xref: /linux/drivers/spi/spi-cadence-quadspi.c (revision 8faabc041a001140564f718dabe37753e88b37fa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32 
33 #define CQSPI_NAME			"cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT		4
35 
36 static_assert(CQSPI_MAX_CHIPSELECT <= SPI_CS_CNT_MAX);
37 
38 /* Quirks */
39 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
40 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
41 #define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
42 #define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
43 #define CQSPI_SLOW_SRAM		BIT(4)
44 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR	BIT(5)
45 #define CQSPI_RD_NO_IRQ			BIT(6)
46 #define CQSPI_DISABLE_STIG_MODE		BIT(7)
47 
48 /* Capabilities */
49 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
50 
51 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
52 
53 enum {
54 	CLK_QSPI_APB = 0,
55 	CLK_QSPI_AHB,
56 	CLK_QSPI_NUM,
57 };
58 
59 struct cqspi_st;
60 
61 struct cqspi_flash_pdata {
62 	struct cqspi_st	*cqspi;
63 	u32		clk_rate;
64 	u32		read_delay;
65 	u32		tshsl_ns;
66 	u32		tsd2d_ns;
67 	u32		tchsh_ns;
68 	u32		tslch_ns;
69 	u8		cs;
70 };
71 
72 struct cqspi_st {
73 	struct platform_device	*pdev;
74 	struct spi_controller	*host;
75 	struct clk		*clk;
76 	struct clk		*clks[CLK_QSPI_NUM];
77 	unsigned int		sclk;
78 
79 	void __iomem		*iobase;
80 	void __iomem		*ahb_base;
81 	resource_size_t		ahb_size;
82 	struct completion	transfer_complete;
83 
84 	struct dma_chan		*rx_chan;
85 	struct completion	rx_dma_complete;
86 	dma_addr_t		mmap_phys_base;
87 
88 	int			current_cs;
89 	unsigned long		master_ref_clk_hz;
90 	bool			is_decoded_cs;
91 	u32			fifo_depth;
92 	u32			fifo_width;
93 	u32			num_chipselect;
94 	bool			rclk_en;
95 	u32			trigger_address;
96 	u32			wr_delay;
97 	bool			use_direct_mode;
98 	bool			use_direct_mode_wr;
99 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
100 	bool			use_dma_read;
101 	u32			pd_dev_id;
102 	bool			wr_completion;
103 	bool			slow_sram;
104 	bool			apb_ahb_hazard;
105 
106 	bool			is_jh7110; /* Flag for StarFive JH7110 SoC */
107 	bool			disable_stig_mode;
108 
109 	const struct cqspi_driver_platdata *ddata;
110 };
111 
112 struct cqspi_driver_platdata {
113 	u32 hwcaps_mask;
114 	u8 quirks;
115 	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
116 				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
117 	u32 (*get_dma_status)(struct cqspi_st *cqspi);
118 	int (*jh7110_clk_init)(struct platform_device *pdev,
119 			       struct cqspi_st *cqspi);
120 };
121 
122 /* Operation timeout value */
123 #define CQSPI_TIMEOUT_MS			500
124 #define CQSPI_READ_TIMEOUT_MS			10
125 #define CQSPI_BUSYWAIT_TIMEOUT_US		500
126 
127 /* Runtime_pm autosuspend delay */
128 #define CQSPI_AUTOSUSPEND_TIMEOUT		2000
129 
130 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
131 #define CQSPI_DUMMY_BYTES_MAX			4
132 #define CQSPI_DUMMY_CLKS_MAX			31
133 
134 #define CQSPI_STIG_DATA_LEN_MAX			8
135 
136 /* Register map */
137 #define CQSPI_REG_CONFIG			0x00
138 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
139 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
140 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
141 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
142 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
143 #define CQSPI_REG_CONFIG_BAUD_LSB		19
144 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
145 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
146 #define CQSPI_REG_CONFIG_IDLE_LSB		31
147 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
148 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
149 
150 #define CQSPI_REG_RD_INSTR			0x04
151 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
152 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
153 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
154 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
155 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
156 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
157 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
158 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
159 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
160 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
161 
162 #define CQSPI_REG_WR_INSTR			0x08
163 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
164 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
165 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
166 
167 #define CQSPI_REG_DELAY				0x0C
168 #define CQSPI_REG_DELAY_TSLCH_LSB		0
169 #define CQSPI_REG_DELAY_TCHSH_LSB		8
170 #define CQSPI_REG_DELAY_TSD2D_LSB		16
171 #define CQSPI_REG_DELAY_TSHSL_LSB		24
172 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
173 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
174 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
175 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
176 
177 #define CQSPI_REG_READCAPTURE			0x10
178 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
179 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
180 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
181 
182 #define CQSPI_REG_SIZE				0x14
183 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
184 #define CQSPI_REG_SIZE_PAGE_LSB			4
185 #define CQSPI_REG_SIZE_BLOCK_LSB		16
186 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
187 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
188 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
189 
190 #define CQSPI_REG_SRAMPARTITION			0x18
191 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
192 
193 #define CQSPI_REG_DMA				0x20
194 #define CQSPI_REG_DMA_SINGLE_LSB		0
195 #define CQSPI_REG_DMA_BURST_LSB			8
196 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
197 #define CQSPI_REG_DMA_BURST_MASK		0xFF
198 
199 #define CQSPI_REG_REMAP				0x24
200 #define CQSPI_REG_MODE_BIT			0x28
201 
202 #define CQSPI_REG_SDRAMLEVEL			0x2C
203 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
204 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
205 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
206 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
207 
208 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
209 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
210 
211 #define CQSPI_REG_IRQSTATUS			0x40
212 #define CQSPI_REG_IRQMASK			0x44
213 
214 #define CQSPI_REG_INDIRECTRD			0x60
215 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
216 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
217 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
218 
219 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
220 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
221 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
222 
223 #define CQSPI_REG_CMDCTRL			0x90
224 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
225 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
226 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
227 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
228 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
229 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
230 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
231 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
232 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
233 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
234 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
235 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
236 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
237 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
238 
239 #define CQSPI_REG_INDIRECTWR			0x70
240 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
241 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
242 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
243 
244 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
245 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
246 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
247 
248 #define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
249 
250 #define CQSPI_REG_CMDADDRESS			0x94
251 #define CQSPI_REG_CMDREADDATALOWER		0xA0
252 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
253 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
254 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
255 
256 #define CQSPI_REG_POLLING_STATUS		0xB0
257 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
258 
259 #define CQSPI_REG_OP_EXT_LOWER			0xE0
260 #define CQSPI_REG_OP_EXT_READ_LSB		24
261 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
262 #define CQSPI_REG_OP_EXT_STIG_LSB		0
263 
264 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
265 
266 #define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
267 #define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
268 
269 #define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
270 
271 #define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
272 #define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
273 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
274 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
275 
276 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
277 
278 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
279 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
280 
281 /* Interrupt status bits */
282 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
283 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
284 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
285 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
286 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
287 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
288 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
289 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
290 
291 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
292 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
293 					 CQSPI_REG_IRQ_IND_COMP)
294 
295 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
296 					 CQSPI_REG_IRQ_WATERMARK	| \
297 					 CQSPI_REG_IRQ_UNDERFLOW)
298 
299 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
300 #define CQSPI_DMA_UNALIGN		0x3
301 
302 #define CQSPI_REG_VERSAL_DMA_VAL		0x602
303 
304 static int cqspi_wait_for_bit(const struct cqspi_driver_platdata *ddata,
305 			      void __iomem *reg, const u32 mask, bool clr,
306 			      bool busywait)
307 {
308 	u64 timeout_us = CQSPI_TIMEOUT_MS * USEC_PER_MSEC;
309 	u32 val;
310 
311 	if (busywait) {
312 		int ret = readl_relaxed_poll_timeout(reg, val,
313 						     (((clr ? ~val : val) & mask) == mask),
314 						     0, CQSPI_BUSYWAIT_TIMEOUT_US);
315 
316 		if (ret != -ETIMEDOUT)
317 			return ret;
318 
319 		timeout_us -= CQSPI_BUSYWAIT_TIMEOUT_US;
320 	}
321 
322 	return readl_relaxed_poll_timeout(reg, val,
323 					  (((clr ? ~val : val) & mask) == mask),
324 					  10, timeout_us);
325 }
326 
327 static bool cqspi_is_idle(struct cqspi_st *cqspi)
328 {
329 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
330 
331 	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
332 }
333 
334 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
335 {
336 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
337 
338 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
339 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
340 }
341 
342 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
343 {
344 	u32 dma_status;
345 
346 	dma_status = readl(cqspi->iobase +
347 					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
348 	writel(dma_status, cqspi->iobase +
349 		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
350 
351 	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
352 }
353 
354 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
355 {
356 	struct cqspi_st *cqspi = dev;
357 	const struct cqspi_driver_platdata *ddata = cqspi->ddata;
358 	unsigned int irq_status;
359 
360 	/* Read interrupt status */
361 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
362 
363 	/* Clear interrupt */
364 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
365 
366 	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
367 		if (ddata->get_dma_status(cqspi)) {
368 			complete(&cqspi->transfer_complete);
369 			return IRQ_HANDLED;
370 		}
371 	}
372 
373 	else if (!cqspi->slow_sram)
374 		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
375 	else
376 		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
377 
378 	if (irq_status)
379 		complete(&cqspi->transfer_complete);
380 
381 	return IRQ_HANDLED;
382 }
383 
384 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
385 {
386 	u32 rdreg = 0;
387 
388 	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
389 	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
390 	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
391 
392 	return rdreg;
393 }
394 
395 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
396 {
397 	unsigned int dummy_clk;
398 
399 	if (!op->dummy.nbytes)
400 		return 0;
401 
402 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
403 	if (op->cmd.dtr)
404 		dummy_clk /= 2;
405 
406 	return dummy_clk;
407 }
408 
409 static int cqspi_wait_idle(struct cqspi_st *cqspi)
410 {
411 	const unsigned int poll_idle_retry = 3;
412 	unsigned int count = 0;
413 	unsigned long timeout;
414 
415 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
416 	while (1) {
417 		/*
418 		 * Read few times in succession to ensure the controller
419 		 * is indeed idle, that is, the bit does not transition
420 		 * low again.
421 		 */
422 		if (cqspi_is_idle(cqspi))
423 			count++;
424 		else
425 			count = 0;
426 
427 		if (count >= poll_idle_retry)
428 			return 0;
429 
430 		if (time_after(jiffies, timeout)) {
431 			/* Timeout, in busy mode. */
432 			dev_err(&cqspi->pdev->dev,
433 				"QSPI is still busy after %dms timeout.\n",
434 				CQSPI_TIMEOUT_MS);
435 			return -ETIMEDOUT;
436 		}
437 
438 		cpu_relax();
439 	}
440 }
441 
442 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
443 {
444 	void __iomem *reg_base = cqspi->iobase;
445 	int ret;
446 
447 	/* Write the CMDCTRL without start execution. */
448 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
449 	/* Start execute */
450 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
451 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
452 
453 	/* Polling for completion. */
454 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_CMDCTRL,
455 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1, true);
456 	if (ret) {
457 		dev_err(&cqspi->pdev->dev,
458 			"Flash command execution timed out.\n");
459 		return ret;
460 	}
461 
462 	/* Polling QSPI idle status. */
463 	return cqspi_wait_idle(cqspi);
464 }
465 
466 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
467 				  const struct spi_mem_op *op,
468 				  unsigned int shift)
469 {
470 	struct cqspi_st *cqspi = f_pdata->cqspi;
471 	void __iomem *reg_base = cqspi->iobase;
472 	unsigned int reg;
473 	u8 ext;
474 
475 	if (op->cmd.nbytes != 2)
476 		return -EINVAL;
477 
478 	/* Opcode extension is the LSB. */
479 	ext = op->cmd.opcode & 0xff;
480 
481 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
482 	reg &= ~(0xff << shift);
483 	reg |= ext << shift;
484 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
485 
486 	return 0;
487 }
488 
489 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
490 			    const struct spi_mem_op *op, unsigned int shift)
491 {
492 	struct cqspi_st *cqspi = f_pdata->cqspi;
493 	void __iomem *reg_base = cqspi->iobase;
494 	unsigned int reg;
495 	int ret;
496 
497 	reg = readl(reg_base + CQSPI_REG_CONFIG);
498 
499 	/*
500 	 * We enable dual byte opcode here. The callers have to set up the
501 	 * extension opcode based on which type of operation it is.
502 	 */
503 	if (op->cmd.dtr) {
504 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
505 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
506 
507 		/* Set up command opcode extension. */
508 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
509 		if (ret)
510 			return ret;
511 	} else {
512 		unsigned int mask = CQSPI_REG_CONFIG_DTR_PROTO | CQSPI_REG_CONFIG_DUAL_OPCODE;
513 		/* Shortcut if DTR is already disabled. */
514 		if ((reg & mask) == 0)
515 			return 0;
516 		reg &= ~mask;
517 	}
518 
519 	writel(reg, reg_base + CQSPI_REG_CONFIG);
520 
521 	return cqspi_wait_idle(cqspi);
522 }
523 
524 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
525 			      const struct spi_mem_op *op)
526 {
527 	struct cqspi_st *cqspi = f_pdata->cqspi;
528 	void __iomem *reg_base = cqspi->iobase;
529 	u8 *rxbuf = op->data.buf.in;
530 	u8 opcode;
531 	size_t n_rx = op->data.nbytes;
532 	unsigned int rdreg;
533 	unsigned int reg;
534 	unsigned int dummy_clk;
535 	size_t read_len;
536 	int status;
537 
538 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
539 	if (status)
540 		return status;
541 
542 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
543 		dev_err(&cqspi->pdev->dev,
544 			"Invalid input argument, len %zu rxbuf 0x%p\n",
545 			n_rx, rxbuf);
546 		return -EINVAL;
547 	}
548 
549 	if (op->cmd.dtr)
550 		opcode = op->cmd.opcode >> 8;
551 	else
552 		opcode = op->cmd.opcode;
553 
554 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
555 
556 	rdreg = cqspi_calc_rdreg(op);
557 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
558 
559 	dummy_clk = cqspi_calc_dummy(op);
560 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
561 		return -EOPNOTSUPP;
562 
563 	if (dummy_clk)
564 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
565 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
566 
567 	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
568 
569 	/* 0 means 1 byte. */
570 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
571 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
572 
573 	/* setup ADDR BIT field */
574 	if (op->addr.nbytes) {
575 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
576 		reg |= ((op->addr.nbytes - 1) &
577 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
578 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
579 
580 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
581 	}
582 
583 	status = cqspi_exec_flash_cmd(cqspi, reg);
584 	if (status)
585 		return status;
586 
587 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
588 
589 	/* Put the read value into rx_buf */
590 	read_len = (n_rx > 4) ? 4 : n_rx;
591 	memcpy(rxbuf, &reg, read_len);
592 	rxbuf += read_len;
593 
594 	if (n_rx > 4) {
595 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
596 
597 		read_len = n_rx - read_len;
598 		memcpy(rxbuf, &reg, read_len);
599 	}
600 
601 	/* Reset CMD_CTRL Reg once command read completes */
602 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
603 
604 	return 0;
605 }
606 
607 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
608 			       const struct spi_mem_op *op)
609 {
610 	struct cqspi_st *cqspi = f_pdata->cqspi;
611 	void __iomem *reg_base = cqspi->iobase;
612 	u8 opcode;
613 	const u8 *txbuf = op->data.buf.out;
614 	size_t n_tx = op->data.nbytes;
615 	unsigned int reg;
616 	unsigned int data;
617 	size_t write_len;
618 	int ret;
619 
620 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
621 	if (ret)
622 		return ret;
623 
624 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
625 		dev_err(&cqspi->pdev->dev,
626 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
627 			n_tx, txbuf);
628 		return -EINVAL;
629 	}
630 
631 	reg = cqspi_calc_rdreg(op);
632 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
633 
634 	if (op->cmd.dtr)
635 		opcode = op->cmd.opcode >> 8;
636 	else
637 		opcode = op->cmd.opcode;
638 
639 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
640 
641 	if (op->addr.nbytes) {
642 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
643 		reg |= ((op->addr.nbytes - 1) &
644 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
645 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
646 
647 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
648 	}
649 
650 	if (n_tx) {
651 		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
652 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
653 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
654 		data = 0;
655 		write_len = (n_tx > 4) ? 4 : n_tx;
656 		memcpy(&data, txbuf, write_len);
657 		txbuf += write_len;
658 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
659 
660 		if (n_tx > 4) {
661 			data = 0;
662 			write_len = n_tx - 4;
663 			memcpy(&data, txbuf, write_len);
664 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
665 		}
666 	}
667 
668 	ret = cqspi_exec_flash_cmd(cqspi, reg);
669 
670 	/* Reset CMD_CTRL Reg once command write completes */
671 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
672 
673 	return ret;
674 }
675 
676 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
677 			    const struct spi_mem_op *op)
678 {
679 	struct cqspi_st *cqspi = f_pdata->cqspi;
680 	void __iomem *reg_base = cqspi->iobase;
681 	unsigned int dummy_clk = 0;
682 	unsigned int reg;
683 	int ret;
684 	u8 opcode;
685 
686 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
687 	if (ret)
688 		return ret;
689 
690 	if (op->cmd.dtr)
691 		opcode = op->cmd.opcode >> 8;
692 	else
693 		opcode = op->cmd.opcode;
694 
695 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
696 	reg |= cqspi_calc_rdreg(op);
697 
698 	/* Setup dummy clock cycles */
699 	dummy_clk = cqspi_calc_dummy(op);
700 
701 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
702 		return -EOPNOTSUPP;
703 
704 	if (dummy_clk)
705 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
706 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
707 
708 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
709 
710 	/* Set address width */
711 	reg = readl(reg_base + CQSPI_REG_SIZE);
712 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
713 	reg |= (op->addr.nbytes - 1);
714 	writel(reg, reg_base + CQSPI_REG_SIZE);
715 	return 0;
716 }
717 
718 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
719 				       u8 *rxbuf, loff_t from_addr,
720 				       const size_t n_rx)
721 {
722 	struct cqspi_st *cqspi = f_pdata->cqspi;
723 	bool use_irq = !(cqspi->ddata && cqspi->ddata->quirks & CQSPI_RD_NO_IRQ);
724 	struct device *dev = &cqspi->pdev->dev;
725 	void __iomem *reg_base = cqspi->iobase;
726 	void __iomem *ahb_base = cqspi->ahb_base;
727 	unsigned int remaining = n_rx;
728 	unsigned int mod_bytes = n_rx % 4;
729 	unsigned int bytes_to_read = 0;
730 	u8 *rxbuf_end = rxbuf + n_rx;
731 	int ret = 0;
732 
733 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
734 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
735 
736 	/* Clear all interrupts. */
737 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
738 
739 	/*
740 	 * On SoCFPGA platform reading the SRAM is slow due to
741 	 * hardware limitation and causing read interrupt storm to CPU,
742 	 * so enabling only watermark interrupt to disable all read
743 	 * interrupts later as we want to run "bytes to read" loop with
744 	 * all the read interrupts disabled for max performance.
745 	 */
746 
747 	if (use_irq && cqspi->slow_sram)
748 		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
749 	else if (use_irq)
750 		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
751 	else
752 		writel(0, reg_base + CQSPI_REG_IRQMASK);
753 
754 	reinit_completion(&cqspi->transfer_complete);
755 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
756 	       reg_base + CQSPI_REG_INDIRECTRD);
757 
758 	while (remaining > 0) {
759 		if (use_irq &&
760 		    !wait_for_completion_timeout(&cqspi->transfer_complete,
761 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
762 			ret = -ETIMEDOUT;
763 
764 		/*
765 		 * Disable all read interrupts until
766 		 * we are out of "bytes to read"
767 		 */
768 		if (cqspi->slow_sram)
769 			writel(0x0, reg_base + CQSPI_REG_IRQMASK);
770 
771 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
772 
773 		if (ret && bytes_to_read == 0) {
774 			dev_err(dev, "Indirect read timeout, no bytes\n");
775 			goto failrd;
776 		}
777 
778 		while (bytes_to_read != 0) {
779 			unsigned int word_remain = round_down(remaining, 4);
780 
781 			bytes_to_read *= cqspi->fifo_width;
782 			bytes_to_read = bytes_to_read > remaining ?
783 					remaining : bytes_to_read;
784 			bytes_to_read = round_down(bytes_to_read, 4);
785 			/* Read 4 byte word chunks then single bytes */
786 			if (bytes_to_read) {
787 				ioread32_rep(ahb_base, rxbuf,
788 					     (bytes_to_read / 4));
789 			} else if (!word_remain && mod_bytes) {
790 				unsigned int temp = ioread32(ahb_base);
791 
792 				bytes_to_read = mod_bytes;
793 				memcpy(rxbuf, &temp, min((unsigned int)
794 							 (rxbuf_end - rxbuf),
795 							 bytes_to_read));
796 			}
797 			rxbuf += bytes_to_read;
798 			remaining -= bytes_to_read;
799 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
800 		}
801 
802 		if (use_irq && remaining > 0) {
803 			reinit_completion(&cqspi->transfer_complete);
804 			if (cqspi->slow_sram)
805 				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
806 		}
807 	}
808 
809 	/* Check indirect done status */
810 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTRD,
811 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0, true);
812 	if (ret) {
813 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
814 		goto failrd;
815 	}
816 
817 	/* Disable interrupt */
818 	writel(0, reg_base + CQSPI_REG_IRQMASK);
819 
820 	/* Clear indirect completion status */
821 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
822 
823 	return 0;
824 
825 failrd:
826 	/* Disable interrupt */
827 	writel(0, reg_base + CQSPI_REG_IRQMASK);
828 
829 	/* Cancel the indirect read */
830 	writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
831 	       reg_base + CQSPI_REG_INDIRECTRD);
832 	return ret;
833 }
834 
835 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
836 {
837 	void __iomem *reg_base = cqspi->iobase;
838 	unsigned int reg;
839 
840 	reg = readl(reg_base + CQSPI_REG_CONFIG);
841 
842 	if (enable)
843 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
844 	else
845 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
846 
847 	writel(reg, reg_base + CQSPI_REG_CONFIG);
848 }
849 
850 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
851 					  u_char *rxbuf, loff_t from_addr,
852 					  size_t n_rx)
853 {
854 	struct cqspi_st *cqspi = f_pdata->cqspi;
855 	struct device *dev = &cqspi->pdev->dev;
856 	void __iomem *reg_base = cqspi->iobase;
857 	u32 reg, bytes_to_dma;
858 	loff_t addr = from_addr;
859 	void *buf = rxbuf;
860 	dma_addr_t dma_addr;
861 	u8 bytes_rem;
862 	int ret = 0;
863 
864 	bytes_rem = n_rx % 4;
865 	bytes_to_dma = (n_rx - bytes_rem);
866 
867 	if (!bytes_to_dma)
868 		goto nondmard;
869 
870 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
871 	if (ret)
872 		return ret;
873 
874 	cqspi_controller_enable(cqspi, 0);
875 
876 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
877 	reg |= CQSPI_REG_CONFIG_DMA_MASK;
878 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
879 
880 	cqspi_controller_enable(cqspi, 1);
881 
882 	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
883 	if (dma_mapping_error(dev, dma_addr)) {
884 		dev_err(dev, "dma mapping failed\n");
885 		return -ENOMEM;
886 	}
887 
888 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
889 	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
890 	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
891 	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
892 
893 	/* Clear all interrupts. */
894 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
895 
896 	/* Enable DMA done interrupt */
897 	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
898 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
899 
900 	/* Default DMA periph configuration */
901 	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
902 
903 	/* Configure DMA Dst address */
904 	writel(lower_32_bits(dma_addr),
905 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
906 	writel(upper_32_bits(dma_addr),
907 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
908 
909 	/* Configure DMA Src address */
910 	writel(cqspi->trigger_address, reg_base +
911 	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
912 
913 	/* Set DMA destination size */
914 	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
915 
916 	/* Set DMA destination control */
917 	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
918 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
919 
920 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
921 	       reg_base + CQSPI_REG_INDIRECTRD);
922 
923 	reinit_completion(&cqspi->transfer_complete);
924 
925 	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
926 					 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
927 		ret = -ETIMEDOUT;
928 		goto failrd;
929 	}
930 
931 	/* Disable DMA interrupt */
932 	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
933 
934 	/* Clear indirect completion status */
935 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
936 	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
937 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
938 
939 	cqspi_controller_enable(cqspi, 0);
940 
941 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
942 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
943 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
944 
945 	cqspi_controller_enable(cqspi, 1);
946 
947 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
948 					PM_OSPI_MUX_SEL_LINEAR);
949 	if (ret)
950 		return ret;
951 
952 nondmard:
953 	if (bytes_rem) {
954 		addr += bytes_to_dma;
955 		buf += bytes_to_dma;
956 		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
957 						  bytes_rem);
958 		if (ret)
959 			return ret;
960 	}
961 
962 	return 0;
963 
964 failrd:
965 	/* Disable DMA interrupt */
966 	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
967 
968 	/* Cancel the indirect read */
969 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
970 	       reg_base + CQSPI_REG_INDIRECTRD);
971 
972 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
973 
974 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
975 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
976 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
977 
978 	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
979 
980 	return ret;
981 }
982 
983 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
984 			     const struct spi_mem_op *op)
985 {
986 	unsigned int reg;
987 	int ret;
988 	struct cqspi_st *cqspi = f_pdata->cqspi;
989 	void __iomem *reg_base = cqspi->iobase;
990 	u8 opcode;
991 
992 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
993 	if (ret)
994 		return ret;
995 
996 	if (op->cmd.dtr)
997 		opcode = op->cmd.opcode >> 8;
998 	else
999 		opcode = op->cmd.opcode;
1000 
1001 	/* Set opcode. */
1002 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
1003 	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
1004 	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
1005 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
1006 	reg = cqspi_calc_rdreg(op);
1007 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
1008 
1009 	/*
1010 	 * SPI NAND flashes require the address of the status register to be
1011 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
1012 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
1013 	 * command in DTR mode.
1014 	 *
1015 	 * But this controller does not support address phase in the Read SR
1016 	 * command when doing auto-HW polling. So, disable write completion
1017 	 * polling on the controller's side. spinand and spi-nor will take
1018 	 * care of polling the status register.
1019 	 */
1020 	if (cqspi->wr_completion) {
1021 		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1022 		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
1023 		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1024 		/*
1025 		 * DAC mode require auto polling as flash needs to be polled
1026 		 * for write completion in case of bubble in SPI transaction
1027 		 * due to slow CPU/DMA master.
1028 		 */
1029 		cqspi->use_direct_mode_wr = false;
1030 	}
1031 
1032 	reg = readl(reg_base + CQSPI_REG_SIZE);
1033 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1034 	reg |= (op->addr.nbytes - 1);
1035 	writel(reg, reg_base + CQSPI_REG_SIZE);
1036 	return 0;
1037 }
1038 
1039 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1040 					loff_t to_addr, const u8 *txbuf,
1041 					const size_t n_tx)
1042 {
1043 	struct cqspi_st *cqspi = f_pdata->cqspi;
1044 	struct device *dev = &cqspi->pdev->dev;
1045 	void __iomem *reg_base = cqspi->iobase;
1046 	unsigned int remaining = n_tx;
1047 	unsigned int write_bytes;
1048 	int ret;
1049 
1050 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1051 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1052 
1053 	/* Clear all interrupts. */
1054 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1055 
1056 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1057 
1058 	reinit_completion(&cqspi->transfer_complete);
1059 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1060 	       reg_base + CQSPI_REG_INDIRECTWR);
1061 	/*
1062 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1063 	 * Controller programming sequence, couple of cycles of
1064 	 * QSPI_REF_CLK delay is required for the above bit to
1065 	 * be internally synchronized by the QSPI module. Provide 5
1066 	 * cycles of delay.
1067 	 */
1068 	if (cqspi->wr_delay)
1069 		ndelay(cqspi->wr_delay);
1070 
1071 	/*
1072 	 * If a hazard exists between the APB and AHB interfaces, perform a
1073 	 * dummy readback from the controller to ensure synchronization.
1074 	 */
1075 	if (cqspi->apb_ahb_hazard)
1076 		readl(reg_base + CQSPI_REG_INDIRECTWR);
1077 
1078 	while (remaining > 0) {
1079 		size_t write_words, mod_bytes;
1080 
1081 		write_bytes = remaining;
1082 		write_words = write_bytes / 4;
1083 		mod_bytes = write_bytes % 4;
1084 		/* Write 4 bytes at a time then single bytes. */
1085 		if (write_words) {
1086 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1087 			txbuf += (write_words * 4);
1088 		}
1089 		if (mod_bytes) {
1090 			unsigned int temp = 0xFFFFFFFF;
1091 
1092 			memcpy(&temp, txbuf, mod_bytes);
1093 			iowrite32(temp, cqspi->ahb_base);
1094 			txbuf += mod_bytes;
1095 		}
1096 
1097 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1098 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1099 			dev_err(dev, "Indirect write timeout\n");
1100 			ret = -ETIMEDOUT;
1101 			goto failwr;
1102 		}
1103 
1104 		remaining -= write_bytes;
1105 
1106 		if (remaining > 0)
1107 			reinit_completion(&cqspi->transfer_complete);
1108 	}
1109 
1110 	/* Check indirect done status */
1111 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTWR,
1112 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0, false);
1113 	if (ret) {
1114 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1115 		goto failwr;
1116 	}
1117 
1118 	/* Disable interrupt. */
1119 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1120 
1121 	/* Clear indirect completion status */
1122 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1123 
1124 	cqspi_wait_idle(cqspi);
1125 
1126 	return 0;
1127 
1128 failwr:
1129 	/* Disable interrupt. */
1130 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1131 
1132 	/* Cancel the indirect write */
1133 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1134 	       reg_base + CQSPI_REG_INDIRECTWR);
1135 	return ret;
1136 }
1137 
1138 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1139 {
1140 	struct cqspi_st *cqspi = f_pdata->cqspi;
1141 	void __iomem *reg_base = cqspi->iobase;
1142 	unsigned int chip_select = f_pdata->cs;
1143 	unsigned int reg;
1144 
1145 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1146 	if (cqspi->is_decoded_cs) {
1147 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1148 	} else {
1149 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1150 
1151 		/* Convert CS if without decoder.
1152 		 * CS0 to 4b'1110
1153 		 * CS1 to 4b'1101
1154 		 * CS2 to 4b'1011
1155 		 * CS3 to 4b'0111
1156 		 */
1157 		chip_select = 0xF & ~(1 << chip_select);
1158 	}
1159 
1160 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1161 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1162 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1163 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1164 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1165 }
1166 
1167 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1168 					   const unsigned int ns_val)
1169 {
1170 	unsigned int ticks;
1171 
1172 	ticks = ref_clk_hz / 1000;	/* kHz */
1173 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1174 
1175 	return ticks;
1176 }
1177 
1178 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1179 {
1180 	struct cqspi_st *cqspi = f_pdata->cqspi;
1181 	void __iomem *iobase = cqspi->iobase;
1182 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1183 	unsigned int tshsl, tchsh, tslch, tsd2d;
1184 	unsigned int reg;
1185 	unsigned int tsclk;
1186 
1187 	/* calculate the number of ref ticks for one sclk tick */
1188 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1189 
1190 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1191 	/* this particular value must be at least one sclk */
1192 	if (tshsl < tsclk)
1193 		tshsl = tsclk;
1194 
1195 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1196 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1197 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1198 
1199 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1200 	       << CQSPI_REG_DELAY_TSHSL_LSB;
1201 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1202 		<< CQSPI_REG_DELAY_TCHSH_LSB;
1203 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1204 		<< CQSPI_REG_DELAY_TSLCH_LSB;
1205 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1206 		<< CQSPI_REG_DELAY_TSD2D_LSB;
1207 	writel(reg, iobase + CQSPI_REG_DELAY);
1208 }
1209 
1210 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1211 {
1212 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1213 	void __iomem *reg_base = cqspi->iobase;
1214 	u32 reg, div;
1215 
1216 	/* Recalculate the baudrate divisor based on QSPI specification. */
1217 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1218 
1219 	/* Maximum baud divisor */
1220 	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1221 		div = CQSPI_REG_CONFIG_BAUD_MASK;
1222 		dev_warn(&cqspi->pdev->dev,
1223 			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1224 			cqspi->sclk, ref_clk_hz/((div+1)*2));
1225 	}
1226 
1227 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1228 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1229 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1230 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1231 }
1232 
1233 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1234 				   const bool bypass,
1235 				   const unsigned int delay)
1236 {
1237 	void __iomem *reg_base = cqspi->iobase;
1238 	unsigned int reg;
1239 
1240 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1241 
1242 	if (bypass)
1243 		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1244 	else
1245 		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1246 
1247 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1248 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1249 
1250 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1251 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1252 
1253 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1254 }
1255 
1256 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1257 			    unsigned long sclk)
1258 {
1259 	struct cqspi_st *cqspi = f_pdata->cqspi;
1260 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1261 	int switch_ck = (cqspi->sclk != sclk);
1262 
1263 	if (switch_cs || switch_ck)
1264 		cqspi_controller_enable(cqspi, 0);
1265 
1266 	/* Switch chip select. */
1267 	if (switch_cs) {
1268 		cqspi->current_cs = f_pdata->cs;
1269 		cqspi_chipselect(f_pdata);
1270 	}
1271 
1272 	/* Setup baudrate divisor and delays */
1273 	if (switch_ck) {
1274 		cqspi->sclk = sclk;
1275 		cqspi_config_baudrate_div(cqspi);
1276 		cqspi_delay(f_pdata);
1277 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1278 				       f_pdata->read_delay);
1279 	}
1280 
1281 	if (switch_cs || switch_ck)
1282 		cqspi_controller_enable(cqspi, 1);
1283 }
1284 
1285 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1286 			   const struct spi_mem_op *op)
1287 {
1288 	struct cqspi_st *cqspi = f_pdata->cqspi;
1289 	loff_t to = op->addr.val;
1290 	size_t len = op->data.nbytes;
1291 	const u_char *buf = op->data.buf.out;
1292 	int ret;
1293 
1294 	ret = cqspi_write_setup(f_pdata, op);
1295 	if (ret)
1296 		return ret;
1297 
1298 	/*
1299 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1300 	 * address (all 0s) with the read status register command in DTR mode.
1301 	 * But this controller does not support sending dummy address bytes to
1302 	 * the flash when it is polling the write completion register in DTR
1303 	 * mode. So, we can not use direct mode when in DTR mode for writing
1304 	 * data.
1305 	 */
1306 	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1307 	    cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1308 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1309 		return cqspi_wait_idle(cqspi);
1310 	}
1311 
1312 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1313 }
1314 
1315 static void cqspi_rx_dma_callback(void *param)
1316 {
1317 	struct cqspi_st *cqspi = param;
1318 
1319 	complete(&cqspi->rx_dma_complete);
1320 }
1321 
1322 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1323 				     u_char *buf, loff_t from, size_t len)
1324 {
1325 	struct cqspi_st *cqspi = f_pdata->cqspi;
1326 	struct device *dev = &cqspi->pdev->dev;
1327 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1328 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1329 	int ret = 0;
1330 	struct dma_async_tx_descriptor *tx;
1331 	dma_cookie_t cookie;
1332 	dma_addr_t dma_dst;
1333 	struct device *ddev;
1334 
1335 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1336 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1337 		return 0;
1338 	}
1339 
1340 	ddev = cqspi->rx_chan->device->dev;
1341 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1342 	if (dma_mapping_error(ddev, dma_dst)) {
1343 		dev_err(dev, "dma mapping failed\n");
1344 		return -ENOMEM;
1345 	}
1346 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1347 				       len, flags);
1348 	if (!tx) {
1349 		dev_err(dev, "device_prep_dma_memcpy error\n");
1350 		ret = -EIO;
1351 		goto err_unmap;
1352 	}
1353 
1354 	tx->callback = cqspi_rx_dma_callback;
1355 	tx->callback_param = cqspi;
1356 	cookie = tx->tx_submit(tx);
1357 	reinit_completion(&cqspi->rx_dma_complete);
1358 
1359 	ret = dma_submit_error(cookie);
1360 	if (ret) {
1361 		dev_err(dev, "dma_submit_error %d\n", cookie);
1362 		ret = -EIO;
1363 		goto err_unmap;
1364 	}
1365 
1366 	dma_async_issue_pending(cqspi->rx_chan);
1367 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1368 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1369 		dmaengine_terminate_sync(cqspi->rx_chan);
1370 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1371 		ret = -ETIMEDOUT;
1372 		goto err_unmap;
1373 	}
1374 
1375 err_unmap:
1376 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1377 
1378 	return ret;
1379 }
1380 
1381 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1382 			  const struct spi_mem_op *op)
1383 {
1384 	struct cqspi_st *cqspi = f_pdata->cqspi;
1385 	const struct cqspi_driver_platdata *ddata = cqspi->ddata;
1386 	loff_t from = op->addr.val;
1387 	size_t len = op->data.nbytes;
1388 	u_char *buf = op->data.buf.in;
1389 	u64 dma_align = (u64)(uintptr_t)buf;
1390 	int ret;
1391 
1392 	ret = cqspi_read_setup(f_pdata, op);
1393 	if (ret)
1394 		return ret;
1395 
1396 	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1397 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1398 
1399 	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1400 	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1401 		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1402 
1403 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1404 }
1405 
1406 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1407 {
1408 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1409 	struct cqspi_flash_pdata *f_pdata;
1410 
1411 	f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1412 	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1413 
1414 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1415 	/*
1416 	 * Performing reads in DAC mode forces to read minimum 4 bytes
1417 	 * which is unsupported on some flash devices during register
1418 	 * reads, prefer STIG mode for such small reads.
1419 	 */
1420 		if (!op->addr.nbytes ||
1421 		    (op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX &&
1422 		     !cqspi->disable_stig_mode))
1423 			return cqspi_command_read(f_pdata, op);
1424 
1425 		return cqspi_read(f_pdata, op);
1426 	}
1427 
1428 	if (!op->addr.nbytes || !op->data.buf.out)
1429 		return cqspi_command_write(f_pdata, op);
1430 
1431 	return cqspi_write(f_pdata, op);
1432 }
1433 
1434 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1435 {
1436 	int ret;
1437 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1438 	struct device *dev = &cqspi->pdev->dev;
1439 
1440 	ret = pm_runtime_resume_and_get(dev);
1441 	if (ret) {
1442 		dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1443 		return ret;
1444 	}
1445 
1446 	ret = cqspi_mem_process(mem, op);
1447 
1448 	pm_runtime_mark_last_busy(dev);
1449 	pm_runtime_put_autosuspend(dev);
1450 
1451 	if (ret)
1452 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1453 
1454 	return ret;
1455 }
1456 
1457 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1458 				  const struct spi_mem_op *op)
1459 {
1460 	bool all_true, all_false;
1461 
1462 	/*
1463 	 * op->dummy.dtr is required for converting nbytes into ncycles.
1464 	 * Also, don't check the dtr field of the op phase having zero nbytes.
1465 	 */
1466 	all_true = op->cmd.dtr &&
1467 		   (!op->addr.nbytes || op->addr.dtr) &&
1468 		   (!op->dummy.nbytes || op->dummy.dtr) &&
1469 		   (!op->data.nbytes || op->data.dtr);
1470 
1471 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1472 		    !op->data.dtr;
1473 
1474 	if (all_true) {
1475 		/* Right now we only support 8-8-8 DTR mode. */
1476 		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1477 			return false;
1478 		if (op->addr.nbytes && op->addr.buswidth != 8)
1479 			return false;
1480 		if (op->data.nbytes && op->data.buswidth != 8)
1481 			return false;
1482 	} else if (!all_false) {
1483 		/* Mixed DTR modes are not supported. */
1484 		return false;
1485 	}
1486 
1487 	return spi_mem_default_supports_op(mem, op);
1488 }
1489 
1490 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1491 				    struct cqspi_flash_pdata *f_pdata,
1492 				    struct device_node *np)
1493 {
1494 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1495 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1496 		return -ENXIO;
1497 	}
1498 
1499 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1500 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1501 		return -ENXIO;
1502 	}
1503 
1504 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1505 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1506 		return -ENXIO;
1507 	}
1508 
1509 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1510 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1511 		return -ENXIO;
1512 	}
1513 
1514 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1515 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1516 		return -ENXIO;
1517 	}
1518 
1519 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1520 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1521 		return -ENXIO;
1522 	}
1523 
1524 	return 0;
1525 }
1526 
1527 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1528 {
1529 	struct device *dev = &cqspi->pdev->dev;
1530 	struct device_node *np = dev->of_node;
1531 	u32 id[2];
1532 
1533 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1534 
1535 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1536 		/* Zero signals FIFO depth should be runtime detected. */
1537 		cqspi->fifo_depth = 0;
1538 	}
1539 
1540 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1541 		dev_err(dev, "couldn't determine fifo-width\n");
1542 		return -ENXIO;
1543 	}
1544 
1545 	if (of_property_read_u32(np, "cdns,trigger-address",
1546 				 &cqspi->trigger_address)) {
1547 		dev_err(dev, "couldn't determine trigger-address\n");
1548 		return -ENXIO;
1549 	}
1550 
1551 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1552 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1553 
1554 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1555 
1556 	if (!of_property_read_u32_array(np, "power-domains", id,
1557 					ARRAY_SIZE(id)))
1558 		cqspi->pd_dev_id = id[1];
1559 
1560 	return 0;
1561 }
1562 
1563 static void cqspi_controller_init(struct cqspi_st *cqspi)
1564 {
1565 	u32 reg;
1566 
1567 	/* Configure the remap address register, no remap */
1568 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1569 
1570 	/* Disable all interrupts. */
1571 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1572 
1573 	/* Configure the SRAM split to 1:1 . */
1574 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1575 
1576 	/* Load indirect trigger address. */
1577 	writel(cqspi->trigger_address,
1578 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1579 
1580 	/* Program read watermark -- 1/2 of the FIFO. */
1581 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1582 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1583 	/* Program write watermark -- 1/8 of the FIFO. */
1584 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1585 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1586 
1587 	/* Disable direct access controller */
1588 	if (!cqspi->use_direct_mode) {
1589 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1590 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1591 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1592 	}
1593 
1594 	/* Enable DMA interface */
1595 	if (cqspi->use_dma_read) {
1596 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1597 		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1598 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1599 	}
1600 }
1601 
1602 static void cqspi_controller_detect_fifo_depth(struct cqspi_st *cqspi)
1603 {
1604 	struct device *dev = &cqspi->pdev->dev;
1605 	u32 reg, fifo_depth;
1606 
1607 	/*
1608 	 * Bits N-1:0 are writable while bits 31:N are read as zero, with 2^N
1609 	 * the FIFO depth.
1610 	 */
1611 	writel(U32_MAX, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1612 	reg = readl(cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1613 	fifo_depth = reg + 1;
1614 
1615 	/* FIFO depth of zero means no value from devicetree was provided. */
1616 	if (cqspi->fifo_depth == 0) {
1617 		cqspi->fifo_depth = fifo_depth;
1618 		dev_dbg(dev, "using FIFO depth of %u\n", fifo_depth);
1619 	} else if (fifo_depth != cqspi->fifo_depth) {
1620 		dev_warn(dev, "detected FIFO depth (%u) different from config (%u)\n",
1621 			 fifo_depth, cqspi->fifo_depth);
1622 	}
1623 }
1624 
1625 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1626 {
1627 	dma_cap_mask_t mask;
1628 
1629 	dma_cap_zero(mask);
1630 	dma_cap_set(DMA_MEMCPY, mask);
1631 
1632 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1633 	if (IS_ERR(cqspi->rx_chan)) {
1634 		int ret = PTR_ERR(cqspi->rx_chan);
1635 
1636 		cqspi->rx_chan = NULL;
1637 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1638 	}
1639 	init_completion(&cqspi->rx_dma_complete);
1640 
1641 	return 0;
1642 }
1643 
1644 static const char *cqspi_get_name(struct spi_mem *mem)
1645 {
1646 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1647 	struct device *dev = &cqspi->pdev->dev;
1648 
1649 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1650 			      spi_get_chipselect(mem->spi, 0));
1651 }
1652 
1653 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1654 	.exec_op = cqspi_exec_mem_op,
1655 	.get_name = cqspi_get_name,
1656 	.supports_op = cqspi_supports_mem_op,
1657 };
1658 
1659 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1660 	.dtr = true,
1661 };
1662 
1663 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1664 {
1665 	unsigned int max_cs = cqspi->num_chipselect - 1;
1666 	struct platform_device *pdev = cqspi->pdev;
1667 	struct device *dev = &pdev->dev;
1668 	struct cqspi_flash_pdata *f_pdata;
1669 	unsigned int cs;
1670 	int ret;
1671 
1672 	/* Get flash device data */
1673 	for_each_available_child_of_node_scoped(dev->of_node, np) {
1674 		ret = of_property_read_u32(np, "reg", &cs);
1675 		if (ret) {
1676 			dev_err(dev, "Couldn't determine chip select.\n");
1677 			return ret;
1678 		}
1679 
1680 		if (cs >= cqspi->num_chipselect) {
1681 			dev_err(dev, "Chip select %d out of range.\n", cs);
1682 			return -EINVAL;
1683 		} else if (cs < max_cs) {
1684 			max_cs = cs;
1685 		}
1686 
1687 		f_pdata = &cqspi->f_pdata[cs];
1688 		f_pdata->cqspi = cqspi;
1689 		f_pdata->cs = cs;
1690 
1691 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1692 		if (ret)
1693 			return ret;
1694 	}
1695 
1696 	cqspi->num_chipselect = max_cs + 1;
1697 	return 0;
1698 }
1699 
1700 static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1701 {
1702 	static struct clk_bulk_data qspiclk[] = {
1703 		{ .id = "apb" },
1704 		{ .id = "ahb" },
1705 	};
1706 
1707 	int ret = 0;
1708 
1709 	ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1710 	if (ret) {
1711 		dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1712 		return ret;
1713 	}
1714 
1715 	cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1716 	cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1717 
1718 	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1719 	if (ret) {
1720 		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1721 		return ret;
1722 	}
1723 
1724 	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1725 	if (ret) {
1726 		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1727 		goto disable_apb_clk;
1728 	}
1729 
1730 	cqspi->is_jh7110 = true;
1731 
1732 	return 0;
1733 
1734 disable_apb_clk:
1735 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1736 
1737 	return ret;
1738 }
1739 
1740 static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1741 {
1742 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1743 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1744 }
1745 static int cqspi_probe(struct platform_device *pdev)
1746 {
1747 	const struct cqspi_driver_platdata *ddata;
1748 	struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1749 	struct device *dev = &pdev->dev;
1750 	struct spi_controller *host;
1751 	struct resource *res_ahb;
1752 	struct cqspi_st *cqspi;
1753 	int ret;
1754 	int irq;
1755 
1756 	host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1757 	if (!host)
1758 		return -ENOMEM;
1759 
1760 	host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1761 	host->mem_ops = &cqspi_mem_ops;
1762 	host->mem_caps = &cqspi_mem_caps;
1763 	host->dev.of_node = pdev->dev.of_node;
1764 
1765 	cqspi = spi_controller_get_devdata(host);
1766 
1767 	cqspi->pdev = pdev;
1768 	cqspi->host = host;
1769 	cqspi->is_jh7110 = false;
1770 	cqspi->ddata = ddata = of_device_get_match_data(dev);
1771 	platform_set_drvdata(pdev, cqspi);
1772 
1773 	/* Obtain configuration from OF. */
1774 	ret = cqspi_of_get_pdata(cqspi);
1775 	if (ret) {
1776 		dev_err(dev, "Cannot get mandatory OF data.\n");
1777 		return -ENODEV;
1778 	}
1779 
1780 	/* Obtain QSPI clock. */
1781 	cqspi->clk = devm_clk_get(dev, NULL);
1782 	if (IS_ERR(cqspi->clk)) {
1783 		dev_err(dev, "Cannot claim QSPI clock.\n");
1784 		ret = PTR_ERR(cqspi->clk);
1785 		return ret;
1786 	}
1787 
1788 	/* Obtain and remap controller address. */
1789 	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1790 	if (IS_ERR(cqspi->iobase)) {
1791 		dev_err(dev, "Cannot remap controller address.\n");
1792 		ret = PTR_ERR(cqspi->iobase);
1793 		return ret;
1794 	}
1795 
1796 	/* Obtain and remap AHB address. */
1797 	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1798 	if (IS_ERR(cqspi->ahb_base)) {
1799 		dev_err(dev, "Cannot remap AHB address.\n");
1800 		ret = PTR_ERR(cqspi->ahb_base);
1801 		return ret;
1802 	}
1803 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1804 	cqspi->ahb_size = resource_size(res_ahb);
1805 
1806 	init_completion(&cqspi->transfer_complete);
1807 
1808 	/* Obtain IRQ line. */
1809 	irq = platform_get_irq(pdev, 0);
1810 	if (irq < 0)
1811 		return -ENXIO;
1812 
1813 	ret = pm_runtime_set_active(dev);
1814 	if (ret)
1815 		return ret;
1816 
1817 
1818 	ret = clk_prepare_enable(cqspi->clk);
1819 	if (ret) {
1820 		dev_err(dev, "Cannot enable QSPI clock.\n");
1821 		goto probe_clk_failed;
1822 	}
1823 
1824 	/* Obtain QSPI reset control */
1825 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1826 	if (IS_ERR(rstc)) {
1827 		ret = PTR_ERR(rstc);
1828 		dev_err(dev, "Cannot get QSPI reset.\n");
1829 		goto probe_reset_failed;
1830 	}
1831 
1832 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1833 	if (IS_ERR(rstc_ocp)) {
1834 		ret = PTR_ERR(rstc_ocp);
1835 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1836 		goto probe_reset_failed;
1837 	}
1838 
1839 	if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1840 		rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1841 		if (IS_ERR(rstc_ref)) {
1842 			ret = PTR_ERR(rstc_ref);
1843 			dev_err(dev, "Cannot get QSPI REF reset.\n");
1844 			goto probe_reset_failed;
1845 		}
1846 		reset_control_assert(rstc_ref);
1847 		reset_control_deassert(rstc_ref);
1848 	}
1849 
1850 	reset_control_assert(rstc);
1851 	reset_control_deassert(rstc);
1852 
1853 	reset_control_assert(rstc_ocp);
1854 	reset_control_deassert(rstc_ocp);
1855 
1856 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1857 	host->max_speed_hz = cqspi->master_ref_clk_hz;
1858 
1859 	/* write completion is supported by default */
1860 	cqspi->wr_completion = true;
1861 
1862 	if (ddata) {
1863 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1864 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1865 						cqspi->master_ref_clk_hz);
1866 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1867 			host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1868 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1869 			cqspi->use_direct_mode = true;
1870 			cqspi->use_direct_mode_wr = true;
1871 		}
1872 		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1873 			cqspi->use_dma_read = true;
1874 		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1875 			cqspi->wr_completion = false;
1876 		if (ddata->quirks & CQSPI_SLOW_SRAM)
1877 			cqspi->slow_sram = true;
1878 		if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1879 			cqspi->apb_ahb_hazard = true;
1880 
1881 		if (ddata->jh7110_clk_init) {
1882 			ret = cqspi_jh7110_clk_init(pdev, cqspi);
1883 			if (ret)
1884 				goto probe_reset_failed;
1885 		}
1886 		if (ddata->quirks & CQSPI_DISABLE_STIG_MODE)
1887 			cqspi->disable_stig_mode = true;
1888 
1889 		if (of_device_is_compatible(pdev->dev.of_node,
1890 					    "xlnx,versal-ospi-1.0")) {
1891 			ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1892 			if (ret)
1893 				goto probe_reset_failed;
1894 		}
1895 	}
1896 
1897 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1898 			       pdev->name, cqspi);
1899 	if (ret) {
1900 		dev_err(dev, "Cannot request IRQ.\n");
1901 		goto probe_reset_failed;
1902 	}
1903 
1904 	cqspi_wait_idle(cqspi);
1905 	cqspi_controller_enable(cqspi, 0);
1906 	cqspi_controller_detect_fifo_depth(cqspi);
1907 	cqspi_controller_init(cqspi);
1908 	cqspi_controller_enable(cqspi, 1);
1909 	cqspi->current_cs = -1;
1910 	cqspi->sclk = 0;
1911 
1912 	ret = cqspi_setup_flash(cqspi);
1913 	if (ret) {
1914 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1915 		goto probe_setup_failed;
1916 	}
1917 
1918 	host->num_chipselect = cqspi->num_chipselect;
1919 
1920 	if (cqspi->use_direct_mode) {
1921 		ret = cqspi_request_mmap_dma(cqspi);
1922 		if (ret == -EPROBE_DEFER)
1923 			goto probe_setup_failed;
1924 	}
1925 
1926 	ret = devm_pm_runtime_enable(dev);
1927 	if (ret) {
1928 		if (cqspi->rx_chan)
1929 			dma_release_channel(cqspi->rx_chan);
1930 		goto probe_setup_failed;
1931 	}
1932 
1933 	pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1934 	pm_runtime_use_autosuspend(dev);
1935 	pm_runtime_get_noresume(dev);
1936 
1937 	ret = spi_register_controller(host);
1938 	if (ret) {
1939 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1940 		goto probe_setup_failed;
1941 	}
1942 
1943 	pm_runtime_mark_last_busy(dev);
1944 	pm_runtime_put_autosuspend(dev);
1945 
1946 	return 0;
1947 probe_setup_failed:
1948 	cqspi_controller_enable(cqspi, 0);
1949 probe_reset_failed:
1950 	if (cqspi->is_jh7110)
1951 		cqspi_jh7110_disable_clk(pdev, cqspi);
1952 	clk_disable_unprepare(cqspi->clk);
1953 probe_clk_failed:
1954 	return ret;
1955 }
1956 
1957 static void cqspi_remove(struct platform_device *pdev)
1958 {
1959 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1960 
1961 	spi_unregister_controller(cqspi->host);
1962 	cqspi_controller_enable(cqspi, 0);
1963 
1964 	if (cqspi->rx_chan)
1965 		dma_release_channel(cqspi->rx_chan);
1966 
1967 	clk_disable_unprepare(cqspi->clk);
1968 
1969 	if (cqspi->is_jh7110)
1970 		cqspi_jh7110_disable_clk(pdev, cqspi);
1971 
1972 	pm_runtime_put_sync(&pdev->dev);
1973 	pm_runtime_disable(&pdev->dev);
1974 }
1975 
1976 static int cqspi_runtime_suspend(struct device *dev)
1977 {
1978 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1979 
1980 	cqspi_controller_enable(cqspi, 0);
1981 	clk_disable_unprepare(cqspi->clk);
1982 	return 0;
1983 }
1984 
1985 static int cqspi_runtime_resume(struct device *dev)
1986 {
1987 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1988 
1989 	clk_prepare_enable(cqspi->clk);
1990 	cqspi_wait_idle(cqspi);
1991 	cqspi_controller_enable(cqspi, 0);
1992 	cqspi_controller_init(cqspi);
1993 	cqspi_controller_enable(cqspi, 1);
1994 
1995 	cqspi->current_cs = -1;
1996 	cqspi->sclk = 0;
1997 	return 0;
1998 }
1999 
2000 static int cqspi_suspend(struct device *dev)
2001 {
2002 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2003 	int ret;
2004 
2005 	ret = spi_controller_suspend(cqspi->host);
2006 	if (ret)
2007 		return ret;
2008 
2009 	return pm_runtime_force_suspend(dev);
2010 }
2011 
2012 static int cqspi_resume(struct device *dev)
2013 {
2014 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2015 	int ret;
2016 
2017 	ret = pm_runtime_force_resume(dev);
2018 	if (ret) {
2019 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
2020 		return ret;
2021 	}
2022 
2023 	return spi_controller_resume(cqspi->host);
2024 }
2025 
2026 static const struct dev_pm_ops cqspi_dev_pm_ops = {
2027 	RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
2028 	SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
2029 };
2030 
2031 static const struct cqspi_driver_platdata cdns_qspi = {
2032 	.quirks = CQSPI_DISABLE_DAC_MODE,
2033 };
2034 
2035 static const struct cqspi_driver_platdata k2g_qspi = {
2036 	.quirks = CQSPI_NEEDS_WR_DELAY,
2037 };
2038 
2039 static const struct cqspi_driver_platdata am654_ospi = {
2040 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2041 	.quirks = CQSPI_NEEDS_WR_DELAY,
2042 };
2043 
2044 static const struct cqspi_driver_platdata intel_lgm_qspi = {
2045 	.quirks = CQSPI_DISABLE_DAC_MODE,
2046 };
2047 
2048 static const struct cqspi_driver_platdata socfpga_qspi = {
2049 	.quirks = CQSPI_DISABLE_DAC_MODE
2050 			| CQSPI_NO_SUPPORT_WR_COMPLETION
2051 			| CQSPI_SLOW_SRAM
2052 			| CQSPI_DISABLE_STIG_MODE,
2053 };
2054 
2055 static const struct cqspi_driver_platdata versal_ospi = {
2056 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2057 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
2058 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2059 	.get_dma_status = cqspi_get_versal_dma_status,
2060 };
2061 
2062 static const struct cqspi_driver_platdata jh7110_qspi = {
2063 	.quirks = CQSPI_DISABLE_DAC_MODE,
2064 	.jh7110_clk_init = cqspi_jh7110_clk_init,
2065 };
2066 
2067 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2068 	.quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2069 };
2070 
2071 static const struct cqspi_driver_platdata mobileye_eyeq5_ospi = {
2072 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2073 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION |
2074 			CQSPI_RD_NO_IRQ,
2075 };
2076 
2077 static const struct of_device_id cqspi_dt_ids[] = {
2078 	{
2079 		.compatible = "cdns,qspi-nor",
2080 		.data = &cdns_qspi,
2081 	},
2082 	{
2083 		.compatible = "ti,k2g-qspi",
2084 		.data = &k2g_qspi,
2085 	},
2086 	{
2087 		.compatible = "ti,am654-ospi",
2088 		.data = &am654_ospi,
2089 	},
2090 	{
2091 		.compatible = "intel,lgm-qspi",
2092 		.data = &intel_lgm_qspi,
2093 	},
2094 	{
2095 		.compatible = "xlnx,versal-ospi-1.0",
2096 		.data = &versal_ospi,
2097 	},
2098 	{
2099 		.compatible = "intel,socfpga-qspi",
2100 		.data = &socfpga_qspi,
2101 	},
2102 	{
2103 		.compatible = "starfive,jh7110-qspi",
2104 		.data = &jh7110_qspi,
2105 	},
2106 	{
2107 		.compatible = "amd,pensando-elba-qspi",
2108 		.data = &pensando_cdns_qspi,
2109 	},
2110 	{
2111 		.compatible = "mobileye,eyeq5-ospi",
2112 		.data = &mobileye_eyeq5_ospi,
2113 	},
2114 	{ /* end of table */ }
2115 };
2116 
2117 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2118 
2119 static struct platform_driver cqspi_platform_driver = {
2120 	.probe = cqspi_probe,
2121 	.remove = cqspi_remove,
2122 	.driver = {
2123 		.name = CQSPI_NAME,
2124 		.pm = pm_ptr(&cqspi_dev_pm_ops),
2125 		.of_match_table = cqspi_dt_ids,
2126 	},
2127 };
2128 
2129 module_platform_driver(cqspi_platform_driver);
2130 
2131 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2132 MODULE_LICENSE("GPL v2");
2133 MODULE_ALIAS("platform:" CQSPI_NAME);
2134 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2135 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2136 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2137 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2138 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
2139