xref: /linux/drivers/spi/spi-cadence-quadspi.c (revision b8e85e6f3a09fc56b0ff574887798962ef8a8f80)
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32 
33 #define CQSPI_NAME			"cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT		16
35 
36 /* Quirks */
37 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
38 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
39 #define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
40 #define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
41 #define CQSPI_SLOW_SRAM		BIT(4)
42 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR	BIT(5)
43 
44 /* Capabilities */
45 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
46 
47 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
48 
49 enum {
50 	CLK_QSPI_APB = 0,
51 	CLK_QSPI_AHB,
52 	CLK_QSPI_NUM,
53 };
54 
55 struct cqspi_st;
56 
57 struct cqspi_flash_pdata {
58 	struct cqspi_st	*cqspi;
59 	u32		clk_rate;
60 	u32		read_delay;
61 	u32		tshsl_ns;
62 	u32		tsd2d_ns;
63 	u32		tchsh_ns;
64 	u32		tslch_ns;
65 	u8		cs;
66 };
67 
68 struct cqspi_st {
69 	struct platform_device	*pdev;
70 	struct spi_controller	*host;
71 	struct clk		*clk;
72 	struct clk		*clks[CLK_QSPI_NUM];
73 	unsigned int		sclk;
74 
75 	void __iomem		*iobase;
76 	void __iomem		*ahb_base;
77 	resource_size_t		ahb_size;
78 	struct completion	transfer_complete;
79 
80 	struct dma_chan		*rx_chan;
81 	struct completion	rx_dma_complete;
82 	dma_addr_t		mmap_phys_base;
83 
84 	int			current_cs;
85 	unsigned long		master_ref_clk_hz;
86 	bool			is_decoded_cs;
87 	u32			fifo_depth;
88 	u32			fifo_width;
89 	u32			num_chipselect;
90 	bool			rclk_en;
91 	u32			trigger_address;
92 	u32			wr_delay;
93 	bool			use_direct_mode;
94 	bool			use_direct_mode_wr;
95 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
96 	bool			use_dma_read;
97 	u32			pd_dev_id;
98 	bool			wr_completion;
99 	bool			slow_sram;
100 	bool			apb_ahb_hazard;
101 
102 	bool			is_jh7110; /* Flag for StarFive JH7110 SoC */
103 };
104 
105 struct cqspi_driver_platdata {
106 	u32 hwcaps_mask;
107 	u8 quirks;
108 	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
109 				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
110 	u32 (*get_dma_status)(struct cqspi_st *cqspi);
111 	int (*jh7110_clk_init)(struct platform_device *pdev,
112 			       struct cqspi_st *cqspi);
113 };
114 
115 /* Operation timeout value */
116 #define CQSPI_TIMEOUT_MS			500
117 #define CQSPI_READ_TIMEOUT_MS			10
118 
119 /* Runtime_pm autosuspend delay */
120 #define CQSPI_AUTOSUSPEND_TIMEOUT		2000
121 
122 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
123 #define CQSPI_DUMMY_BYTES_MAX			4
124 #define CQSPI_DUMMY_CLKS_MAX			31
125 
126 #define CQSPI_STIG_DATA_LEN_MAX			8
127 
128 /* Register map */
129 #define CQSPI_REG_CONFIG			0x00
130 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
131 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
132 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
133 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
134 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
135 #define CQSPI_REG_CONFIG_BAUD_LSB		19
136 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
137 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
138 #define CQSPI_REG_CONFIG_IDLE_LSB		31
139 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
140 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
141 
142 #define CQSPI_REG_RD_INSTR			0x04
143 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
144 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
145 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
146 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
147 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
148 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
149 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
150 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
151 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
152 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
153 
154 #define CQSPI_REG_WR_INSTR			0x08
155 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
156 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
157 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
158 
159 #define CQSPI_REG_DELAY				0x0C
160 #define CQSPI_REG_DELAY_TSLCH_LSB		0
161 #define CQSPI_REG_DELAY_TCHSH_LSB		8
162 #define CQSPI_REG_DELAY_TSD2D_LSB		16
163 #define CQSPI_REG_DELAY_TSHSL_LSB		24
164 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
165 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
166 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
167 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
168 
169 #define CQSPI_REG_READCAPTURE			0x10
170 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
171 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
172 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
173 
174 #define CQSPI_REG_SIZE				0x14
175 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
176 #define CQSPI_REG_SIZE_PAGE_LSB			4
177 #define CQSPI_REG_SIZE_BLOCK_LSB		16
178 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
179 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
180 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
181 
182 #define CQSPI_REG_SRAMPARTITION			0x18
183 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
184 
185 #define CQSPI_REG_DMA				0x20
186 #define CQSPI_REG_DMA_SINGLE_LSB		0
187 #define CQSPI_REG_DMA_BURST_LSB			8
188 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
189 #define CQSPI_REG_DMA_BURST_MASK		0xFF
190 
191 #define CQSPI_REG_REMAP				0x24
192 #define CQSPI_REG_MODE_BIT			0x28
193 
194 #define CQSPI_REG_SDRAMLEVEL			0x2C
195 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
196 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
197 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
198 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
199 
200 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
201 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
202 
203 #define CQSPI_REG_IRQSTATUS			0x40
204 #define CQSPI_REG_IRQMASK			0x44
205 
206 #define CQSPI_REG_INDIRECTRD			0x60
207 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
208 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
209 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
210 
211 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
212 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
213 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
214 
215 #define CQSPI_REG_CMDCTRL			0x90
216 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
217 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
218 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
219 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
220 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
221 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
222 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
223 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
224 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
225 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
226 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
227 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
228 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
229 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
230 
231 #define CQSPI_REG_INDIRECTWR			0x70
232 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
233 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
234 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
235 
236 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
237 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
238 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
239 
240 #define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
241 
242 #define CQSPI_REG_CMDADDRESS			0x94
243 #define CQSPI_REG_CMDREADDATALOWER		0xA0
244 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
245 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
246 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
247 
248 #define CQSPI_REG_POLLING_STATUS		0xB0
249 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
250 
251 #define CQSPI_REG_OP_EXT_LOWER			0xE0
252 #define CQSPI_REG_OP_EXT_READ_LSB		24
253 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
254 #define CQSPI_REG_OP_EXT_STIG_LSB		0
255 
256 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
257 
258 #define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
259 #define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
260 
261 #define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
262 
263 #define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
264 #define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
265 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
266 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
267 
268 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
269 
270 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
271 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
272 
273 /* Interrupt status bits */
274 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
275 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
276 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
277 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
278 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
279 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
280 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
281 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
282 
283 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
284 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
285 					 CQSPI_REG_IRQ_IND_COMP)
286 
287 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
288 					 CQSPI_REG_IRQ_WATERMARK	| \
289 					 CQSPI_REG_IRQ_UNDERFLOW)
290 
291 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
292 #define CQSPI_DMA_UNALIGN		0x3
293 
294 #define CQSPI_REG_VERSAL_DMA_VAL		0x602
295 
296 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
297 {
298 	u32 val;
299 
300 	return readl_relaxed_poll_timeout(reg, val,
301 					  (((clr ? ~val : val) & mask) == mask),
302 					  10, CQSPI_TIMEOUT_MS * 1000);
303 }
304 
305 static bool cqspi_is_idle(struct cqspi_st *cqspi)
306 {
307 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
308 
309 	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
310 }
311 
312 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
313 {
314 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
315 
316 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
317 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
318 }
319 
320 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
321 {
322 	u32 dma_status;
323 
324 	dma_status = readl(cqspi->iobase +
325 					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
326 	writel(dma_status, cqspi->iobase +
327 		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
328 
329 	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
330 }
331 
332 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
333 {
334 	struct cqspi_st *cqspi = dev;
335 	unsigned int irq_status;
336 	struct device *device = &cqspi->pdev->dev;
337 	const struct cqspi_driver_platdata *ddata;
338 
339 	ddata = of_device_get_match_data(device);
340 
341 	/* Read interrupt status */
342 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
343 
344 	/* Clear interrupt */
345 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
346 
347 	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
348 		if (ddata->get_dma_status(cqspi)) {
349 			complete(&cqspi->transfer_complete);
350 			return IRQ_HANDLED;
351 		}
352 	}
353 
354 	else if (!cqspi->slow_sram)
355 		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
356 	else
357 		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
358 
359 	if (irq_status)
360 		complete(&cqspi->transfer_complete);
361 
362 	return IRQ_HANDLED;
363 }
364 
365 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
366 {
367 	u32 rdreg = 0;
368 
369 	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
370 	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
371 	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
372 
373 	return rdreg;
374 }
375 
376 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
377 {
378 	unsigned int dummy_clk;
379 
380 	if (!op->dummy.nbytes)
381 		return 0;
382 
383 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
384 	if (op->cmd.dtr)
385 		dummy_clk /= 2;
386 
387 	return dummy_clk;
388 }
389 
390 static int cqspi_wait_idle(struct cqspi_st *cqspi)
391 {
392 	const unsigned int poll_idle_retry = 3;
393 	unsigned int count = 0;
394 	unsigned long timeout;
395 
396 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
397 	while (1) {
398 		/*
399 		 * Read few times in succession to ensure the controller
400 		 * is indeed idle, that is, the bit does not transition
401 		 * low again.
402 		 */
403 		if (cqspi_is_idle(cqspi))
404 			count++;
405 		else
406 			count = 0;
407 
408 		if (count >= poll_idle_retry)
409 			return 0;
410 
411 		if (time_after(jiffies, timeout)) {
412 			/* Timeout, in busy mode. */
413 			dev_err(&cqspi->pdev->dev,
414 				"QSPI is still busy after %dms timeout.\n",
415 				CQSPI_TIMEOUT_MS);
416 			return -ETIMEDOUT;
417 		}
418 
419 		cpu_relax();
420 	}
421 }
422 
423 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
424 {
425 	void __iomem *reg_base = cqspi->iobase;
426 	int ret;
427 
428 	/* Write the CMDCTRL without start execution. */
429 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
430 	/* Start execute */
431 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
432 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
433 
434 	/* Polling for completion. */
435 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
436 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
437 	if (ret) {
438 		dev_err(&cqspi->pdev->dev,
439 			"Flash command execution timed out.\n");
440 		return ret;
441 	}
442 
443 	/* Polling QSPI idle status. */
444 	return cqspi_wait_idle(cqspi);
445 }
446 
447 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
448 				  const struct spi_mem_op *op,
449 				  unsigned int shift)
450 {
451 	struct cqspi_st *cqspi = f_pdata->cqspi;
452 	void __iomem *reg_base = cqspi->iobase;
453 	unsigned int reg;
454 	u8 ext;
455 
456 	if (op->cmd.nbytes != 2)
457 		return -EINVAL;
458 
459 	/* Opcode extension is the LSB. */
460 	ext = op->cmd.opcode & 0xff;
461 
462 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
463 	reg &= ~(0xff << shift);
464 	reg |= ext << shift;
465 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
466 
467 	return 0;
468 }
469 
470 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
471 			    const struct spi_mem_op *op, unsigned int shift)
472 {
473 	struct cqspi_st *cqspi = f_pdata->cqspi;
474 	void __iomem *reg_base = cqspi->iobase;
475 	unsigned int reg;
476 	int ret;
477 
478 	reg = readl(reg_base + CQSPI_REG_CONFIG);
479 
480 	/*
481 	 * We enable dual byte opcode here. The callers have to set up the
482 	 * extension opcode based on which type of operation it is.
483 	 */
484 	if (op->cmd.dtr) {
485 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
486 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
487 
488 		/* Set up command opcode extension. */
489 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
490 		if (ret)
491 			return ret;
492 	} else {
493 		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
494 		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
495 	}
496 
497 	writel(reg, reg_base + CQSPI_REG_CONFIG);
498 
499 	return cqspi_wait_idle(cqspi);
500 }
501 
502 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
503 			      const struct spi_mem_op *op)
504 {
505 	struct cqspi_st *cqspi = f_pdata->cqspi;
506 	void __iomem *reg_base = cqspi->iobase;
507 	u8 *rxbuf = op->data.buf.in;
508 	u8 opcode;
509 	size_t n_rx = op->data.nbytes;
510 	unsigned int rdreg;
511 	unsigned int reg;
512 	unsigned int dummy_clk;
513 	size_t read_len;
514 	int status;
515 
516 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
517 	if (status)
518 		return status;
519 
520 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
521 		dev_err(&cqspi->pdev->dev,
522 			"Invalid input argument, len %zu rxbuf 0x%p\n",
523 			n_rx, rxbuf);
524 		return -EINVAL;
525 	}
526 
527 	if (op->cmd.dtr)
528 		opcode = op->cmd.opcode >> 8;
529 	else
530 		opcode = op->cmd.opcode;
531 
532 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
533 
534 	rdreg = cqspi_calc_rdreg(op);
535 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
536 
537 	dummy_clk = cqspi_calc_dummy(op);
538 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
539 		return -EOPNOTSUPP;
540 
541 	if (dummy_clk)
542 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
543 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
544 
545 	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
546 
547 	/* 0 means 1 byte. */
548 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
549 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
550 
551 	/* setup ADDR BIT field */
552 	if (op->addr.nbytes) {
553 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
554 		reg |= ((op->addr.nbytes - 1) &
555 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
556 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
557 
558 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
559 	}
560 
561 	status = cqspi_exec_flash_cmd(cqspi, reg);
562 	if (status)
563 		return status;
564 
565 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
566 
567 	/* Put the read value into rx_buf */
568 	read_len = (n_rx > 4) ? 4 : n_rx;
569 	memcpy(rxbuf, &reg, read_len);
570 	rxbuf += read_len;
571 
572 	if (n_rx > 4) {
573 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
574 
575 		read_len = n_rx - read_len;
576 		memcpy(rxbuf, &reg, read_len);
577 	}
578 
579 	/* Reset CMD_CTRL Reg once command read completes */
580 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
581 
582 	return 0;
583 }
584 
585 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
586 			       const struct spi_mem_op *op)
587 {
588 	struct cqspi_st *cqspi = f_pdata->cqspi;
589 	void __iomem *reg_base = cqspi->iobase;
590 	u8 opcode;
591 	const u8 *txbuf = op->data.buf.out;
592 	size_t n_tx = op->data.nbytes;
593 	unsigned int reg;
594 	unsigned int data;
595 	size_t write_len;
596 	int ret;
597 
598 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
599 	if (ret)
600 		return ret;
601 
602 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
603 		dev_err(&cqspi->pdev->dev,
604 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
605 			n_tx, txbuf);
606 		return -EINVAL;
607 	}
608 
609 	reg = cqspi_calc_rdreg(op);
610 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
611 
612 	if (op->cmd.dtr)
613 		opcode = op->cmd.opcode >> 8;
614 	else
615 		opcode = op->cmd.opcode;
616 
617 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
618 
619 	if (op->addr.nbytes) {
620 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
621 		reg |= ((op->addr.nbytes - 1) &
622 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
623 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
624 
625 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
626 	}
627 
628 	if (n_tx) {
629 		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
630 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
631 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
632 		data = 0;
633 		write_len = (n_tx > 4) ? 4 : n_tx;
634 		memcpy(&data, txbuf, write_len);
635 		txbuf += write_len;
636 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
637 
638 		if (n_tx > 4) {
639 			data = 0;
640 			write_len = n_tx - 4;
641 			memcpy(&data, txbuf, write_len);
642 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
643 		}
644 	}
645 
646 	ret = cqspi_exec_flash_cmd(cqspi, reg);
647 
648 	/* Reset CMD_CTRL Reg once command write completes */
649 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
650 
651 	return ret;
652 }
653 
654 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
655 			    const struct spi_mem_op *op)
656 {
657 	struct cqspi_st *cqspi = f_pdata->cqspi;
658 	void __iomem *reg_base = cqspi->iobase;
659 	unsigned int dummy_clk = 0;
660 	unsigned int reg;
661 	int ret;
662 	u8 opcode;
663 
664 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
665 	if (ret)
666 		return ret;
667 
668 	if (op->cmd.dtr)
669 		opcode = op->cmd.opcode >> 8;
670 	else
671 		opcode = op->cmd.opcode;
672 
673 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
674 	reg |= cqspi_calc_rdreg(op);
675 
676 	/* Setup dummy clock cycles */
677 	dummy_clk = cqspi_calc_dummy(op);
678 
679 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
680 		return -EOPNOTSUPP;
681 
682 	if (dummy_clk)
683 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
684 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
685 
686 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
687 
688 	/* Set address width */
689 	reg = readl(reg_base + CQSPI_REG_SIZE);
690 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
691 	reg |= (op->addr.nbytes - 1);
692 	writel(reg, reg_base + CQSPI_REG_SIZE);
693 	return 0;
694 }
695 
696 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
697 				       u8 *rxbuf, loff_t from_addr,
698 				       const size_t n_rx)
699 {
700 	struct cqspi_st *cqspi = f_pdata->cqspi;
701 	struct device *dev = &cqspi->pdev->dev;
702 	void __iomem *reg_base = cqspi->iobase;
703 	void __iomem *ahb_base = cqspi->ahb_base;
704 	unsigned int remaining = n_rx;
705 	unsigned int mod_bytes = n_rx % 4;
706 	unsigned int bytes_to_read = 0;
707 	u8 *rxbuf_end = rxbuf + n_rx;
708 	int ret = 0;
709 
710 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
711 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
712 
713 	/* Clear all interrupts. */
714 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
715 
716 	/*
717 	 * On SoCFPGA platform reading the SRAM is slow due to
718 	 * hardware limitation and causing read interrupt storm to CPU,
719 	 * so enabling only watermark interrupt to disable all read
720 	 * interrupts later as we want to run "bytes to read" loop with
721 	 * all the read interrupts disabled for max performance.
722 	 */
723 
724 	if (!cqspi->slow_sram)
725 		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
726 	else
727 		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
728 
729 	reinit_completion(&cqspi->transfer_complete);
730 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
731 	       reg_base + CQSPI_REG_INDIRECTRD);
732 
733 	while (remaining > 0) {
734 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
735 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
736 			ret = -ETIMEDOUT;
737 
738 		/*
739 		 * Disable all read interrupts until
740 		 * we are out of "bytes to read"
741 		 */
742 		if (cqspi->slow_sram)
743 			writel(0x0, reg_base + CQSPI_REG_IRQMASK);
744 
745 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
746 
747 		if (ret && bytes_to_read == 0) {
748 			dev_err(dev, "Indirect read timeout, no bytes\n");
749 			goto failrd;
750 		}
751 
752 		while (bytes_to_read != 0) {
753 			unsigned int word_remain = round_down(remaining, 4);
754 
755 			bytes_to_read *= cqspi->fifo_width;
756 			bytes_to_read = bytes_to_read > remaining ?
757 					remaining : bytes_to_read;
758 			bytes_to_read = round_down(bytes_to_read, 4);
759 			/* Read 4 byte word chunks then single bytes */
760 			if (bytes_to_read) {
761 				ioread32_rep(ahb_base, rxbuf,
762 					     (bytes_to_read / 4));
763 			} else if (!word_remain && mod_bytes) {
764 				unsigned int temp = ioread32(ahb_base);
765 
766 				bytes_to_read = mod_bytes;
767 				memcpy(rxbuf, &temp, min((unsigned int)
768 							 (rxbuf_end - rxbuf),
769 							 bytes_to_read));
770 			}
771 			rxbuf += bytes_to_read;
772 			remaining -= bytes_to_read;
773 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
774 		}
775 
776 		if (remaining > 0) {
777 			reinit_completion(&cqspi->transfer_complete);
778 			if (cqspi->slow_sram)
779 				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
780 		}
781 	}
782 
783 	/* Check indirect done status */
784 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
785 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
786 	if (ret) {
787 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
788 		goto failrd;
789 	}
790 
791 	/* Disable interrupt */
792 	writel(0, reg_base + CQSPI_REG_IRQMASK);
793 
794 	/* Clear indirect completion status */
795 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
796 
797 	return 0;
798 
799 failrd:
800 	/* Disable interrupt */
801 	writel(0, reg_base + CQSPI_REG_IRQMASK);
802 
803 	/* Cancel the indirect read */
804 	writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
805 	       reg_base + CQSPI_REG_INDIRECTRD);
806 	return ret;
807 }
808 
809 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
810 {
811 	void __iomem *reg_base = cqspi->iobase;
812 	unsigned int reg;
813 
814 	reg = readl(reg_base + CQSPI_REG_CONFIG);
815 
816 	if (enable)
817 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
818 	else
819 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
820 
821 	writel(reg, reg_base + CQSPI_REG_CONFIG);
822 }
823 
824 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
825 					  u_char *rxbuf, loff_t from_addr,
826 					  size_t n_rx)
827 {
828 	struct cqspi_st *cqspi = f_pdata->cqspi;
829 	struct device *dev = &cqspi->pdev->dev;
830 	void __iomem *reg_base = cqspi->iobase;
831 	u32 reg, bytes_to_dma;
832 	loff_t addr = from_addr;
833 	void *buf = rxbuf;
834 	dma_addr_t dma_addr;
835 	u8 bytes_rem;
836 	int ret = 0;
837 
838 	bytes_rem = n_rx % 4;
839 	bytes_to_dma = (n_rx - bytes_rem);
840 
841 	if (!bytes_to_dma)
842 		goto nondmard;
843 
844 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
845 	if (ret)
846 		return ret;
847 
848 	cqspi_controller_enable(cqspi, 0);
849 
850 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
851 	reg |= CQSPI_REG_CONFIG_DMA_MASK;
852 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
853 
854 	cqspi_controller_enable(cqspi, 1);
855 
856 	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
857 	if (dma_mapping_error(dev, dma_addr)) {
858 		dev_err(dev, "dma mapping failed\n");
859 		return -ENOMEM;
860 	}
861 
862 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
863 	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
864 	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
865 	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
866 
867 	/* Clear all interrupts. */
868 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
869 
870 	/* Enable DMA done interrupt */
871 	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
872 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
873 
874 	/* Default DMA periph configuration */
875 	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
876 
877 	/* Configure DMA Dst address */
878 	writel(lower_32_bits(dma_addr),
879 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
880 	writel(upper_32_bits(dma_addr),
881 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
882 
883 	/* Configure DMA Src address */
884 	writel(cqspi->trigger_address, reg_base +
885 	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
886 
887 	/* Set DMA destination size */
888 	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
889 
890 	/* Set DMA destination control */
891 	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
892 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
893 
894 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
895 	       reg_base + CQSPI_REG_INDIRECTRD);
896 
897 	reinit_completion(&cqspi->transfer_complete);
898 
899 	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
900 					 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
901 		ret = -ETIMEDOUT;
902 		goto failrd;
903 	}
904 
905 	/* Disable DMA interrupt */
906 	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
907 
908 	/* Clear indirect completion status */
909 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
910 	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
911 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
912 
913 	cqspi_controller_enable(cqspi, 0);
914 
915 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
916 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
917 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
918 
919 	cqspi_controller_enable(cqspi, 1);
920 
921 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
922 					PM_OSPI_MUX_SEL_LINEAR);
923 	if (ret)
924 		return ret;
925 
926 nondmard:
927 	if (bytes_rem) {
928 		addr += bytes_to_dma;
929 		buf += bytes_to_dma;
930 		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
931 						  bytes_rem);
932 		if (ret)
933 			return ret;
934 	}
935 
936 	return 0;
937 
938 failrd:
939 	/* Disable DMA interrupt */
940 	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
941 
942 	/* Cancel the indirect read */
943 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
944 	       reg_base + CQSPI_REG_INDIRECTRD);
945 
946 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
947 
948 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
949 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
950 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
951 
952 	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
953 
954 	return ret;
955 }
956 
957 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
958 			     const struct spi_mem_op *op)
959 {
960 	unsigned int reg;
961 	int ret;
962 	struct cqspi_st *cqspi = f_pdata->cqspi;
963 	void __iomem *reg_base = cqspi->iobase;
964 	u8 opcode;
965 
966 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
967 	if (ret)
968 		return ret;
969 
970 	if (op->cmd.dtr)
971 		opcode = op->cmd.opcode >> 8;
972 	else
973 		opcode = op->cmd.opcode;
974 
975 	/* Set opcode. */
976 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
977 	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
978 	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
979 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
980 	reg = cqspi_calc_rdreg(op);
981 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
982 
983 	/*
984 	 * SPI NAND flashes require the address of the status register to be
985 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
986 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
987 	 * command in DTR mode.
988 	 *
989 	 * But this controller does not support address phase in the Read SR
990 	 * command when doing auto-HW polling. So, disable write completion
991 	 * polling on the controller's side. spinand and spi-nor will take
992 	 * care of polling the status register.
993 	 */
994 	if (cqspi->wr_completion) {
995 		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
996 		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
997 		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
998 		/*
999 		 * DAC mode require auto polling as flash needs to be polled
1000 		 * for write completion in case of bubble in SPI transaction
1001 		 * due to slow CPU/DMA master.
1002 		 */
1003 		cqspi->use_direct_mode_wr = false;
1004 	}
1005 
1006 	reg = readl(reg_base + CQSPI_REG_SIZE);
1007 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1008 	reg |= (op->addr.nbytes - 1);
1009 	writel(reg, reg_base + CQSPI_REG_SIZE);
1010 	return 0;
1011 }
1012 
1013 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1014 					loff_t to_addr, const u8 *txbuf,
1015 					const size_t n_tx)
1016 {
1017 	struct cqspi_st *cqspi = f_pdata->cqspi;
1018 	struct device *dev = &cqspi->pdev->dev;
1019 	void __iomem *reg_base = cqspi->iobase;
1020 	unsigned int remaining = n_tx;
1021 	unsigned int write_bytes;
1022 	int ret;
1023 
1024 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1025 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1026 
1027 	/* Clear all interrupts. */
1028 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1029 
1030 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1031 
1032 	reinit_completion(&cqspi->transfer_complete);
1033 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1034 	       reg_base + CQSPI_REG_INDIRECTWR);
1035 	/*
1036 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1037 	 * Controller programming sequence, couple of cycles of
1038 	 * QSPI_REF_CLK delay is required for the above bit to
1039 	 * be internally synchronized by the QSPI module. Provide 5
1040 	 * cycles of delay.
1041 	 */
1042 	if (cqspi->wr_delay)
1043 		ndelay(cqspi->wr_delay);
1044 
1045 	/*
1046 	 * If a hazard exists between the APB and AHB interfaces, perform a
1047 	 * dummy readback from the controller to ensure synchronization.
1048 	 */
1049 	if (cqspi->apb_ahb_hazard)
1050 		readl(reg_base + CQSPI_REG_INDIRECTWR);
1051 
1052 	while (remaining > 0) {
1053 		size_t write_words, mod_bytes;
1054 
1055 		write_bytes = remaining;
1056 		write_words = write_bytes / 4;
1057 		mod_bytes = write_bytes % 4;
1058 		/* Write 4 bytes at a time then single bytes. */
1059 		if (write_words) {
1060 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1061 			txbuf += (write_words * 4);
1062 		}
1063 		if (mod_bytes) {
1064 			unsigned int temp = 0xFFFFFFFF;
1065 
1066 			memcpy(&temp, txbuf, mod_bytes);
1067 			iowrite32(temp, cqspi->ahb_base);
1068 			txbuf += mod_bytes;
1069 		}
1070 
1071 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1072 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1073 			dev_err(dev, "Indirect write timeout\n");
1074 			ret = -ETIMEDOUT;
1075 			goto failwr;
1076 		}
1077 
1078 		remaining -= write_bytes;
1079 
1080 		if (remaining > 0)
1081 			reinit_completion(&cqspi->transfer_complete);
1082 	}
1083 
1084 	/* Check indirect done status */
1085 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1086 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1087 	if (ret) {
1088 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1089 		goto failwr;
1090 	}
1091 
1092 	/* Disable interrupt. */
1093 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1094 
1095 	/* Clear indirect completion status */
1096 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1097 
1098 	cqspi_wait_idle(cqspi);
1099 
1100 	return 0;
1101 
1102 failwr:
1103 	/* Disable interrupt. */
1104 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1105 
1106 	/* Cancel the indirect write */
1107 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1108 	       reg_base + CQSPI_REG_INDIRECTWR);
1109 	return ret;
1110 }
1111 
1112 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1113 {
1114 	struct cqspi_st *cqspi = f_pdata->cqspi;
1115 	void __iomem *reg_base = cqspi->iobase;
1116 	unsigned int chip_select = f_pdata->cs;
1117 	unsigned int reg;
1118 
1119 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1120 	if (cqspi->is_decoded_cs) {
1121 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1122 	} else {
1123 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1124 
1125 		/* Convert CS if without decoder.
1126 		 * CS0 to 4b'1110
1127 		 * CS1 to 4b'1101
1128 		 * CS2 to 4b'1011
1129 		 * CS3 to 4b'0111
1130 		 */
1131 		chip_select = 0xF & ~(1 << chip_select);
1132 	}
1133 
1134 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1135 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1136 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1137 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1138 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1139 }
1140 
1141 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1142 					   const unsigned int ns_val)
1143 {
1144 	unsigned int ticks;
1145 
1146 	ticks = ref_clk_hz / 1000;	/* kHz */
1147 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1148 
1149 	return ticks;
1150 }
1151 
1152 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1153 {
1154 	struct cqspi_st *cqspi = f_pdata->cqspi;
1155 	void __iomem *iobase = cqspi->iobase;
1156 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1157 	unsigned int tshsl, tchsh, tslch, tsd2d;
1158 	unsigned int reg;
1159 	unsigned int tsclk;
1160 
1161 	/* calculate the number of ref ticks for one sclk tick */
1162 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1163 
1164 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1165 	/* this particular value must be at least one sclk */
1166 	if (tshsl < tsclk)
1167 		tshsl = tsclk;
1168 
1169 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1170 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1171 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1172 
1173 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1174 	       << CQSPI_REG_DELAY_TSHSL_LSB;
1175 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1176 		<< CQSPI_REG_DELAY_TCHSH_LSB;
1177 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1178 		<< CQSPI_REG_DELAY_TSLCH_LSB;
1179 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1180 		<< CQSPI_REG_DELAY_TSD2D_LSB;
1181 	writel(reg, iobase + CQSPI_REG_DELAY);
1182 }
1183 
1184 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1185 {
1186 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1187 	void __iomem *reg_base = cqspi->iobase;
1188 	u32 reg, div;
1189 
1190 	/* Recalculate the baudrate divisor based on QSPI specification. */
1191 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1192 
1193 	/* Maximum baud divisor */
1194 	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1195 		div = CQSPI_REG_CONFIG_BAUD_MASK;
1196 		dev_warn(&cqspi->pdev->dev,
1197 			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1198 			cqspi->sclk, ref_clk_hz/((div+1)*2));
1199 	}
1200 
1201 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1202 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1203 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1204 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1205 }
1206 
1207 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1208 				   const bool bypass,
1209 				   const unsigned int delay)
1210 {
1211 	void __iomem *reg_base = cqspi->iobase;
1212 	unsigned int reg;
1213 
1214 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1215 
1216 	if (bypass)
1217 		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1218 	else
1219 		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1220 
1221 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1222 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1223 
1224 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1225 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1226 
1227 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1228 }
1229 
1230 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1231 			    unsigned long sclk)
1232 {
1233 	struct cqspi_st *cqspi = f_pdata->cqspi;
1234 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1235 	int switch_ck = (cqspi->sclk != sclk);
1236 
1237 	if (switch_cs || switch_ck)
1238 		cqspi_controller_enable(cqspi, 0);
1239 
1240 	/* Switch chip select. */
1241 	if (switch_cs) {
1242 		cqspi->current_cs = f_pdata->cs;
1243 		cqspi_chipselect(f_pdata);
1244 	}
1245 
1246 	/* Setup baudrate divisor and delays */
1247 	if (switch_ck) {
1248 		cqspi->sclk = sclk;
1249 		cqspi_config_baudrate_div(cqspi);
1250 		cqspi_delay(f_pdata);
1251 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1252 				       f_pdata->read_delay);
1253 	}
1254 
1255 	if (switch_cs || switch_ck)
1256 		cqspi_controller_enable(cqspi, 1);
1257 }
1258 
1259 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1260 			   const struct spi_mem_op *op)
1261 {
1262 	struct cqspi_st *cqspi = f_pdata->cqspi;
1263 	loff_t to = op->addr.val;
1264 	size_t len = op->data.nbytes;
1265 	const u_char *buf = op->data.buf.out;
1266 	int ret;
1267 
1268 	ret = cqspi_write_setup(f_pdata, op);
1269 	if (ret)
1270 		return ret;
1271 
1272 	/*
1273 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1274 	 * address (all 0s) with the read status register command in DTR mode.
1275 	 * But this controller does not support sending dummy address bytes to
1276 	 * the flash when it is polling the write completion register in DTR
1277 	 * mode. So, we can not use direct mode when in DTR mode for writing
1278 	 * data.
1279 	 */
1280 	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1281 	    cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1282 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1283 		return cqspi_wait_idle(cqspi);
1284 	}
1285 
1286 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1287 }
1288 
1289 static void cqspi_rx_dma_callback(void *param)
1290 {
1291 	struct cqspi_st *cqspi = param;
1292 
1293 	complete(&cqspi->rx_dma_complete);
1294 }
1295 
1296 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1297 				     u_char *buf, loff_t from, size_t len)
1298 {
1299 	struct cqspi_st *cqspi = f_pdata->cqspi;
1300 	struct device *dev = &cqspi->pdev->dev;
1301 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1302 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1303 	int ret = 0;
1304 	struct dma_async_tx_descriptor *tx;
1305 	dma_cookie_t cookie;
1306 	dma_addr_t dma_dst;
1307 	struct device *ddev;
1308 
1309 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1310 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1311 		return 0;
1312 	}
1313 
1314 	ddev = cqspi->rx_chan->device->dev;
1315 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1316 	if (dma_mapping_error(ddev, dma_dst)) {
1317 		dev_err(dev, "dma mapping failed\n");
1318 		return -ENOMEM;
1319 	}
1320 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1321 				       len, flags);
1322 	if (!tx) {
1323 		dev_err(dev, "device_prep_dma_memcpy error\n");
1324 		ret = -EIO;
1325 		goto err_unmap;
1326 	}
1327 
1328 	tx->callback = cqspi_rx_dma_callback;
1329 	tx->callback_param = cqspi;
1330 	cookie = tx->tx_submit(tx);
1331 	reinit_completion(&cqspi->rx_dma_complete);
1332 
1333 	ret = dma_submit_error(cookie);
1334 	if (ret) {
1335 		dev_err(dev, "dma_submit_error %d\n", cookie);
1336 		ret = -EIO;
1337 		goto err_unmap;
1338 	}
1339 
1340 	dma_async_issue_pending(cqspi->rx_chan);
1341 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1342 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1343 		dmaengine_terminate_sync(cqspi->rx_chan);
1344 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1345 		ret = -ETIMEDOUT;
1346 		goto err_unmap;
1347 	}
1348 
1349 err_unmap:
1350 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1351 
1352 	return ret;
1353 }
1354 
1355 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1356 			  const struct spi_mem_op *op)
1357 {
1358 	struct cqspi_st *cqspi = f_pdata->cqspi;
1359 	struct device *dev = &cqspi->pdev->dev;
1360 	const struct cqspi_driver_platdata *ddata;
1361 	loff_t from = op->addr.val;
1362 	size_t len = op->data.nbytes;
1363 	u_char *buf = op->data.buf.in;
1364 	u64 dma_align = (u64)(uintptr_t)buf;
1365 	int ret;
1366 
1367 	ddata = of_device_get_match_data(dev);
1368 
1369 	ret = cqspi_read_setup(f_pdata, op);
1370 	if (ret)
1371 		return ret;
1372 
1373 	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1374 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1375 
1376 	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1377 	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1378 		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1379 
1380 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1381 }
1382 
1383 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1384 {
1385 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1386 	struct cqspi_flash_pdata *f_pdata;
1387 
1388 	f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1389 	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1390 
1391 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1392 	/*
1393 	 * Performing reads in DAC mode forces to read minimum 4 bytes
1394 	 * which is unsupported on some flash devices during register
1395 	 * reads, prefer STIG mode for such small reads.
1396 	 */
1397 		if (!op->addr.nbytes ||
1398 		    op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1399 			return cqspi_command_read(f_pdata, op);
1400 
1401 		return cqspi_read(f_pdata, op);
1402 	}
1403 
1404 	if (!op->addr.nbytes || !op->data.buf.out)
1405 		return cqspi_command_write(f_pdata, op);
1406 
1407 	return cqspi_write(f_pdata, op);
1408 }
1409 
1410 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1411 {
1412 	int ret;
1413 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1414 	struct device *dev = &cqspi->pdev->dev;
1415 
1416 	ret = pm_runtime_resume_and_get(dev);
1417 	if (ret) {
1418 		dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1419 		return ret;
1420 	}
1421 
1422 	ret = cqspi_mem_process(mem, op);
1423 
1424 	pm_runtime_mark_last_busy(dev);
1425 	pm_runtime_put_autosuspend(dev);
1426 
1427 	if (ret)
1428 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1429 
1430 	return ret;
1431 }
1432 
1433 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1434 				  const struct spi_mem_op *op)
1435 {
1436 	bool all_true, all_false;
1437 
1438 	/*
1439 	 * op->dummy.dtr is required for converting nbytes into ncycles.
1440 	 * Also, don't check the dtr field of the op phase having zero nbytes.
1441 	 */
1442 	all_true = op->cmd.dtr &&
1443 		   (!op->addr.nbytes || op->addr.dtr) &&
1444 		   (!op->dummy.nbytes || op->dummy.dtr) &&
1445 		   (!op->data.nbytes || op->data.dtr);
1446 
1447 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1448 		    !op->data.dtr;
1449 
1450 	if (all_true) {
1451 		/* Right now we only support 8-8-8 DTR mode. */
1452 		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1453 			return false;
1454 		if (op->addr.nbytes && op->addr.buswidth != 8)
1455 			return false;
1456 		if (op->data.nbytes && op->data.buswidth != 8)
1457 			return false;
1458 	} else if (!all_false) {
1459 		/* Mixed DTR modes are not supported. */
1460 		return false;
1461 	}
1462 
1463 	return spi_mem_default_supports_op(mem, op);
1464 }
1465 
1466 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1467 				    struct cqspi_flash_pdata *f_pdata,
1468 				    struct device_node *np)
1469 {
1470 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1471 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1472 		return -ENXIO;
1473 	}
1474 
1475 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1476 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1477 		return -ENXIO;
1478 	}
1479 
1480 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1481 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1482 		return -ENXIO;
1483 	}
1484 
1485 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1486 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1487 		return -ENXIO;
1488 	}
1489 
1490 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1491 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1492 		return -ENXIO;
1493 	}
1494 
1495 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1496 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1497 		return -ENXIO;
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1504 {
1505 	struct device *dev = &cqspi->pdev->dev;
1506 	struct device_node *np = dev->of_node;
1507 	u32 id[2];
1508 
1509 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1510 
1511 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1512 		dev_err(dev, "couldn't determine fifo-depth\n");
1513 		return -ENXIO;
1514 	}
1515 
1516 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1517 		dev_err(dev, "couldn't determine fifo-width\n");
1518 		return -ENXIO;
1519 	}
1520 
1521 	if (of_property_read_u32(np, "cdns,trigger-address",
1522 				 &cqspi->trigger_address)) {
1523 		dev_err(dev, "couldn't determine trigger-address\n");
1524 		return -ENXIO;
1525 	}
1526 
1527 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1528 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1529 
1530 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1531 
1532 	if (!of_property_read_u32_array(np, "power-domains", id,
1533 					ARRAY_SIZE(id)))
1534 		cqspi->pd_dev_id = id[1];
1535 
1536 	return 0;
1537 }
1538 
1539 static void cqspi_controller_init(struct cqspi_st *cqspi)
1540 {
1541 	u32 reg;
1542 
1543 	cqspi_controller_enable(cqspi, 0);
1544 
1545 	/* Configure the remap address register, no remap */
1546 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1547 
1548 	/* Disable all interrupts. */
1549 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1550 
1551 	/* Configure the SRAM split to 1:1 . */
1552 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1553 
1554 	/* Load indirect trigger address. */
1555 	writel(cqspi->trigger_address,
1556 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1557 
1558 	/* Program read watermark -- 1/2 of the FIFO. */
1559 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1560 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1561 	/* Program write watermark -- 1/8 of the FIFO. */
1562 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1563 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1564 
1565 	/* Disable direct access controller */
1566 	if (!cqspi->use_direct_mode) {
1567 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1568 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1569 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1570 	}
1571 
1572 	/* Enable DMA interface */
1573 	if (cqspi->use_dma_read) {
1574 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1575 		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1576 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1577 	}
1578 
1579 	cqspi_controller_enable(cqspi, 1);
1580 }
1581 
1582 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1583 {
1584 	dma_cap_mask_t mask;
1585 
1586 	dma_cap_zero(mask);
1587 	dma_cap_set(DMA_MEMCPY, mask);
1588 
1589 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1590 	if (IS_ERR(cqspi->rx_chan)) {
1591 		int ret = PTR_ERR(cqspi->rx_chan);
1592 
1593 		cqspi->rx_chan = NULL;
1594 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1595 	}
1596 	init_completion(&cqspi->rx_dma_complete);
1597 
1598 	return 0;
1599 }
1600 
1601 static const char *cqspi_get_name(struct spi_mem *mem)
1602 {
1603 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1604 	struct device *dev = &cqspi->pdev->dev;
1605 
1606 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1607 			      spi_get_chipselect(mem->spi, 0));
1608 }
1609 
1610 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1611 	.exec_op = cqspi_exec_mem_op,
1612 	.get_name = cqspi_get_name,
1613 	.supports_op = cqspi_supports_mem_op,
1614 };
1615 
1616 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1617 	.dtr = true,
1618 };
1619 
1620 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1621 {
1622 	struct platform_device *pdev = cqspi->pdev;
1623 	struct device *dev = &pdev->dev;
1624 	struct device_node *np = dev->of_node;
1625 	struct cqspi_flash_pdata *f_pdata;
1626 	unsigned int cs;
1627 	int ret;
1628 
1629 	/* Get flash device data */
1630 	for_each_available_child_of_node(dev->of_node, np) {
1631 		ret = of_property_read_u32(np, "reg", &cs);
1632 		if (ret) {
1633 			dev_err(dev, "Couldn't determine chip select.\n");
1634 			of_node_put(np);
1635 			return ret;
1636 		}
1637 
1638 		if (cs >= CQSPI_MAX_CHIPSELECT) {
1639 			dev_err(dev, "Chip select %d out of range.\n", cs);
1640 			of_node_put(np);
1641 			return -EINVAL;
1642 		}
1643 
1644 		f_pdata = &cqspi->f_pdata[cs];
1645 		f_pdata->cqspi = cqspi;
1646 		f_pdata->cs = cs;
1647 
1648 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1649 		if (ret) {
1650 			of_node_put(np);
1651 			return ret;
1652 		}
1653 	}
1654 
1655 	return 0;
1656 }
1657 
1658 static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1659 {
1660 	static struct clk_bulk_data qspiclk[] = {
1661 		{ .id = "apb" },
1662 		{ .id = "ahb" },
1663 	};
1664 
1665 	int ret = 0;
1666 
1667 	ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1668 	if (ret) {
1669 		dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1670 		return ret;
1671 	}
1672 
1673 	cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1674 	cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1675 
1676 	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1677 	if (ret) {
1678 		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1679 		return ret;
1680 	}
1681 
1682 	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1683 	if (ret) {
1684 		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1685 		goto disable_apb_clk;
1686 	}
1687 
1688 	cqspi->is_jh7110 = true;
1689 
1690 	return 0;
1691 
1692 disable_apb_clk:
1693 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1694 
1695 	return ret;
1696 }
1697 
1698 static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1699 {
1700 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1701 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1702 }
1703 static int cqspi_probe(struct platform_device *pdev)
1704 {
1705 	const struct cqspi_driver_platdata *ddata;
1706 	struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1707 	struct device *dev = &pdev->dev;
1708 	struct spi_controller *host;
1709 	struct resource *res_ahb;
1710 	struct cqspi_st *cqspi;
1711 	int ret;
1712 	int irq;
1713 
1714 	host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1715 	if (!host) {
1716 		dev_err(&pdev->dev, "devm_spi_alloc_host failed\n");
1717 		return -ENOMEM;
1718 	}
1719 	host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1720 	host->mem_ops = &cqspi_mem_ops;
1721 	host->mem_caps = &cqspi_mem_caps;
1722 	host->dev.of_node = pdev->dev.of_node;
1723 
1724 	cqspi = spi_controller_get_devdata(host);
1725 
1726 	cqspi->pdev = pdev;
1727 	cqspi->host = host;
1728 	cqspi->is_jh7110 = false;
1729 	platform_set_drvdata(pdev, cqspi);
1730 
1731 	/* Obtain configuration from OF. */
1732 	ret = cqspi_of_get_pdata(cqspi);
1733 	if (ret) {
1734 		dev_err(dev, "Cannot get mandatory OF data.\n");
1735 		return -ENODEV;
1736 	}
1737 
1738 	/* Obtain QSPI clock. */
1739 	cqspi->clk = devm_clk_get(dev, NULL);
1740 	if (IS_ERR(cqspi->clk)) {
1741 		dev_err(dev, "Cannot claim QSPI clock.\n");
1742 		ret = PTR_ERR(cqspi->clk);
1743 		return ret;
1744 	}
1745 
1746 	/* Obtain and remap controller address. */
1747 	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1748 	if (IS_ERR(cqspi->iobase)) {
1749 		dev_err(dev, "Cannot remap controller address.\n");
1750 		ret = PTR_ERR(cqspi->iobase);
1751 		return ret;
1752 	}
1753 
1754 	/* Obtain and remap AHB address. */
1755 	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1756 	if (IS_ERR(cqspi->ahb_base)) {
1757 		dev_err(dev, "Cannot remap AHB address.\n");
1758 		ret = PTR_ERR(cqspi->ahb_base);
1759 		return ret;
1760 	}
1761 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1762 	cqspi->ahb_size = resource_size(res_ahb);
1763 
1764 	init_completion(&cqspi->transfer_complete);
1765 
1766 	/* Obtain IRQ line. */
1767 	irq = platform_get_irq(pdev, 0);
1768 	if (irq < 0)
1769 		return -ENXIO;
1770 
1771 	ret = pm_runtime_set_active(dev);
1772 	if (ret)
1773 		return ret;
1774 
1775 
1776 	ret = clk_prepare_enable(cqspi->clk);
1777 	if (ret) {
1778 		dev_err(dev, "Cannot enable QSPI clock.\n");
1779 		goto probe_clk_failed;
1780 	}
1781 
1782 	/* Obtain QSPI reset control */
1783 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1784 	if (IS_ERR(rstc)) {
1785 		ret = PTR_ERR(rstc);
1786 		dev_err(dev, "Cannot get QSPI reset.\n");
1787 		goto probe_reset_failed;
1788 	}
1789 
1790 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1791 	if (IS_ERR(rstc_ocp)) {
1792 		ret = PTR_ERR(rstc_ocp);
1793 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1794 		goto probe_reset_failed;
1795 	}
1796 
1797 	if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1798 		rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1799 		if (IS_ERR(rstc_ref)) {
1800 			ret = PTR_ERR(rstc_ref);
1801 			dev_err(dev, "Cannot get QSPI REF reset.\n");
1802 			goto probe_reset_failed;
1803 		}
1804 		reset_control_assert(rstc_ref);
1805 		reset_control_deassert(rstc_ref);
1806 	}
1807 
1808 	reset_control_assert(rstc);
1809 	reset_control_deassert(rstc);
1810 
1811 	reset_control_assert(rstc_ocp);
1812 	reset_control_deassert(rstc_ocp);
1813 
1814 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1815 	host->max_speed_hz = cqspi->master_ref_clk_hz;
1816 
1817 	/* write completion is supported by default */
1818 	cqspi->wr_completion = true;
1819 
1820 	ddata  = of_device_get_match_data(dev);
1821 	if (ddata) {
1822 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1823 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1824 						cqspi->master_ref_clk_hz);
1825 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1826 			host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1827 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1828 			cqspi->use_direct_mode = true;
1829 			cqspi->use_direct_mode_wr = true;
1830 		}
1831 		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1832 			cqspi->use_dma_read = true;
1833 		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1834 			cqspi->wr_completion = false;
1835 		if (ddata->quirks & CQSPI_SLOW_SRAM)
1836 			cqspi->slow_sram = true;
1837 		if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1838 			cqspi->apb_ahb_hazard = true;
1839 
1840 		if (ddata->jh7110_clk_init) {
1841 			ret = cqspi_jh7110_clk_init(pdev, cqspi);
1842 			if (ret)
1843 				goto probe_reset_failed;
1844 		}
1845 
1846 		if (of_device_is_compatible(pdev->dev.of_node,
1847 					    "xlnx,versal-ospi-1.0")) {
1848 			ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1849 			if (ret)
1850 				goto probe_reset_failed;
1851 		}
1852 	}
1853 
1854 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1855 			       pdev->name, cqspi);
1856 	if (ret) {
1857 		dev_err(dev, "Cannot request IRQ.\n");
1858 		goto probe_reset_failed;
1859 	}
1860 
1861 	cqspi_wait_idle(cqspi);
1862 	cqspi_controller_init(cqspi);
1863 	cqspi->current_cs = -1;
1864 	cqspi->sclk = 0;
1865 
1866 	host->num_chipselect = cqspi->num_chipselect;
1867 
1868 	ret = cqspi_setup_flash(cqspi);
1869 	if (ret) {
1870 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1871 		goto probe_setup_failed;
1872 	}
1873 
1874 	if (cqspi->use_direct_mode) {
1875 		ret = cqspi_request_mmap_dma(cqspi);
1876 		if (ret == -EPROBE_DEFER)
1877 			goto probe_setup_failed;
1878 	}
1879 
1880 	ret = devm_pm_runtime_enable(dev);
1881 	if (ret) {
1882 		if (cqspi->rx_chan)
1883 			dma_release_channel(cqspi->rx_chan);
1884 		goto probe_setup_failed;
1885 	}
1886 
1887 	pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1888 	pm_runtime_use_autosuspend(dev);
1889 	pm_runtime_get_noresume(dev);
1890 
1891 	ret = spi_register_controller(host);
1892 	if (ret) {
1893 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1894 		goto probe_setup_failed;
1895 	}
1896 
1897 	pm_runtime_mark_last_busy(dev);
1898 	pm_runtime_put_autosuspend(dev);
1899 
1900 	return 0;
1901 probe_setup_failed:
1902 	cqspi_controller_enable(cqspi, 0);
1903 probe_reset_failed:
1904 	if (cqspi->is_jh7110)
1905 		cqspi_jh7110_disable_clk(pdev, cqspi);
1906 	clk_disable_unprepare(cqspi->clk);
1907 probe_clk_failed:
1908 	return ret;
1909 }
1910 
1911 static void cqspi_remove(struct platform_device *pdev)
1912 {
1913 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1914 
1915 	spi_unregister_controller(cqspi->host);
1916 	cqspi_controller_enable(cqspi, 0);
1917 
1918 	if (cqspi->rx_chan)
1919 		dma_release_channel(cqspi->rx_chan);
1920 
1921 	clk_disable_unprepare(cqspi->clk);
1922 
1923 	if (cqspi->is_jh7110)
1924 		cqspi_jh7110_disable_clk(pdev, cqspi);
1925 
1926 	pm_runtime_put_sync(&pdev->dev);
1927 	pm_runtime_disable(&pdev->dev);
1928 }
1929 
1930 static int cqspi_runtime_suspend(struct device *dev)
1931 {
1932 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1933 
1934 	cqspi_controller_enable(cqspi, 0);
1935 	clk_disable_unprepare(cqspi->clk);
1936 	return 0;
1937 }
1938 
1939 static int cqspi_runtime_resume(struct device *dev)
1940 {
1941 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1942 
1943 	clk_prepare_enable(cqspi->clk);
1944 	cqspi_wait_idle(cqspi);
1945 	cqspi_controller_init(cqspi);
1946 
1947 	cqspi->current_cs = -1;
1948 	cqspi->sclk = 0;
1949 	return 0;
1950 }
1951 
1952 static int cqspi_suspend(struct device *dev)
1953 {
1954 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1955 
1956 	return spi_controller_suspend(cqspi->host);
1957 }
1958 
1959 static int cqspi_resume(struct device *dev)
1960 {
1961 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1962 
1963 	return spi_controller_resume(cqspi->host);
1964 }
1965 
1966 static const struct dev_pm_ops cqspi_dev_pm_ops = {
1967 	RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
1968 	SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
1969 };
1970 
1971 static const struct cqspi_driver_platdata cdns_qspi = {
1972 	.quirks = CQSPI_DISABLE_DAC_MODE,
1973 };
1974 
1975 static const struct cqspi_driver_platdata k2g_qspi = {
1976 	.quirks = CQSPI_NEEDS_WR_DELAY,
1977 };
1978 
1979 static const struct cqspi_driver_platdata am654_ospi = {
1980 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1981 	.quirks = CQSPI_NEEDS_WR_DELAY,
1982 };
1983 
1984 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1985 	.quirks = CQSPI_DISABLE_DAC_MODE,
1986 };
1987 
1988 static const struct cqspi_driver_platdata socfpga_qspi = {
1989 	.quirks = CQSPI_DISABLE_DAC_MODE
1990 			| CQSPI_NO_SUPPORT_WR_COMPLETION
1991 			| CQSPI_SLOW_SRAM,
1992 };
1993 
1994 static const struct cqspi_driver_platdata versal_ospi = {
1995 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1996 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1997 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
1998 	.get_dma_status = cqspi_get_versal_dma_status,
1999 };
2000 
2001 static const struct cqspi_driver_platdata jh7110_qspi = {
2002 	.quirks = CQSPI_DISABLE_DAC_MODE,
2003 	.jh7110_clk_init = cqspi_jh7110_clk_init,
2004 };
2005 
2006 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2007 	.quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2008 };
2009 
2010 static const struct of_device_id cqspi_dt_ids[] = {
2011 	{
2012 		.compatible = "cdns,qspi-nor",
2013 		.data = &cdns_qspi,
2014 	},
2015 	{
2016 		.compatible = "ti,k2g-qspi",
2017 		.data = &k2g_qspi,
2018 	},
2019 	{
2020 		.compatible = "ti,am654-ospi",
2021 		.data = &am654_ospi,
2022 	},
2023 	{
2024 		.compatible = "intel,lgm-qspi",
2025 		.data = &intel_lgm_qspi,
2026 	},
2027 	{
2028 		.compatible = "xlnx,versal-ospi-1.0",
2029 		.data = &versal_ospi,
2030 	},
2031 	{
2032 		.compatible = "intel,socfpga-qspi",
2033 		.data = &socfpga_qspi,
2034 	},
2035 	{
2036 		.compatible = "starfive,jh7110-qspi",
2037 		.data = &jh7110_qspi,
2038 	},
2039 	{
2040 		.compatible = "amd,pensando-elba-qspi",
2041 		.data = &pensando_cdns_qspi,
2042 	},
2043 	{ /* end of table */ }
2044 };
2045 
2046 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2047 
2048 static struct platform_driver cqspi_platform_driver = {
2049 	.probe = cqspi_probe,
2050 	.remove_new = cqspi_remove,
2051 	.driver = {
2052 		.name = CQSPI_NAME,
2053 		.pm = pm_ptr(&cqspi_dev_pm_ops),
2054 		.of_match_table = cqspi_dt_ids,
2055 	},
2056 };
2057 
2058 module_platform_driver(cqspi_platform_driver);
2059 
2060 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2061 MODULE_LICENSE("GPL v2");
2062 MODULE_ALIAS("platform:" CQSPI_NAME);
2063 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2064 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2065 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2066 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2067 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
2068