	if (cqspi->wr_delay)
1102 		ndelay(cqspi->wr_delay);
1103 
1104 	/*
1105 	 * If a hazard exists between the APB and AHB interfaces, perform a
1106 	 * dummy readback from the controller to ensure synchronization.
1107 	 */
1108 	if (cqspi->apb_ahb_hazard)
1109 		readl(reg_base + CQSPI_REG_INDIRECTWR);
1110 
1111 	while (remaining > 0) {
1112 		size_t write_words, mod_bytes;
1113 
1114 		write_bytes = remaining;
1115 		write_words = write_bytes / 4;
1116 		mod_bytes = write_bytes % 4;
1117 		/* Write 4 bytes at a time then single bytes. */
1118 		if (write_words) {
1119 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1120 			txbuf += (write_words * 4);
1121 		}
1122 		if (mod_bytes) {
1123 			unsigned int temp = 0xFFFFFFFF;
1124 
1125 			memcpy(&temp, txbuf, mod_bytes);
1126 			iowrite32(temp, cqspi->ahb_base);
1127 			txbuf += mod_bytes;
1128 		}
1129 
1130 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1131 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1132 			dev_err(dev, "Indirect write timeout\n");
1133 			ret = -ETIMEDOUT;
1134 			goto failwr;
1135 		}
1136 
1137 		remaining -= write_bytes;
1138 
1139 		if (remaining > 0)
1140 			reinit_completion(&cqspi->transfer_complete);
1141 	}
1142 
1143 	/* Check indirect done status */
1144 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTWR,
1145 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0, false);
1146 	if (ret) {
1147 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1148 		goto failwr;
1149 	}
1150 
1151 	/* Disable interrupt. */
1152 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1153 
1154 	/* Clear indirect completion status */
1155 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1156 
1157 	cqspi_wait_idle(cqspi);
1158 
1159 	return 0;
1160 
1161 failwr:
1162 	/* Disable interrupt. */
1163 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1164 
1165 	/* Cancel the indirect write */
1166 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1167 	       reg_base + CQSPI_REG_INDIRECTWR);
1168 	return ret;
1169 }
1170 
1171 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1172 {
1173 	struct cqspi_st *cqspi = f_pdata->cqspi;
1174 	void __iomem *reg_base = cqspi->iobase;
1175 	unsigned int chip_select = f_pdata->cs;
1176 	unsigned int reg;
1177 
1178 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1179 	if (cqspi->is_decoded_cs) {
1180 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1181 	} else {
1182 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1183 
1184 		/* Convert CS if without decoder.
1185 		 * CS0 to 4b'1110
1186 		 * CS1 to 4b'1101
1187 		 * CS2 to 4b'1011
1188 		 * CS3 to 4b'0111
1189 		 */
1190 		chip_select = 0xF & ~(1 << chip_select);
1191 	}
1192 
1193 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1194 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1195 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1196 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1197 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1198 }
1199 
1200 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1201 					   const unsigned int ns_val)
1202 {
1203 	unsigned int ticks;
1204 
1205 	ticks = ref_clk_hz / 1000;	/* kHz */
1206 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1207 
1208 	return ticks;
1209 }
1210 
1211 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1212 {
1213 	struct cqspi_st *cqspi = f_pdata->cqspi;
1214 	void __iomem *iobase = cqspi->iobase;
1215 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1216 	unsigned int tshsl, tchsh, tslch, tsd2d;
1217 	unsigned int reg;
1218 	unsigned int tsclk;
1219 
1220 	/* calculate the number of ref ticks for one sclk tick */
1221 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1222 
1223 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1224 	/* this particular value must be at least one sclk */
1225 	if (tshsl < tsclk)
1226 		tshsl = tsclk;
1227 
1228 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1229 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1230 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1231 
1232 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1233 	       << CQSPI_REG_DELAY_TSHSL_LSB;
1234 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1235 		<< CQSPI_REG_DELAY_TCHSH_LSB;
1236 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1237 		<< CQSPI_REG_DELAY_TSLCH_LSB;
1238 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1239 		<< CQSPI_REG_DELAY_TSD2D_LSB;
1240 	writel(reg, iobase + CQSPI_REG_DELAY);
1241 }
1242 
1243 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1244 {
1245 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1246 	void __iomem *reg_base = cqspi->iobase;
1247 	u32 reg, div;
1248 
1249 	/* Recalculate the baudrate divisor based on QSPI specification. */
1250 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1251 
1252 	/* Maximum baud divisor */
1253 	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1254 		div = CQSPI_REG_CONFIG_BAUD_MASK;
1255 		dev_warn(&cqspi->pdev->dev,
1256 			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1257 			cqspi->sclk, ref_clk_hz/((div+1)*2));
1258 	}
1259 
1260 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1261 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1262 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1263 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1264 }
1265 
1266 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1267 				   const bool bypass,
1268 				   const unsigned int delay)
1269 {
1270 	void __iomem *reg_base = cqspi->iobase;
1271 	unsigned int reg;
1272 
1273 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1274 
1275 	if (bypass)
1276 		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1277 	else
1278 		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1279 
1280 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1281 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1282 
1283 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1284 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1285 
1286 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1287 }
1288 
1289 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1290 			    unsigned long sclk)
1291 {
1292 	struct cqspi_st *cqspi = f_pdata->cqspi;
1293 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1294 	int switch_ck = (cqspi->sclk != sclk);
1295 
1296 	if (switch_cs || switch_ck)
1297 		cqspi_controller_enable(cqspi, 0);
1298 
1299 	/* Switch chip select. */
1300 	if (switch_cs) {
1301 		cqspi->current_cs = f_pdata->cs;
1302 		cqspi_chipselect(f_pdata);
1303 	}
1304 
1305 	/* Setup baudrate divisor and delays */
1306 	if (switch_ck) {
1307 		cqspi->sclk = sclk;
1308 		cqspi_config_baudrate_div(cqspi);
1309 		cqspi_delay(f_pdata);
1310 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1311 				       f_pdata->read_delay);
1312 	}
1313 
1314 	if (switch_cs || switch_ck)
1315 		cqspi_controller_enable(cqspi, 1);
1316 }
1317 
1318 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1319 			   const struct spi_mem_op *op)
1320 {
1321 	struct cqspi_st *cqspi = f_pdata->cqspi;
1322 	loff_t to = op->addr.val;
1323 	size_t len = op->data.nbytes;
1324 	const u_char *buf = op->data.buf.out;
1325 	int ret;
1326 
1327 	ret = cqspi_write_setup(f_pdata, op);
1328 	if (ret)
1329 		return ret;
1330 
1331 	/*
1332 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1333 	 * address (all 0s) with the read status register command in DTR mode.
1334 	 * But this controller does not support sending dummy address bytes to
1335 	 * the flash when it is polling the write completion register in DTR
1336 	 * mode. So, we can not use direct mode when in DTR mode for writing
1337 	 * data.
1338 	 */
1339 	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1340 	    cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1341 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1342 		return cqspi_wait_idle(cqspi);
1343 	}
1344 
1345 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1346 }
1347 
1348 static void cqspi_rx_dma_callback(void *param)
1349 {
1350 	struct cqspi_st *cqspi = param;
1351 
1352 	complete(&cqspi->rx_dma_complete);
1353 }
1354 
1355 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1356 				     u_char *buf, loff_t from, size_t len)
1357 {
1358 	struct cqspi_st *cqspi = f_pdata->cqspi;
1359 	struct device *dev = &cqspi->pdev->dev;
1360 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1361 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1362 	int ret = 0;
1363 	struct dma_async_tx_descriptor *tx;
1364 	dma_cookie_t cookie;
1365 	dma_addr_t dma_dst;
1366 	struct device *ddev;
1367 
1368 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1369 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1370 		return 0;
1371 	}
1372 
1373 	ddev = cqspi->rx_chan->device->dev;
1374 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1375 	if (dma_mapping_error(ddev, dma_dst)) {
1376 		dev_err(dev, "dma mapping failed\n");
1377 		return -ENOMEM;
1378 	}
1379 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1380 				       len, flags);
1381 	if (!tx) {
1382 		dev_err(dev, "device_prep_dma_memcpy error\n");
1383 		ret = -EIO;
1384 		goto err_unmap;
1385 	}
1386 
1387 	tx->callback = cqspi_rx_dma_callback;
1388 	tx->callback_param = cqspi;
1389 	cookie = tx->tx_submit(tx);
1390 	reinit_completion(&cqspi->rx_dma_complete);
1391 
1392 	ret = dma_submit_error(cookie);
1393 	if (ret) {
1394 		dev_err(dev, "dma_submit_error %d\n", cookie);
1395 		ret = -EIO;
1396 		goto err_unmap;
1397 	}
1398 
1399 	dma_async_issue_pending(cqspi->rx_chan);
1400 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1401 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1402 		dmaengine_terminate_sync(cqspi->rx_chan);
1403 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1404 		ret = -ETIMEDOUT;
1405 		goto err_unmap;
1406 	}
1407 
1408 err_unmap:
1409 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1410 
1411 	return ret;
1412 }
1413 
1414 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1415 			  const struct spi_mem_op *op)
1416 {
1417 	struct cqspi_st *cqspi = f_pdata->cqspi;
1418 	const struct cqspi_driver_platdata *ddata = cqspi->ddata;
1419 	loff_t from = op->addr.val;
1420 	size_t len = op->data.nbytes;
1421 	u_char *buf = op->data.buf.in;
1422 	u64 dma_align = (u64)(uintptr_t)buf;
1423 	int ret;
1424 
1425 	ret = cqspi_read_setup(f_pdata, op);
1426 	if (ret)
1427 		return ret;
1428 
1429 	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1430 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1431 
1432 	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1433 	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1434 		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1435 
1436 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1437 }
1438 
1439 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1440 {
1441 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1442 	struct cqspi_flash_pdata *f_pdata;
1443 
1444 	f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1445 	cqspi_configure(f_pdata, op->max_freq);
1446 
1447 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1448 	/*
1449 	 * Performing reads in DAC mode forces to read minimum 4 bytes
1450 	 * which is unsupported on some flash devices during register
1451 	 * reads, prefer STIG mode for such small reads.
1452 	 */
1453 		if (!op->addr.nbytes ||
1454 		    (op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX &&
1455 		     !cqspi->disable_stig_mode))
1456 			return cqspi_command_read(f_pdata, op);
1457 
1458 		return cqspi_read(f_pdata, op);
1459 	}
1460 
1461 	if (!op->addr.nbytes || !op->data.buf.out)
1462 		return cqspi_command_write(f_pdata, op);
1463 
1464 	return cqspi_write(f_pdata, op);
1465 }
1466 
1467 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1468 {
1469 	int ret;
1470 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1471 	struct device *dev = &cqspi->pdev->dev;
1472 	const struct cqspi_driver_platdata *ddata = of_device_get_match_data(dev);
1473 
1474 	if (refcount_read(&cqspi->inflight_ops) == 0)
1475 		return -ENODEV;
1476 
1477 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM))) {
1478 		ret = pm_runtime_resume_and_get(dev);
1479 		if (ret) {
1480 			dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1481 			return ret;
1482 		}
1483 	}
1484 
1485 	if (!refcount_read(&cqspi->refcount))
1486 		return -EBUSY;
1487 
1488 	refcount_inc(&cqspi->inflight_ops);
1489 
1490 	if (!refcount_read(&cqspi->refcount)) {
1491 		if (refcount_read(&cqspi->inflight_ops))
1492 			refcount_dec(&cqspi->inflight_ops);
1493 		return -EBUSY;
1494 	}
1495 
1496 	ret = cqspi_mem_process(mem, op);
1497 
1498 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM)))
1499 		pm_runtime_put_autosuspend(dev);
1500 
1501 	if (ret)
1502 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1503 
1504 	if (refcount_read(&cqspi->inflight_ops) > 1)
1505 		refcount_dec(&cqspi->inflight_ops);
1506 
1507 	return ret;
1508 }
1509 
1510 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1511 				  const struct spi_mem_op *op)
1512 {
1513 	bool all_true, all_false;
1514 
1515 	/*
1516 	 * op->dummy.dtr is required for converting nbytes into ncycles.
1517 	 * Also, don't check the dtr field of the op phase having zero nbytes.
1518 	 */
1519 	all_true = op->cmd.dtr &&
1520 		   (!op->addr.nbytes || op->addr.dtr) &&
1521 		   (!op->dummy.nbytes || op->dummy.dtr) &&
1522 		   (!op->data.nbytes || op->data.dtr);
1523 
1524 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1525 		    !op->data.dtr;
1526 
1527 	if (all_true) {
1528 		/* Right now we only support 8-8-8 DTR mode. */
1529 		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1530 			return false;
1531 		if (op->addr.nbytes && op->addr.buswidth != 8)
1532 			return false;
1533 		if (op->data.nbytes && op->data.buswidth != 8)
1534 			return false;
1535 	} else if (!all_false) {
1536 		/* Mixed DTR modes are not supported. */
1537 		return false;
1538 	}
1539 
1540 	return spi_mem_default_supports_op(mem, op);
1541 }
1542 
1543 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1544 				    struct cqspi_flash_pdata *f_pdata,
1545 				    struct device_node *np)
1546 {
1547 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1548 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1549 		return -ENXIO;
1550 	}
1551 
1552 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1553 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1554 		return -ENXIO;
1555 	}
1556 
1557 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1558 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1559 		return -ENXIO;
1560 	}
1561 
1562 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1563 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1564 		return -ENXIO;
1565 	}
1566 
1567 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1568 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1569 		return -ENXIO;
1570 	}
1571 
1572 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1573 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1574 		return -ENXIO;
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1581 {
1582 	struct device *dev = &cqspi->pdev->dev;
1583 	struct device_node *np = dev->of_node;
1584 	u32 id[2];
1585 
1586 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1587 
1588 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1589 		/* Zero signals FIFO depth should be runtime detected. */
1590 		cqspi->fifo_depth = 0;
1591 	}
1592 
1593 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1594 		dev_err(dev, "couldn't determine fifo-width\n");
1595 		return -ENXIO;
1596 	}
1597 
1598 	if (of_property_read_u32(np, "cdns,trigger-address",
1599 				 &cqspi->trigger_address)) {
1600 		dev_err(dev, "couldn't determine trigger-address\n");
1601 		return -ENXIO;
1602 	}
1603 
1604 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1605 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1606 
1607 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1608 
1609 	if (!of_property_read_u32_array(np, "power-domains", id,
1610 					ARRAY_SIZE(id)))
1611 		cqspi->pd_dev_id = id[1];
1612 
1613 	return 0;
1614 }
1615 
1616 static void cqspi_controller_init(struct cqspi_st *cqspi)
1617 {
1618 	u32 reg;
1619 
1620 	/* Configure the remap address register, no remap */
1621 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1622 
1623 	/* Disable all interrupts. */
1624 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1625 
1626 	/* Configure the SRAM split to 1:1 . */
1627 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1628 
1629 	/* Load indirect trigger address. */
1630 	writel(cqspi->trigger_address,
1631 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1632 
1633 	/* Program read watermark -- 1/2 of the FIFO. */
1634 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1635 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1636 	/* Program write watermark -- 1/8 of the FIFO. */
1637 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1638 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1639 
1640 	/* Disable direct access controller */
1641 	if (!cqspi->use_direct_mode) {
1642 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1643 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1644 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1645 	}
1646 
1647 	/* Enable DMA interface */
1648 	if (cqspi->use_dma_read) {
1649 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1650 		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1651 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1652 	}
1653 }
1654 
1655 static void cqspi_controller_detect_fifo_depth(struct cqspi_st *cqspi)
1656 {
1657 	struct device *dev = &cqspi->pdev->dev;
1658 	u32 reg, fifo_depth;
1659 
1660 	/*
1661 	 * Bits N-1:0 are writable while bits 31:N are read as zero, with 2^N
1662 	 * the FIFO depth.
1663 	 */
1664 	writel(U32_MAX, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1665 	reg = readl(cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1666 	fifo_depth = reg + 1;
1667 
1668 	/* FIFO depth of zero means no value from devicetree was provided. */
1669 	if (cqspi->fifo_depth == 0) {
1670 		cqspi->fifo_depth = fifo_depth;
1671 		dev_dbg(dev, "using FIFO depth of %u\n", fifo_depth);
1672 	} else if (fifo_depth != cqspi->fifo_depth) {
1673 		dev_warn(dev, "detected FIFO depth (%u) different from config (%u)\n",
1674 			 fifo_depth, cqspi->fifo_depth);
1675 	}
1676 }
1677 
1678 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1679 {
1680 	dma_cap_mask_t mask;
1681 
1682 	dma_cap_zero(mask);
1683 	dma_cap_set(DMA_MEMCPY, mask);
1684 
1685 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1686 	if (IS_ERR(cqspi->rx_chan)) {
1687 		int ret = PTR_ERR(cqspi->rx_chan);
1688 
1689 		cqspi->rx_chan = NULL;
1690 		if (ret == -ENODEV) {
1691 			/* DMA support is not mandatory */
1692 			dev_info(&cqspi->pdev->dev, "No Rx DMA available\n");
1693 			return 0;
1694 		}
1695 
1696 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1697 	}
1698 	init_completion(&cqspi->rx_dma_complete);
1699 
1700 	return 0;
1701 }
1702 
1703 static const char *cqspi_get_name(struct spi_mem *mem)
1704 {
1705 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1706 	struct device *dev = &cqspi->pdev->dev;
1707 
1708 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1709 			      spi_get_chipselect(mem->spi, 0));
1710 }
1711 
1712 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1713 	.exec_op = cqspi_exec_mem_op,
1714 	.get_name = cqspi_get_name,
1715 	.supports_op = cqspi_supports_mem_op,
1716 };
1717 
1718 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1719 	.dtr = true,
1720 	.per_op_freq = true,
1721 };
1722 
1723 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1724 {
1725 	unsigned int max_cs = cqspi->num_chipselect - 1;
1726 	struct platform_device *pdev = cqspi->pdev;
1727 	struct device *dev = &pdev->dev;
1728 	struct cqspi_flash_pdata *f_pdata;
1729 	unsigned int cs;
1730 	int ret;
1731 
1732 	/* Get flash device data */
1733 	for_each_available_child_of_node_scoped(dev->of_node, np) {
1734 		ret = of_property_read_u32(np, "reg", &cs);
1735 		if (ret) {
1736 			dev_err(dev, "Couldn't determine chip select.\n");
1737 			return ret;
1738 		}
1739 
1740 		if (cs >= cqspi->num_chipselect) {
1741 			dev_err(dev, "Chip select %d out of range.\n", cs);
1742 			return -EINVAL;
1743 		} else if (cs < max_cs) {
1744 			max_cs = cs;
1745 		}
1746 
1747 		f_pdata = &cqspi->f_pdata[cs];
1748 		f_pdata->cqspi = cqspi;
1749 		f_pdata->cs = cs;
1750 
1751 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1752 		if (ret)
1753 			return ret;
1754 	}
1755 
1756 	cqspi->num_chipselect = max_cs + 1;
1757 	return 0;
1758 }
1759 
1760 static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1761 {
1762 	static struct clk_bulk_data qspiclk[] = {
1763 		{ .id = "apb" },
1764 		{ .id = "ahb" },
1765 	};
1766 
1767 	int ret = 0;
1768 
1769 	ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1770 	if (ret) {
1771 		dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1772 		return ret;
1773 	}
1774 
1775 	cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1776 	cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1777 
1778 	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1779 	if (ret) {
1780 		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1781 		return ret;
1782 	}
1783 
1784 	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1785 	if (ret) {
1786 		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1787 		goto disable_apb_clk;
1788 	}
1789 
1790 	cqspi->is_jh7110 = true;
1791 
1792 	return 0;
1793 
1794 disable_apb_clk:
1795 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1796 
1797 	return ret;
1798 }
1799 
1800 static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1801 {
1802 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1803 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1804 }
1805 static int cqspi_probe(struct platform_device *pdev)
1806 {
1807 	const struct cqspi_driver_platdata *ddata;
1808 	struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1809 	struct device *dev = &pdev->dev;
1810 	struct spi_controller *host;
1811 	struct resource *res_ahb;
1812 	struct cqspi_st *cqspi;
1813 	int ret;
1814 	int irq;
1815 
1816 	host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1817 	if (!host)
1818 		return -ENOMEM;
1819 
1820 	host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1821 	host->mem_ops = &cqspi_mem_ops;
1822 	host->mem_caps = &cqspi_mem_caps;
1823 	host->dev.of_node = pdev->dev.of_node;
1824 
1825 	cqspi = spi_controller_get_devdata(host);
1826 
1827 	cqspi->pdev = pdev;
1828 	cqspi->host = host;
1829 	cqspi->is_jh7110 = false;
1830 	cqspi->ddata = ddata = of_device_get_match_data(dev);
1831 	platform_set_drvdata(pdev, cqspi);
1832 
1833 	/* Obtain configuration from OF. */
1834 	ret = cqspi_of_get_pdata(cqspi);
1835 	if (ret) {
1836 		dev_err(dev, "Cannot get mandatory OF data.\n");
1837 		return -ENODEV;
1838 	}
1839 
1840 	/* Obtain QSPI clock. */
1841 	cqspi->clk = devm_clk_get(dev, NULL);
1842 	if (IS_ERR(cqspi->clk)) {
1843 		dev_err(dev, "Cannot claim QSPI clock.\n");
1844 		ret = PTR_ERR(cqspi->clk);
1845 		return ret;
1846 	}
1847 
1848 	/* Obtain and remap controller address. */
1849 	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1850 	if (IS_ERR(cqspi->iobase)) {
1851 		dev_err(dev, "Cannot remap controller address.\n");
1852 		ret = PTR_ERR(cqspi->iobase);
1853 		return ret;
1854 	}
1855 
1856 	/* Obtain and remap AHB address. */
1857 	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1858 	if (IS_ERR(cqspi->ahb_base)) {
1859 		dev_err(dev, "Cannot remap AHB address.\n");
1860 		ret = PTR_ERR(cqspi->ahb_base);
1861 		return ret;
1862 	}
1863 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1864 	cqspi->ahb_size = resource_size(res_ahb);
1865 
1866 	init_completion(&cqspi->transfer_complete);
1867 
1868 	/* Obtain IRQ line. */
1869 	irq = platform_get_irq(pdev, 0);
1870 	if (irq < 0)
1871 		return -ENXIO;
1872 
1873 	ret = pm_runtime_set_active(dev);
1874 	if (ret)
1875 		return ret;
1876 
1877 
1878 	ret = clk_prepare_enable(cqspi->clk);
1879 	if (ret) {
1880 		dev_err(dev, "Cannot enable QSPI clock.\n");
1881 		goto probe_clk_failed;
1882 	}
1883 
1884 	/* Obtain QSPI reset control */
1885 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1886 	if (IS_ERR(rstc)) {
1887 		ret = PTR_ERR(rstc);
1888 		dev_err(dev, "Cannot get QSPI reset.\n");
1889 		goto probe_reset_failed;
1890 	}
1891 
1892 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1893 	if (IS_ERR(rstc_ocp)) {
1894 		ret = PTR_ERR(rstc_ocp);
1895 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1896 		goto probe_reset_failed;
1897 	}
1898 
1899 	if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1900 		rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1901 		if (IS_ERR(rstc_ref)) {
1902 			ret = PTR_ERR(rstc_ref);
1903 			dev_err(dev, "Cannot get QSPI REF reset.\n");
1904 			goto probe_reset_failed;
1905 		}
1906 		reset_control_assert(rstc_ref);
1907 		reset_control_deassert(rstc_ref);
1908 	}
1909 
1910 	reset_control_assert(rstc);
1911 	reset_control_deassert(rstc);
1912 
1913 	reset_control_assert(rstc_ocp);
1914 	reset_control_deassert(rstc_ocp);
1915 
1916 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1917 	host->max_speed_hz = cqspi->master_ref_clk_hz;
1918 
1919 	/* write completion is supported by default */
1920 	cqspi->wr_completion = true;
1921 
1922 	if (ddata) {
1923 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1924 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1925 						cqspi->master_ref_clk_hz);
1926 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1927 			host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1928 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_QUAD)
1929 			host->mode_bits |= SPI_TX_QUAD;
1930 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1931 			cqspi->use_direct_mode = true;
1932 			cqspi->use_direct_mode_wr = true;
1933 		}
1934 		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1935 			cqspi->use_dma_read = true;
1936 		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1937 			cqspi->wr_completion = false;
1938 		if (ddata->quirks & CQSPI_SLOW_SRAM)
1939 			cqspi->slow_sram = true;
1940 		if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1941 			cqspi->apb_ahb_hazard = true;
1942 
1943 		if (ddata->jh7110_clk_init) {
1944 			ret = cqspi_jh7110_clk_init(pdev, cqspi);
1945 			if (ret)
1946 				goto probe_reset_failed;
1947 		}
1948 		if (ddata->quirks & CQSPI_DISABLE_STIG_MODE)
1949 			cqspi->disable_stig_mode = true;
1950 
1951 		if (ddata->quirks & CQSPI_DMA_SET_MASK) {
1952 			ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1953 			if (ret)
1954 				goto probe_reset_failed;
1955 		}
1956 	}
1957 
1958 	refcount_set(&cqspi->refcount, 1);
1959 	refcount_set(&cqspi->inflight_ops, 1);
1960 
1961 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1962 			       pdev->name, cqspi);
1963 	if (ret) {
1964 		dev_err(dev, "Cannot request IRQ.\n");
1965 		goto probe_reset_failed;
1966 	}
1967 
1968 	cqspi_wait_idle(cqspi);
1969 	cqspi_controller_enable(cqspi, 0);
1970 	cqspi_controller_detect_fifo_depth(cqspi);
1971 	cqspi_controller_init(cqspi);
1972 	cqspi_controller_enable(cqspi, 1);
1973 	cqspi->current_cs = -1;
1974 	cqspi->sclk = 0;
1975 
1976 	ret = cqspi_setup_flash(cqspi);
1977 	if (ret) {
1978 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1979 		goto probe_setup_failed;
1980 	}
1981 
1982 	host->num_chipselect = cqspi->num_chipselect;
1983 
1984 	if (ddata && (ddata->quirks & CQSPI_SUPPORT_DEVICE_RESET))
1985 		cqspi_device_reset(cqspi);
1986 
1987 	if (cqspi->use_direct_mode) {
1988 		ret = cqspi_request_mmap_dma(cqspi);
1989 		if (ret == -EPROBE_DEFER)
1990 			goto probe_setup_failed;
1991 	}
1992 
1993 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM))) {
1994 		pm_runtime_enable(dev);
1995 		pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1996 		pm_runtime_use_autosuspend(dev);
1997 		pm_runtime_get_noresume(dev);
1998 	}
1999 
2000 	ret = spi_register_controller(host);
2001 	if (ret) {
2002 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
2003 		goto probe_setup_failed;
2004 	}
2005 
2006 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM))) {
2007 		pm_runtime_put_autosuspend(dev);
2008 		pm_runtime_mark_last_busy(dev);
2009 		pm_runtime_put_autosuspend(dev);
2010 	}
2011 
2012 	return 0;
2013 probe_setup_failed:
2014 	cqspi_controller_enable(cqspi, 0);
2015 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM)))
2016 		pm_runtime_disable(dev);
2017 probe_reset_failed:
2018 	if (cqspi->is_jh7110)
2019 		cqspi_jh7110_disable_clk(pdev, cqspi);
2020 	clk_disable_unprepare(cqspi->clk);
2021 probe_clk_failed:
2022 	return ret;
2023 }
2024 
2025 static void cqspi_remove(struct platform_device *pdev)
2026 {
2027 	const struct cqspi_driver_platdata *ddata;
2028 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
2029 	struct device *dev = &pdev->dev;
2030 
2031 	ddata = of_device_get_match_data(dev);
2032 
2033 	refcount_set(&cqspi->refcount, 0);
2034 
2035 	if (!refcount_dec_and_test(&cqspi->inflight_ops))
2036 		cqspi_wait_idle(cqspi);
2037 
2038 	spi_unregister_controller(cqspi->host);
2039 	cqspi_controller_enable(cqspi, 0);
2040 
2041 	if (cqspi->rx_chan)
2042 		dma_release_channel(cqspi->rx_chan);
2043 
2044 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM)))
2045 		if (pm_runtime_get_sync(&pdev->dev) >= 0)
2046 			clk_disable(cqspi->clk);
2047 
2048 	if (cqspi->is_jh7110)
2049 		cqspi_jh7110_disable_clk(pdev, cqspi);
2050 
2051 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM))) {
2052 		pm_runtime_put_sync(&pdev->dev);
2053 		pm_runtime_disable(&pdev->dev);
2054 	}
2055 }
2056 
2057 static int cqspi_runtime_suspend(struct device *dev)
2058 {
2059 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2060 
2061 	cqspi_controller_enable(cqspi, 0);
2062 	clk_disable_unprepare(cqspi->clk);
2063 	return 0;
2064 }
2065 
2066 static int cqspi_runtime_resume(struct device *dev)
2067 {
2068 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2069 
2070 	clk_prepare_enable(cqspi->clk);
2071 	cqspi_wait_idle(cqspi);
2072 	cqspi_controller_enable(cqspi, 0);
2073 	cqspi_controller_init(cqspi);
2074 	cqspi_controller_enable(cqspi, 1);
2075 
2076 	cqspi->current_cs = -1;
2077 	cqspi->sclk = 0;
2078 	return 0;
2079 }
2080 
2081 static int cqspi_suspend(struct device *dev)
2082 {
2083 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2084 	int ret;
2085 
2086 	ret = spi_controller_suspend(cqspi->host);
2087 	if (ret)
2088 		return ret;
2089 
2090 	return pm_runtime_force_suspend(dev);
2091 }
2092 
2093 static int cqspi_resume(struct device *dev)
2094 {
2095 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2096 	int ret;
2097 
2098 	ret = pm_runtime_force_resume(dev);
2099 	if (ret) {
2100 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
2101 		return ret;
2102 	}
2103 
2104 	return spi_controller_resume(cqspi->host);
2105 }
2106 
2107 static const struct dev_pm_ops cqspi_dev_pm_ops = {
2108 	RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
2109 	SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
2110 };
2111 
2112 static const struct cqspi_driver_platdata cdns_qspi = {
2113 	.quirks = CQSPI_DISABLE_DAC_MODE,
2114 };
2115 
2116 static const struct cqspi_driver_platdata k2g_qspi = {
2117 	.quirks = CQSPI_NEEDS_WR_DELAY,
2118 };
2119 
2120 static const struct cqspi_driver_platdata am654_ospi = {
2121 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL | CQSPI_SUPPORTS_QUAD,
2122 	.quirks = CQSPI_NEEDS_WR_DELAY,
2123 };
2124 
2125 static const struct cqspi_driver_platdata intel_lgm_qspi = {
2126 	.quirks = CQSPI_DISABLE_DAC_MODE,
2127 };
2128 
2129 static const struct cqspi_driver_platdata socfpga_qspi = {
2130 	.quirks = CQSPI_DISABLE_DAC_MODE
2131 			| CQSPI_NO_SUPPORT_WR_COMPLETION
2132 			| CQSPI_SLOW_SRAM
2133 			| CQSPI_DISABLE_STIG_MODE
2134 			| CQSPI_DISABLE_RUNTIME_PM,
2135 };
2136 
2137 static const struct cqspi_driver_platdata versal_ospi = {
2138 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2139 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA
2140 			| CQSPI_DMA_SET_MASK,
2141 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2142 	.get_dma_status = cqspi_get_versal_dma_status,
2143 };
2144 
2145 static const struct cqspi_driver_platdata versal2_ospi = {
2146 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2147 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA
2148 			| CQSPI_DMA_SET_MASK
2149 			| CQSPI_SUPPORT_DEVICE_RESET,
2150 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2151 	.get_dma_status = cqspi_get_versal_dma_status,
2152 };
2153 
2154 static const struct cqspi_driver_platdata jh7110_qspi = {
2155 	.quirks = CQSPI_DISABLE_DAC_MODE,
2156 	.jh7110_clk_init = cqspi_jh7110_clk_init,
2157 };
2158 
2159 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2160 	.quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2161 };
2162 
2163 static const struct cqspi_driver_platdata mobileye_eyeq5_ospi = {
2164 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2165 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION |
2166 			CQSPI_RD_NO_IRQ,
2167 };
2168 
2169 static const struct of_device_id cqspi_dt_ids[] = {
2170 	{
2171 		.compatible = "cdns,qspi-nor",
2172 		.data = &cdns_qspi,
2173 	},
2174 	{
2175 		.compatible = "ti,k2g-qspi",
2176 		.data = &k2g_qspi,
2177 	},
2178 	{
2179 		.compatible = "ti,am654-ospi",
2180 		.data = &am654_ospi,
2181 	},
2182 	{
2183 		.compatible = "intel,lgm-qspi",
2184 		.data = &intel_lgm_qspi,
2185 	},
2186 	{
2187 		.compatible = "xlnx,versal-ospi-1.0",
2188 		.data = &versal_ospi,
2189 	},
2190 	{
2191 		.compatible = "intel,socfpga-qspi",
2192 		.data = &socfpga_qspi,
2193 	},
2194 	{
2195 		.compatible = "starfive,jh7110-qspi",
2196 		.data = &jh7110_qspi,
2197 	},
2198 	{
2199 		.compatible = "amd,pensando-elba-qspi",
2200 		.data = &pensando_cdns_qspi,
2201 	},
2202 	{
2203 		.compatible = "mobileye,eyeq5-ospi",
2204 		.data = &mobileye_eyeq5_ospi,
2205 	},
2206 	{
2207 		.compatible = "amd,versal2-ospi",
2208 		.data = &versal2_ospi,
2209 	},
2210 	{ /* end of table */ }
2211 };
2212 
2213 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2214 
2215 static struct platform_driver cqspi_platform_driver = {
2216 	.probe = cqspi_probe,
2217 	.remove = cqspi_remove,
2218 	.driver = {
2219 		.name = CQSPI_NAME,
2220 		.pm = pm_ptr(&cqspi_dev_pm_ops),
2221 		.of_match_table = cqspi_dt_ids,
2222 	},
2223 };
2224 
2225 module_platform_driver(cqspi_platform_driver);
2226 
2227 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2228 MODULE_LICENSE("GPL v2");
2229 MODULE_ALIAS("platform:" CQSPI_NAME);
2230 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2231 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2232 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2233 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2234 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
2235