xref: /linux/drivers/spi/spi-cadence-quadspi.c (revision 8efc52743ecb5c69d2e4faba965a3e14418c2494)
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of_device.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 #include <linux/sched.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/timer.h>
33 
34 #define CQSPI_NAME			"cadence-qspi"
35 #define CQSPI_MAX_CHIPSELECT		16
36 
37 /* Quirks */
38 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
39 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
40 #define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
41 #define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
42 #define CQSPI_SLOW_SRAM		BIT(4)
43 
44 /* Capabilities */
45 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
46 
47 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
48 
49 struct cqspi_st;
50 
51 struct cqspi_flash_pdata {
52 	struct cqspi_st	*cqspi;
53 	u32		clk_rate;
54 	u32		read_delay;
55 	u32		tshsl_ns;
56 	u32		tsd2d_ns;
57 	u32		tchsh_ns;
58 	u32		tslch_ns;
59 	u8		cs;
60 };
61 
62 struct cqspi_st {
63 	struct platform_device	*pdev;
64 	struct spi_master	*master;
65 	struct clk		*clk;
66 	unsigned int		sclk;
67 
68 	void __iomem		*iobase;
69 	void __iomem		*ahb_base;
70 	resource_size_t		ahb_size;
71 	struct completion	transfer_complete;
72 
73 	struct dma_chan		*rx_chan;
74 	struct completion	rx_dma_complete;
75 	dma_addr_t		mmap_phys_base;
76 
77 	int			current_cs;
78 	unsigned long		master_ref_clk_hz;
79 	bool			is_decoded_cs;
80 	u32			fifo_depth;
81 	u32			fifo_width;
82 	u32			num_chipselect;
83 	bool			rclk_en;
84 	u32			trigger_address;
85 	u32			wr_delay;
86 	bool			use_direct_mode;
87 	bool			use_direct_mode_wr;
88 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
89 	bool			use_dma_read;
90 	u32			pd_dev_id;
91 	bool			wr_completion;
92 	bool			slow_sram;
93 };
94 
95 struct cqspi_driver_platdata {
96 	u32 hwcaps_mask;
97 	u8 quirks;
98 	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
99 				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
100 	u32 (*get_dma_status)(struct cqspi_st *cqspi);
101 };
102 
103 /* Operation timeout value */
104 #define CQSPI_TIMEOUT_MS			500
105 #define CQSPI_READ_TIMEOUT_MS			10
106 
107 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
108 #define CQSPI_DUMMY_BYTES_MAX			4
109 #define CQSPI_DUMMY_CLKS_MAX			31
110 
111 #define CQSPI_STIG_DATA_LEN_MAX			8
112 
113 /* Register map */
114 #define CQSPI_REG_CONFIG			0x00
115 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
116 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
117 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
118 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
119 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
120 #define CQSPI_REG_CONFIG_BAUD_LSB		19
121 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
122 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
123 #define CQSPI_REG_CONFIG_IDLE_LSB		31
124 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
125 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
126 
127 #define CQSPI_REG_RD_INSTR			0x04
128 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
129 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
130 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
131 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
132 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
133 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
134 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
135 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
136 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
137 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
138 
139 #define CQSPI_REG_WR_INSTR			0x08
140 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
141 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
142 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
143 
144 #define CQSPI_REG_DELAY				0x0C
145 #define CQSPI_REG_DELAY_TSLCH_LSB		0
146 #define CQSPI_REG_DELAY_TCHSH_LSB		8
147 #define CQSPI_REG_DELAY_TSD2D_LSB		16
148 #define CQSPI_REG_DELAY_TSHSL_LSB		24
149 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
150 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
151 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
152 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
153 
154 #define CQSPI_REG_READCAPTURE			0x10
155 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
156 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
157 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
158 
159 #define CQSPI_REG_SIZE				0x14
160 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
161 #define CQSPI_REG_SIZE_PAGE_LSB			4
162 #define CQSPI_REG_SIZE_BLOCK_LSB		16
163 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
164 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
165 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
166 
167 #define CQSPI_REG_SRAMPARTITION			0x18
168 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
169 
170 #define CQSPI_REG_DMA				0x20
171 #define CQSPI_REG_DMA_SINGLE_LSB		0
172 #define CQSPI_REG_DMA_BURST_LSB			8
173 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
174 #define CQSPI_REG_DMA_BURST_MASK		0xFF
175 
176 #define CQSPI_REG_REMAP				0x24
177 #define CQSPI_REG_MODE_BIT			0x28
178 
179 #define CQSPI_REG_SDRAMLEVEL			0x2C
180 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
181 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
182 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
183 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
184 
185 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
186 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
187 
188 #define CQSPI_REG_IRQSTATUS			0x40
189 #define CQSPI_REG_IRQMASK			0x44
190 
191 #define CQSPI_REG_INDIRECTRD			0x60
192 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
193 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
194 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
195 
196 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
197 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
198 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
199 
200 #define CQSPI_REG_CMDCTRL			0x90
201 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
202 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
203 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
204 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
205 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
206 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
207 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
208 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
209 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
210 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
211 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
212 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
213 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
214 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
215 
216 #define CQSPI_REG_INDIRECTWR			0x70
217 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
218 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
219 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
220 
221 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
222 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
223 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
224 
225 #define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
226 
227 #define CQSPI_REG_CMDADDRESS			0x94
228 #define CQSPI_REG_CMDREADDATALOWER		0xA0
229 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
230 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
231 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
232 
233 #define CQSPI_REG_POLLING_STATUS		0xB0
234 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
235 
236 #define CQSPI_REG_OP_EXT_LOWER			0xE0
237 #define CQSPI_REG_OP_EXT_READ_LSB		24
238 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
239 #define CQSPI_REG_OP_EXT_STIG_LSB		0
240 
241 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
242 
243 #define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
244 #define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
245 
246 #define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
247 
248 #define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
249 #define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
250 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
251 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
252 
253 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
254 
255 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
256 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
257 
258 /* Interrupt status bits */
259 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
260 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
261 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
262 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
263 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
264 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
265 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
266 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
267 
268 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
269 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
270 					 CQSPI_REG_IRQ_IND_COMP)
271 
272 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
273 					 CQSPI_REG_IRQ_WATERMARK	| \
274 					 CQSPI_REG_IRQ_UNDERFLOW)
275 
276 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
277 #define CQSPI_DMA_UNALIGN		0x3
278 
279 #define CQSPI_REG_VERSAL_DMA_VAL		0x602
280 
281 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
282 {
283 	u32 val;
284 
285 	return readl_relaxed_poll_timeout(reg, val,
286 					  (((clr ? ~val : val) & mask) == mask),
287 					  10, CQSPI_TIMEOUT_MS * 1000);
288 }
289 
290 static bool cqspi_is_idle(struct cqspi_st *cqspi)
291 {
292 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
293 
294 	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
295 }
296 
297 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
298 {
299 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
300 
301 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
302 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
303 }
304 
305 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
306 {
307 	u32 dma_status;
308 
309 	dma_status = readl(cqspi->iobase +
310 					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
311 	writel(dma_status, cqspi->iobase +
312 		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
313 
314 	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
315 }
316 
317 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
318 {
319 	struct cqspi_st *cqspi = dev;
320 	unsigned int irq_status;
321 	struct device *device = &cqspi->pdev->dev;
322 	const struct cqspi_driver_platdata *ddata;
323 
324 	ddata = of_device_get_match_data(device);
325 
326 	/* Read interrupt status */
327 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
328 
329 	/* Clear interrupt */
330 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
331 
332 	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
333 		if (ddata->get_dma_status(cqspi)) {
334 			complete(&cqspi->transfer_complete);
335 			return IRQ_HANDLED;
336 		}
337 	}
338 
339 	else if (!cqspi->slow_sram)
340 		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
341 	else
342 		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
343 
344 	if (irq_status)
345 		complete(&cqspi->transfer_complete);
346 
347 	return IRQ_HANDLED;
348 }
349 
350 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
351 {
352 	u32 rdreg = 0;
353 
354 	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
355 	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
356 	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
357 
358 	return rdreg;
359 }
360 
361 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
362 {
363 	unsigned int dummy_clk;
364 
365 	if (!op->dummy.nbytes)
366 		return 0;
367 
368 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
369 	if (op->cmd.dtr)
370 		dummy_clk /= 2;
371 
372 	return dummy_clk;
373 }
374 
375 static int cqspi_wait_idle(struct cqspi_st *cqspi)
376 {
377 	const unsigned int poll_idle_retry = 3;
378 	unsigned int count = 0;
379 	unsigned long timeout;
380 
381 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
382 	while (1) {
383 		/*
384 		 * Read few times in succession to ensure the controller
385 		 * is indeed idle, that is, the bit does not transition
386 		 * low again.
387 		 */
388 		if (cqspi_is_idle(cqspi))
389 			count++;
390 		else
391 			count = 0;
392 
393 		if (count >= poll_idle_retry)
394 			return 0;
395 
396 		if (time_after(jiffies, timeout)) {
397 			/* Timeout, in busy mode. */
398 			dev_err(&cqspi->pdev->dev,
399 				"QSPI is still busy after %dms timeout.\n",
400 				CQSPI_TIMEOUT_MS);
401 			return -ETIMEDOUT;
402 		}
403 
404 		cpu_relax();
405 	}
406 }
407 
408 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
409 {
410 	void __iomem *reg_base = cqspi->iobase;
411 	int ret;
412 
413 	/* Write the CMDCTRL without start execution. */
414 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
415 	/* Start execute */
416 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
417 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
418 
419 	/* Polling for completion. */
420 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
421 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
422 	if (ret) {
423 		dev_err(&cqspi->pdev->dev,
424 			"Flash command execution timed out.\n");
425 		return ret;
426 	}
427 
428 	/* Polling QSPI idle status. */
429 	return cqspi_wait_idle(cqspi);
430 }
431 
432 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
433 				  const struct spi_mem_op *op,
434 				  unsigned int shift)
435 {
436 	struct cqspi_st *cqspi = f_pdata->cqspi;
437 	void __iomem *reg_base = cqspi->iobase;
438 	unsigned int reg;
439 	u8 ext;
440 
441 	if (op->cmd.nbytes != 2)
442 		return -EINVAL;
443 
444 	/* Opcode extension is the LSB. */
445 	ext = op->cmd.opcode & 0xff;
446 
447 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
448 	reg &= ~(0xff << shift);
449 	reg |= ext << shift;
450 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
451 
452 	return 0;
453 }
454 
455 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
456 			    const struct spi_mem_op *op, unsigned int shift)
457 {
458 	struct cqspi_st *cqspi = f_pdata->cqspi;
459 	void __iomem *reg_base = cqspi->iobase;
460 	unsigned int reg;
461 	int ret;
462 
463 	reg = readl(reg_base + CQSPI_REG_CONFIG);
464 
465 	/*
466 	 * We enable dual byte opcode here. The callers have to set up the
467 	 * extension opcode based on which type of operation it is.
468 	 */
469 	if (op->cmd.dtr) {
470 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
471 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
472 
473 		/* Set up command opcode extension. */
474 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
475 		if (ret)
476 			return ret;
477 	} else {
478 		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
479 		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
480 	}
481 
482 	writel(reg, reg_base + CQSPI_REG_CONFIG);
483 
484 	return cqspi_wait_idle(cqspi);
485 }
486 
487 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
488 			      const struct spi_mem_op *op)
489 {
490 	struct cqspi_st *cqspi = f_pdata->cqspi;
491 	void __iomem *reg_base = cqspi->iobase;
492 	u8 *rxbuf = op->data.buf.in;
493 	u8 opcode;
494 	size_t n_rx = op->data.nbytes;
495 	unsigned int rdreg;
496 	unsigned int reg;
497 	unsigned int dummy_clk;
498 	size_t read_len;
499 	int status;
500 
501 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
502 	if (status)
503 		return status;
504 
505 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
506 		dev_err(&cqspi->pdev->dev,
507 			"Invalid input argument, len %zu rxbuf 0x%p\n",
508 			n_rx, rxbuf);
509 		return -EINVAL;
510 	}
511 
512 	if (op->cmd.dtr)
513 		opcode = op->cmd.opcode >> 8;
514 	else
515 		opcode = op->cmd.opcode;
516 
517 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
518 
519 	rdreg = cqspi_calc_rdreg(op);
520 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
521 
522 	dummy_clk = cqspi_calc_dummy(op);
523 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
524 		return -EOPNOTSUPP;
525 
526 	if (dummy_clk)
527 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
528 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
529 
530 	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
531 
532 	/* 0 means 1 byte. */
533 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
534 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
535 
536 	/* setup ADDR BIT field */
537 	if (op->addr.nbytes) {
538 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
539 		reg |= ((op->addr.nbytes - 1) &
540 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
541 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
542 
543 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
544 	}
545 
546 	status = cqspi_exec_flash_cmd(cqspi, reg);
547 	if (status)
548 		return status;
549 
550 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
551 
552 	/* Put the read value into rx_buf */
553 	read_len = (n_rx > 4) ? 4 : n_rx;
554 	memcpy(rxbuf, &reg, read_len);
555 	rxbuf += read_len;
556 
557 	if (n_rx > 4) {
558 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
559 
560 		read_len = n_rx - read_len;
561 		memcpy(rxbuf, &reg, read_len);
562 	}
563 
564 	/* Reset CMD_CTRL Reg once command read completes */
565 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
566 
567 	return 0;
568 }
569 
570 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
571 			       const struct spi_mem_op *op)
572 {
573 	struct cqspi_st *cqspi = f_pdata->cqspi;
574 	void __iomem *reg_base = cqspi->iobase;
575 	u8 opcode;
576 	const u8 *txbuf = op->data.buf.out;
577 	size_t n_tx = op->data.nbytes;
578 	unsigned int reg;
579 	unsigned int data;
580 	size_t write_len;
581 	int ret;
582 
583 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
584 	if (ret)
585 		return ret;
586 
587 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
588 		dev_err(&cqspi->pdev->dev,
589 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
590 			n_tx, txbuf);
591 		return -EINVAL;
592 	}
593 
594 	reg = cqspi_calc_rdreg(op);
595 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
596 
597 	if (op->cmd.dtr)
598 		opcode = op->cmd.opcode >> 8;
599 	else
600 		opcode = op->cmd.opcode;
601 
602 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
603 
604 	if (op->addr.nbytes) {
605 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
606 		reg |= ((op->addr.nbytes - 1) &
607 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
608 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
609 
610 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
611 	}
612 
613 	if (n_tx) {
614 		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
615 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
616 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
617 		data = 0;
618 		write_len = (n_tx > 4) ? 4 : n_tx;
619 		memcpy(&data, txbuf, write_len);
620 		txbuf += write_len;
621 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
622 
623 		if (n_tx > 4) {
624 			data = 0;
625 			write_len = n_tx - 4;
626 			memcpy(&data, txbuf, write_len);
627 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
628 		}
629 	}
630 
631 	ret = cqspi_exec_flash_cmd(cqspi, reg);
632 
633 	/* Reset CMD_CTRL Reg once command write completes */
634 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
635 
636 	return ret;
637 }
638 
639 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
640 			    const struct spi_mem_op *op)
641 {
642 	struct cqspi_st *cqspi = f_pdata->cqspi;
643 	void __iomem *reg_base = cqspi->iobase;
644 	unsigned int dummy_clk = 0;
645 	unsigned int reg;
646 	int ret;
647 	u8 opcode;
648 
649 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
650 	if (ret)
651 		return ret;
652 
653 	if (op->cmd.dtr)
654 		opcode = op->cmd.opcode >> 8;
655 	else
656 		opcode = op->cmd.opcode;
657 
658 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
659 	reg |= cqspi_calc_rdreg(op);
660 
661 	/* Setup dummy clock cycles */
662 	dummy_clk = cqspi_calc_dummy(op);
663 
664 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
665 		return -EOPNOTSUPP;
666 
667 	if (dummy_clk)
668 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
669 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
670 
671 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
672 
673 	/* Set address width */
674 	reg = readl(reg_base + CQSPI_REG_SIZE);
675 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
676 	reg |= (op->addr.nbytes - 1);
677 	writel(reg, reg_base + CQSPI_REG_SIZE);
678 	return 0;
679 }
680 
681 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
682 				       u8 *rxbuf, loff_t from_addr,
683 				       const size_t n_rx)
684 {
685 	struct cqspi_st *cqspi = f_pdata->cqspi;
686 	struct device *dev = &cqspi->pdev->dev;
687 	void __iomem *reg_base = cqspi->iobase;
688 	void __iomem *ahb_base = cqspi->ahb_base;
689 	unsigned int remaining = n_rx;
690 	unsigned int mod_bytes = n_rx % 4;
691 	unsigned int bytes_to_read = 0;
692 	u8 *rxbuf_end = rxbuf + n_rx;
693 	int ret = 0;
694 
695 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
696 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
697 
698 	/* Clear all interrupts. */
699 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
700 
701 	/*
702 	 * On SoCFPGA platform reading the SRAM is slow due to
703 	 * hardware limitation and causing read interrupt storm to CPU,
704 	 * so enabling only watermark interrupt to disable all read
705 	 * interrupts later as we want to run "bytes to read" loop with
706 	 * all the read interrupts disabled for max performance.
707 	 */
708 
709 	if (!cqspi->slow_sram)
710 		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
711 	else
712 		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
713 
714 	reinit_completion(&cqspi->transfer_complete);
715 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
716 	       reg_base + CQSPI_REG_INDIRECTRD);
717 
718 	while (remaining > 0) {
719 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
720 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
721 			ret = -ETIMEDOUT;
722 
723 		/*
724 		 * Disable all read interrupts until
725 		 * we are out of "bytes to read"
726 		 */
727 		if (cqspi->slow_sram)
728 			writel(0x0, reg_base + CQSPI_REG_IRQMASK);
729 
730 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
731 
732 		if (ret && bytes_to_read == 0) {
733 			dev_err(dev, "Indirect read timeout, no bytes\n");
734 			goto failrd;
735 		}
736 
737 		while (bytes_to_read != 0) {
738 			unsigned int word_remain = round_down(remaining, 4);
739 
740 			bytes_to_read *= cqspi->fifo_width;
741 			bytes_to_read = bytes_to_read > remaining ?
742 					remaining : bytes_to_read;
743 			bytes_to_read = round_down(bytes_to_read, 4);
744 			/* Read 4 byte word chunks then single bytes */
745 			if (bytes_to_read) {
746 				ioread32_rep(ahb_base, rxbuf,
747 					     (bytes_to_read / 4));
748 			} else if (!word_remain && mod_bytes) {
749 				unsigned int temp = ioread32(ahb_base);
750 
751 				bytes_to_read = mod_bytes;
752 				memcpy(rxbuf, &temp, min((unsigned int)
753 							 (rxbuf_end - rxbuf),
754 							 bytes_to_read));
755 			}
756 			rxbuf += bytes_to_read;
757 			remaining -= bytes_to_read;
758 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
759 		}
760 
761 		if (remaining > 0) {
762 			reinit_completion(&cqspi->transfer_complete);
763 			if (cqspi->slow_sram)
764 				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
765 		}
766 	}
767 
768 	/* Check indirect done status */
769 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
770 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
771 	if (ret) {
772 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
773 		goto failrd;
774 	}
775 
776 	/* Disable interrupt */
777 	writel(0, reg_base + CQSPI_REG_IRQMASK);
778 
779 	/* Clear indirect completion status */
780 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
781 
782 	return 0;
783 
784 failrd:
785 	/* Disable interrupt */
786 	writel(0, reg_base + CQSPI_REG_IRQMASK);
787 
788 	/* Cancel the indirect read */
789 	writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
790 	       reg_base + CQSPI_REG_INDIRECTRD);
791 	return ret;
792 }
793 
794 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
795 					  u_char *rxbuf, loff_t from_addr,
796 					  size_t n_rx)
797 {
798 	struct cqspi_st *cqspi = f_pdata->cqspi;
799 	struct device *dev = &cqspi->pdev->dev;
800 	void __iomem *reg_base = cqspi->iobase;
801 	u32 reg, bytes_to_dma;
802 	loff_t addr = from_addr;
803 	void *buf = rxbuf;
804 	dma_addr_t dma_addr;
805 	u8 bytes_rem;
806 	int ret = 0;
807 
808 	bytes_rem = n_rx % 4;
809 	bytes_to_dma = (n_rx - bytes_rem);
810 
811 	if (!bytes_to_dma)
812 		goto nondmard;
813 
814 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
815 	if (ret)
816 		return ret;
817 
818 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
819 	reg |= CQSPI_REG_CONFIG_DMA_MASK;
820 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
821 
822 	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
823 	if (dma_mapping_error(dev, dma_addr)) {
824 		dev_err(dev, "dma mapping failed\n");
825 		return -ENOMEM;
826 	}
827 
828 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
829 	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
830 	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
831 	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
832 
833 	/* Clear all interrupts. */
834 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
835 
836 	/* Enable DMA done interrupt */
837 	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
838 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
839 
840 	/* Default DMA periph configuration */
841 	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
842 
843 	/* Configure DMA Dst address */
844 	writel(lower_32_bits(dma_addr),
845 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
846 	writel(upper_32_bits(dma_addr),
847 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
848 
849 	/* Configure DMA Src address */
850 	writel(cqspi->trigger_address, reg_base +
851 	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
852 
853 	/* Set DMA destination size */
854 	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
855 
856 	/* Set DMA destination control */
857 	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
858 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
859 
860 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
861 	       reg_base + CQSPI_REG_INDIRECTRD);
862 
863 	reinit_completion(&cqspi->transfer_complete);
864 
865 	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
866 					 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) {
867 		ret = -ETIMEDOUT;
868 		goto failrd;
869 	}
870 
871 	/* Disable DMA interrupt */
872 	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
873 
874 	/* Clear indirect completion status */
875 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
876 	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
877 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
878 
879 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
880 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
881 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
882 
883 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
884 					PM_OSPI_MUX_SEL_LINEAR);
885 	if (ret)
886 		return ret;
887 
888 nondmard:
889 	if (bytes_rem) {
890 		addr += bytes_to_dma;
891 		buf += bytes_to_dma;
892 		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
893 						  bytes_rem);
894 		if (ret)
895 			return ret;
896 	}
897 
898 	return 0;
899 
900 failrd:
901 	/* Disable DMA interrupt */
902 	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
903 
904 	/* Cancel the indirect read */
905 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
906 	       reg_base + CQSPI_REG_INDIRECTRD);
907 
908 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
909 
910 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
911 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
912 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
913 
914 	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
915 
916 	return ret;
917 }
918 
919 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
920 			     const struct spi_mem_op *op)
921 {
922 	unsigned int reg;
923 	int ret;
924 	struct cqspi_st *cqspi = f_pdata->cqspi;
925 	void __iomem *reg_base = cqspi->iobase;
926 	u8 opcode;
927 
928 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
929 	if (ret)
930 		return ret;
931 
932 	if (op->cmd.dtr)
933 		opcode = op->cmd.opcode >> 8;
934 	else
935 		opcode = op->cmd.opcode;
936 
937 	/* Set opcode. */
938 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
939 	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
940 	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
941 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
942 	reg = cqspi_calc_rdreg(op);
943 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
944 
945 	/*
946 	 * SPI NAND flashes require the address of the status register to be
947 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
948 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
949 	 * command in DTR mode.
950 	 *
951 	 * But this controller does not support address phase in the Read SR
952 	 * command when doing auto-HW polling. So, disable write completion
953 	 * polling on the controller's side. spinand and spi-nor will take
954 	 * care of polling the status register.
955 	 */
956 	if (cqspi->wr_completion) {
957 		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
958 		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
959 		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
960 		/*
961 		 * DAC mode require auto polling as flash needs to be polled
962 		 * for write completion in case of bubble in SPI transaction
963 		 * due to slow CPU/DMA master.
964 		 */
965 		cqspi->use_direct_mode_wr = false;
966 	}
967 
968 	reg = readl(reg_base + CQSPI_REG_SIZE);
969 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
970 	reg |= (op->addr.nbytes - 1);
971 	writel(reg, reg_base + CQSPI_REG_SIZE);
972 	return 0;
973 }
974 
975 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
976 					loff_t to_addr, const u8 *txbuf,
977 					const size_t n_tx)
978 {
979 	struct cqspi_st *cqspi = f_pdata->cqspi;
980 	struct device *dev = &cqspi->pdev->dev;
981 	void __iomem *reg_base = cqspi->iobase;
982 	unsigned int remaining = n_tx;
983 	unsigned int write_bytes;
984 	int ret;
985 
986 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
987 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
988 
989 	/* Clear all interrupts. */
990 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
991 
992 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
993 
994 	reinit_completion(&cqspi->transfer_complete);
995 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
996 	       reg_base + CQSPI_REG_INDIRECTWR);
997 	/*
998 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
999 	 * Controller programming sequence, couple of cycles of
1000 	 * QSPI_REF_CLK delay is required for the above bit to
1001 	 * be internally synchronized by the QSPI module. Provide 5
1002 	 * cycles of delay.
1003 	 */
1004 	if (cqspi->wr_delay)
1005 		ndelay(cqspi->wr_delay);
1006 
1007 	while (remaining > 0) {
1008 		size_t write_words, mod_bytes;
1009 
1010 		write_bytes = remaining;
1011 		write_words = write_bytes / 4;
1012 		mod_bytes = write_bytes % 4;
1013 		/* Write 4 bytes at a time then single bytes. */
1014 		if (write_words) {
1015 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1016 			txbuf += (write_words * 4);
1017 		}
1018 		if (mod_bytes) {
1019 			unsigned int temp = 0xFFFFFFFF;
1020 
1021 			memcpy(&temp, txbuf, mod_bytes);
1022 			iowrite32(temp, cqspi->ahb_base);
1023 			txbuf += mod_bytes;
1024 		}
1025 
1026 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1027 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1028 			dev_err(dev, "Indirect write timeout\n");
1029 			ret = -ETIMEDOUT;
1030 			goto failwr;
1031 		}
1032 
1033 		remaining -= write_bytes;
1034 
1035 		if (remaining > 0)
1036 			reinit_completion(&cqspi->transfer_complete);
1037 	}
1038 
1039 	/* Check indirect done status */
1040 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1041 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1042 	if (ret) {
1043 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1044 		goto failwr;
1045 	}
1046 
1047 	/* Disable interrupt. */
1048 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1049 
1050 	/* Clear indirect completion status */
1051 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1052 
1053 	cqspi_wait_idle(cqspi);
1054 
1055 	return 0;
1056 
1057 failwr:
1058 	/* Disable interrupt. */
1059 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1060 
1061 	/* Cancel the indirect write */
1062 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1063 	       reg_base + CQSPI_REG_INDIRECTWR);
1064 	return ret;
1065 }
1066 
1067 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1068 {
1069 	struct cqspi_st *cqspi = f_pdata->cqspi;
1070 	void __iomem *reg_base = cqspi->iobase;
1071 	unsigned int chip_select = f_pdata->cs;
1072 	unsigned int reg;
1073 
1074 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1075 	if (cqspi->is_decoded_cs) {
1076 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1077 	} else {
1078 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1079 
1080 		/* Convert CS if without decoder.
1081 		 * CS0 to 4b'1110
1082 		 * CS1 to 4b'1101
1083 		 * CS2 to 4b'1011
1084 		 * CS3 to 4b'0111
1085 		 */
1086 		chip_select = 0xF & ~(1 << chip_select);
1087 	}
1088 
1089 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1090 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1091 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1092 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1093 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1094 }
1095 
1096 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1097 					   const unsigned int ns_val)
1098 {
1099 	unsigned int ticks;
1100 
1101 	ticks = ref_clk_hz / 1000;	/* kHz */
1102 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1103 
1104 	return ticks;
1105 }
1106 
1107 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1108 {
1109 	struct cqspi_st *cqspi = f_pdata->cqspi;
1110 	void __iomem *iobase = cqspi->iobase;
1111 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1112 	unsigned int tshsl, tchsh, tslch, tsd2d;
1113 	unsigned int reg;
1114 	unsigned int tsclk;
1115 
1116 	/* calculate the number of ref ticks for one sclk tick */
1117 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1118 
1119 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1120 	/* this particular value must be at least one sclk */
1121 	if (tshsl < tsclk)
1122 		tshsl = tsclk;
1123 
1124 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1125 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1126 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1127 
1128 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1129 	       << CQSPI_REG_DELAY_TSHSL_LSB;
1130 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1131 		<< CQSPI_REG_DELAY_TCHSH_LSB;
1132 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1133 		<< CQSPI_REG_DELAY_TSLCH_LSB;
1134 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1135 		<< CQSPI_REG_DELAY_TSD2D_LSB;
1136 	writel(reg, iobase + CQSPI_REG_DELAY);
1137 }
1138 
1139 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1140 {
1141 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1142 	void __iomem *reg_base = cqspi->iobase;
1143 	u32 reg, div;
1144 
1145 	/* Recalculate the baudrate divisor based on QSPI specification. */
1146 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1147 
1148 	/* Maximum baud divisor */
1149 	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1150 		div = CQSPI_REG_CONFIG_BAUD_MASK;
1151 		dev_warn(&cqspi->pdev->dev,
1152 			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1153 			cqspi->sclk, ref_clk_hz/((div+1)*2));
1154 	}
1155 
1156 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1157 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1158 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1159 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1160 }
1161 
1162 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1163 				   const bool bypass,
1164 				   const unsigned int delay)
1165 {
1166 	void __iomem *reg_base = cqspi->iobase;
1167 	unsigned int reg;
1168 
1169 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1170 
1171 	if (bypass)
1172 		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1173 	else
1174 		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1175 
1176 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1177 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1178 
1179 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1180 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1181 
1182 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1183 }
1184 
1185 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1186 {
1187 	void __iomem *reg_base = cqspi->iobase;
1188 	unsigned int reg;
1189 
1190 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1191 
1192 	if (enable)
1193 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1194 	else
1195 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1196 
1197 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1198 }
1199 
1200 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1201 			    unsigned long sclk)
1202 {
1203 	struct cqspi_st *cqspi = f_pdata->cqspi;
1204 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1205 	int switch_ck = (cqspi->sclk != sclk);
1206 
1207 	if (switch_cs || switch_ck)
1208 		cqspi_controller_enable(cqspi, 0);
1209 
1210 	/* Switch chip select. */
1211 	if (switch_cs) {
1212 		cqspi->current_cs = f_pdata->cs;
1213 		cqspi_chipselect(f_pdata);
1214 	}
1215 
1216 	/* Setup baudrate divisor and delays */
1217 	if (switch_ck) {
1218 		cqspi->sclk = sclk;
1219 		cqspi_config_baudrate_div(cqspi);
1220 		cqspi_delay(f_pdata);
1221 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1222 				       f_pdata->read_delay);
1223 	}
1224 
1225 	if (switch_cs || switch_ck)
1226 		cqspi_controller_enable(cqspi, 1);
1227 }
1228 
1229 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1230 			   const struct spi_mem_op *op)
1231 {
1232 	struct cqspi_st *cqspi = f_pdata->cqspi;
1233 	loff_t to = op->addr.val;
1234 	size_t len = op->data.nbytes;
1235 	const u_char *buf = op->data.buf.out;
1236 	int ret;
1237 
1238 	ret = cqspi_write_setup(f_pdata, op);
1239 	if (ret)
1240 		return ret;
1241 
1242 	/*
1243 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1244 	 * address (all 0s) with the read status register command in DTR mode.
1245 	 * But this controller does not support sending dummy address bytes to
1246 	 * the flash when it is polling the write completion register in DTR
1247 	 * mode. So, we can not use direct mode when in DTR mode for writing
1248 	 * data.
1249 	 */
1250 	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1251 	    cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1252 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1253 		return cqspi_wait_idle(cqspi);
1254 	}
1255 
1256 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1257 }
1258 
1259 static void cqspi_rx_dma_callback(void *param)
1260 {
1261 	struct cqspi_st *cqspi = param;
1262 
1263 	complete(&cqspi->rx_dma_complete);
1264 }
1265 
1266 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1267 				     u_char *buf, loff_t from, size_t len)
1268 {
1269 	struct cqspi_st *cqspi = f_pdata->cqspi;
1270 	struct device *dev = &cqspi->pdev->dev;
1271 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1272 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1273 	int ret = 0;
1274 	struct dma_async_tx_descriptor *tx;
1275 	dma_cookie_t cookie;
1276 	dma_addr_t dma_dst;
1277 	struct device *ddev;
1278 
1279 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1280 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1281 		return 0;
1282 	}
1283 
1284 	ddev = cqspi->rx_chan->device->dev;
1285 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1286 	if (dma_mapping_error(ddev, dma_dst)) {
1287 		dev_err(dev, "dma mapping failed\n");
1288 		return -ENOMEM;
1289 	}
1290 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1291 				       len, flags);
1292 	if (!tx) {
1293 		dev_err(dev, "device_prep_dma_memcpy error\n");
1294 		ret = -EIO;
1295 		goto err_unmap;
1296 	}
1297 
1298 	tx->callback = cqspi_rx_dma_callback;
1299 	tx->callback_param = cqspi;
1300 	cookie = tx->tx_submit(tx);
1301 	reinit_completion(&cqspi->rx_dma_complete);
1302 
1303 	ret = dma_submit_error(cookie);
1304 	if (ret) {
1305 		dev_err(dev, "dma_submit_error %d\n", cookie);
1306 		ret = -EIO;
1307 		goto err_unmap;
1308 	}
1309 
1310 	dma_async_issue_pending(cqspi->rx_chan);
1311 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1312 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1313 		dmaengine_terminate_sync(cqspi->rx_chan);
1314 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1315 		ret = -ETIMEDOUT;
1316 		goto err_unmap;
1317 	}
1318 
1319 err_unmap:
1320 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1321 
1322 	return ret;
1323 }
1324 
1325 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1326 			  const struct spi_mem_op *op)
1327 {
1328 	struct cqspi_st *cqspi = f_pdata->cqspi;
1329 	struct device *dev = &cqspi->pdev->dev;
1330 	const struct cqspi_driver_platdata *ddata;
1331 	loff_t from = op->addr.val;
1332 	size_t len = op->data.nbytes;
1333 	u_char *buf = op->data.buf.in;
1334 	u64 dma_align = (u64)(uintptr_t)buf;
1335 	int ret;
1336 
1337 	ddata = of_device_get_match_data(dev);
1338 
1339 	ret = cqspi_read_setup(f_pdata, op);
1340 	if (ret)
1341 		return ret;
1342 
1343 	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1344 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1345 
1346 	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1347 	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1348 		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1349 
1350 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1351 }
1352 
1353 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1354 {
1355 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1356 	struct cqspi_flash_pdata *f_pdata;
1357 
1358 	f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1359 	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1360 
1361 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1362 	/*
1363 	 * Performing reads in DAC mode forces to read minimum 4 bytes
1364 	 * which is unsupported on some flash devices during register
1365 	 * reads, prefer STIG mode for such small reads.
1366 	 */
1367 		if (!op->addr.nbytes ||
1368 		    op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1369 			return cqspi_command_read(f_pdata, op);
1370 
1371 		return cqspi_read(f_pdata, op);
1372 	}
1373 
1374 	if (!op->addr.nbytes || !op->data.buf.out)
1375 		return cqspi_command_write(f_pdata, op);
1376 
1377 	return cqspi_write(f_pdata, op);
1378 }
1379 
1380 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1381 {
1382 	int ret;
1383 
1384 	ret = cqspi_mem_process(mem, op);
1385 	if (ret)
1386 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1387 
1388 	return ret;
1389 }
1390 
1391 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1392 				  const struct spi_mem_op *op)
1393 {
1394 	bool all_true, all_false;
1395 
1396 	/*
1397 	 * op->dummy.dtr is required for converting nbytes into ncycles.
1398 	 * Also, don't check the dtr field of the op phase having zero nbytes.
1399 	 */
1400 	all_true = op->cmd.dtr &&
1401 		   (!op->addr.nbytes || op->addr.dtr) &&
1402 		   (!op->dummy.nbytes || op->dummy.dtr) &&
1403 		   (!op->data.nbytes || op->data.dtr);
1404 
1405 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1406 		    !op->data.dtr;
1407 
1408 	if (all_true) {
1409 		/* Right now we only support 8-8-8 DTR mode. */
1410 		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1411 			return false;
1412 		if (op->addr.nbytes && op->addr.buswidth != 8)
1413 			return false;
1414 		if (op->data.nbytes && op->data.buswidth != 8)
1415 			return false;
1416 	} else if (!all_false) {
1417 		/* Mixed DTR modes are not supported. */
1418 		return false;
1419 	}
1420 
1421 	return spi_mem_default_supports_op(mem, op);
1422 }
1423 
1424 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1425 				    struct cqspi_flash_pdata *f_pdata,
1426 				    struct device_node *np)
1427 {
1428 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1429 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1430 		return -ENXIO;
1431 	}
1432 
1433 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1434 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1435 		return -ENXIO;
1436 	}
1437 
1438 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1439 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1440 		return -ENXIO;
1441 	}
1442 
1443 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1444 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1445 		return -ENXIO;
1446 	}
1447 
1448 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1449 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1450 		return -ENXIO;
1451 	}
1452 
1453 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1454 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1455 		return -ENXIO;
1456 	}
1457 
1458 	return 0;
1459 }
1460 
1461 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1462 {
1463 	struct device *dev = &cqspi->pdev->dev;
1464 	struct device_node *np = dev->of_node;
1465 	u32 id[2];
1466 
1467 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1468 
1469 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1470 		dev_err(dev, "couldn't determine fifo-depth\n");
1471 		return -ENXIO;
1472 	}
1473 
1474 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1475 		dev_err(dev, "couldn't determine fifo-width\n");
1476 		return -ENXIO;
1477 	}
1478 
1479 	if (of_property_read_u32(np, "cdns,trigger-address",
1480 				 &cqspi->trigger_address)) {
1481 		dev_err(dev, "couldn't determine trigger-address\n");
1482 		return -ENXIO;
1483 	}
1484 
1485 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1486 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1487 
1488 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1489 
1490 	if (!of_property_read_u32_array(np, "power-domains", id,
1491 					ARRAY_SIZE(id)))
1492 		cqspi->pd_dev_id = id[1];
1493 
1494 	return 0;
1495 }
1496 
1497 static void cqspi_controller_init(struct cqspi_st *cqspi)
1498 {
1499 	u32 reg;
1500 
1501 	cqspi_controller_enable(cqspi, 0);
1502 
1503 	/* Configure the remap address register, no remap */
1504 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1505 
1506 	/* Disable all interrupts. */
1507 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1508 
1509 	/* Configure the SRAM split to 1:1 . */
1510 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1511 
1512 	/* Load indirect trigger address. */
1513 	writel(cqspi->trigger_address,
1514 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1515 
1516 	/* Program read watermark -- 1/2 of the FIFO. */
1517 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1518 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1519 	/* Program write watermark -- 1/8 of the FIFO. */
1520 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1521 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1522 
1523 	/* Disable direct access controller */
1524 	if (!cqspi->use_direct_mode) {
1525 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1526 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1527 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1528 	}
1529 
1530 	/* Enable DMA interface */
1531 	if (cqspi->use_dma_read) {
1532 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1533 		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1534 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1535 	}
1536 
1537 	cqspi_controller_enable(cqspi, 1);
1538 }
1539 
1540 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1541 {
1542 	dma_cap_mask_t mask;
1543 
1544 	dma_cap_zero(mask);
1545 	dma_cap_set(DMA_MEMCPY, mask);
1546 
1547 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1548 	if (IS_ERR(cqspi->rx_chan)) {
1549 		int ret = PTR_ERR(cqspi->rx_chan);
1550 
1551 		cqspi->rx_chan = NULL;
1552 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1553 	}
1554 	init_completion(&cqspi->rx_dma_complete);
1555 
1556 	return 0;
1557 }
1558 
1559 static const char *cqspi_get_name(struct spi_mem *mem)
1560 {
1561 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1562 	struct device *dev = &cqspi->pdev->dev;
1563 
1564 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1565 }
1566 
1567 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1568 	.exec_op = cqspi_exec_mem_op,
1569 	.get_name = cqspi_get_name,
1570 	.supports_op = cqspi_supports_mem_op,
1571 };
1572 
1573 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1574 	.dtr = true,
1575 };
1576 
1577 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1578 {
1579 	struct platform_device *pdev = cqspi->pdev;
1580 	struct device *dev = &pdev->dev;
1581 	struct device_node *np = dev->of_node;
1582 	struct cqspi_flash_pdata *f_pdata;
1583 	unsigned int cs;
1584 	int ret;
1585 
1586 	/* Get flash device data */
1587 	for_each_available_child_of_node(dev->of_node, np) {
1588 		ret = of_property_read_u32(np, "reg", &cs);
1589 		if (ret) {
1590 			dev_err(dev, "Couldn't determine chip select.\n");
1591 			of_node_put(np);
1592 			return ret;
1593 		}
1594 
1595 		if (cs >= CQSPI_MAX_CHIPSELECT) {
1596 			dev_err(dev, "Chip select %d out of range.\n", cs);
1597 			of_node_put(np);
1598 			return -EINVAL;
1599 		}
1600 
1601 		f_pdata = &cqspi->f_pdata[cs];
1602 		f_pdata->cqspi = cqspi;
1603 		f_pdata->cs = cs;
1604 
1605 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1606 		if (ret) {
1607 			of_node_put(np);
1608 			return ret;
1609 		}
1610 	}
1611 
1612 	return 0;
1613 }
1614 
1615 static int cqspi_probe(struct platform_device *pdev)
1616 {
1617 	const struct cqspi_driver_platdata *ddata;
1618 	struct reset_control *rstc, *rstc_ocp;
1619 	struct device *dev = &pdev->dev;
1620 	struct spi_master *master;
1621 	struct resource *res_ahb;
1622 	struct cqspi_st *cqspi;
1623 	int ret;
1624 	int irq;
1625 
1626 	master = devm_spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1627 	if (!master) {
1628 		dev_err(&pdev->dev, "spi_alloc_master failed\n");
1629 		return -ENOMEM;
1630 	}
1631 	master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1632 	master->mem_ops = &cqspi_mem_ops;
1633 	master->mem_caps = &cqspi_mem_caps;
1634 	master->dev.of_node = pdev->dev.of_node;
1635 
1636 	cqspi = spi_master_get_devdata(master);
1637 
1638 	cqspi->pdev = pdev;
1639 	cqspi->master = master;
1640 	platform_set_drvdata(pdev, cqspi);
1641 
1642 	/* Obtain configuration from OF. */
1643 	ret = cqspi_of_get_pdata(cqspi);
1644 	if (ret) {
1645 		dev_err(dev, "Cannot get mandatory OF data.\n");
1646 		return -ENODEV;
1647 	}
1648 
1649 	/* Obtain QSPI clock. */
1650 	cqspi->clk = devm_clk_get(dev, NULL);
1651 	if (IS_ERR(cqspi->clk)) {
1652 		dev_err(dev, "Cannot claim QSPI clock.\n");
1653 		ret = PTR_ERR(cqspi->clk);
1654 		return ret;
1655 	}
1656 
1657 	/* Obtain and remap controller address. */
1658 	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1659 	if (IS_ERR(cqspi->iobase)) {
1660 		dev_err(dev, "Cannot remap controller address.\n");
1661 		ret = PTR_ERR(cqspi->iobase);
1662 		return ret;
1663 	}
1664 
1665 	/* Obtain and remap AHB address. */
1666 	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1667 	if (IS_ERR(cqspi->ahb_base)) {
1668 		dev_err(dev, "Cannot remap AHB address.\n");
1669 		ret = PTR_ERR(cqspi->ahb_base);
1670 		return ret;
1671 	}
1672 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1673 	cqspi->ahb_size = resource_size(res_ahb);
1674 
1675 	init_completion(&cqspi->transfer_complete);
1676 
1677 	/* Obtain IRQ line. */
1678 	irq = platform_get_irq(pdev, 0);
1679 	if (irq < 0)
1680 		return -ENXIO;
1681 
1682 	pm_runtime_enable(dev);
1683 	ret = pm_runtime_resume_and_get(dev);
1684 	if (ret < 0)
1685 		goto probe_pm_failed;
1686 
1687 	ret = clk_prepare_enable(cqspi->clk);
1688 	if (ret) {
1689 		dev_err(dev, "Cannot enable QSPI clock.\n");
1690 		goto probe_clk_failed;
1691 	}
1692 
1693 	/* Obtain QSPI reset control */
1694 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1695 	if (IS_ERR(rstc)) {
1696 		ret = PTR_ERR(rstc);
1697 		dev_err(dev, "Cannot get QSPI reset.\n");
1698 		goto probe_reset_failed;
1699 	}
1700 
1701 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1702 	if (IS_ERR(rstc_ocp)) {
1703 		ret = PTR_ERR(rstc_ocp);
1704 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1705 		goto probe_reset_failed;
1706 	}
1707 
1708 	reset_control_assert(rstc);
1709 	reset_control_deassert(rstc);
1710 
1711 	reset_control_assert(rstc_ocp);
1712 	reset_control_deassert(rstc_ocp);
1713 
1714 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1715 	master->max_speed_hz = cqspi->master_ref_clk_hz;
1716 
1717 	/* write completion is supported by default */
1718 	cqspi->wr_completion = true;
1719 
1720 	ddata  = of_device_get_match_data(dev);
1721 	if (ddata) {
1722 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1723 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1724 						cqspi->master_ref_clk_hz);
1725 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1726 			master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1727 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1728 			cqspi->use_direct_mode = true;
1729 			cqspi->use_direct_mode_wr = true;
1730 		}
1731 		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1732 			cqspi->use_dma_read = true;
1733 		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1734 			cqspi->wr_completion = false;
1735 		if (ddata->quirks & CQSPI_SLOW_SRAM)
1736 			cqspi->slow_sram = true;
1737 
1738 		if (of_device_is_compatible(pdev->dev.of_node,
1739 					    "xlnx,versal-ospi-1.0"))
1740 			dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1741 	}
1742 
1743 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1744 			       pdev->name, cqspi);
1745 	if (ret) {
1746 		dev_err(dev, "Cannot request IRQ.\n");
1747 		goto probe_reset_failed;
1748 	}
1749 
1750 	cqspi_wait_idle(cqspi);
1751 	cqspi_controller_init(cqspi);
1752 	cqspi->current_cs = -1;
1753 	cqspi->sclk = 0;
1754 
1755 	master->num_chipselect = cqspi->num_chipselect;
1756 
1757 	ret = cqspi_setup_flash(cqspi);
1758 	if (ret) {
1759 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1760 		goto probe_setup_failed;
1761 	}
1762 
1763 	if (cqspi->use_direct_mode) {
1764 		ret = cqspi_request_mmap_dma(cqspi);
1765 		if (ret == -EPROBE_DEFER)
1766 			goto probe_setup_failed;
1767 	}
1768 
1769 	ret = spi_register_master(master);
1770 	if (ret) {
1771 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1772 		goto probe_setup_failed;
1773 	}
1774 
1775 	return 0;
1776 probe_setup_failed:
1777 	cqspi_controller_enable(cqspi, 0);
1778 probe_reset_failed:
1779 	clk_disable_unprepare(cqspi->clk);
1780 probe_clk_failed:
1781 	pm_runtime_put_sync(dev);
1782 probe_pm_failed:
1783 	pm_runtime_disable(dev);
1784 	return ret;
1785 }
1786 
1787 static int cqspi_remove(struct platform_device *pdev)
1788 {
1789 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1790 
1791 	spi_unregister_master(cqspi->master);
1792 	cqspi_controller_enable(cqspi, 0);
1793 
1794 	if (cqspi->rx_chan)
1795 		dma_release_channel(cqspi->rx_chan);
1796 
1797 	clk_disable_unprepare(cqspi->clk);
1798 
1799 	pm_runtime_put_sync(&pdev->dev);
1800 	pm_runtime_disable(&pdev->dev);
1801 
1802 	return 0;
1803 }
1804 
1805 #ifdef CONFIG_PM_SLEEP
1806 static int cqspi_suspend(struct device *dev)
1807 {
1808 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1809 
1810 	cqspi_controller_enable(cqspi, 0);
1811 	return 0;
1812 }
1813 
1814 static int cqspi_resume(struct device *dev)
1815 {
1816 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1817 
1818 	cqspi_controller_enable(cqspi, 1);
1819 	return 0;
1820 }
1821 
1822 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1823 	.suspend = cqspi_suspend,
1824 	.resume = cqspi_resume,
1825 };
1826 
1827 #define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
1828 #else
1829 #define CQSPI_DEV_PM_OPS	NULL
1830 #endif
1831 
1832 static const struct cqspi_driver_platdata cdns_qspi = {
1833 	.quirks = CQSPI_DISABLE_DAC_MODE,
1834 };
1835 
1836 static const struct cqspi_driver_platdata k2g_qspi = {
1837 	.quirks = CQSPI_NEEDS_WR_DELAY,
1838 };
1839 
1840 static const struct cqspi_driver_platdata am654_ospi = {
1841 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1842 	.quirks = CQSPI_NEEDS_WR_DELAY,
1843 };
1844 
1845 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1846 	.quirks = CQSPI_DISABLE_DAC_MODE,
1847 };
1848 
1849 static const struct cqspi_driver_platdata socfpga_qspi = {
1850 	.quirks = CQSPI_DISABLE_DAC_MODE
1851 			| CQSPI_NO_SUPPORT_WR_COMPLETION
1852 			| CQSPI_SLOW_SRAM,
1853 };
1854 
1855 static const struct cqspi_driver_platdata versal_ospi = {
1856 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1857 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1858 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
1859 	.get_dma_status = cqspi_get_versal_dma_status,
1860 };
1861 
1862 static const struct of_device_id cqspi_dt_ids[] = {
1863 	{
1864 		.compatible = "cdns,qspi-nor",
1865 		.data = &cdns_qspi,
1866 	},
1867 	{
1868 		.compatible = "ti,k2g-qspi",
1869 		.data = &k2g_qspi,
1870 	},
1871 	{
1872 		.compatible = "ti,am654-ospi",
1873 		.data = &am654_ospi,
1874 	},
1875 	{
1876 		.compatible = "intel,lgm-qspi",
1877 		.data = &intel_lgm_qspi,
1878 	},
1879 	{
1880 		.compatible = "xlnx,versal-ospi-1.0",
1881 		.data = &versal_ospi,
1882 	},
1883 	{
1884 		.compatible = "intel,socfpga-qspi",
1885 		.data = &socfpga_qspi,
1886 	},
1887 	{ /* end of table */ }
1888 };
1889 
1890 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1891 
1892 static struct platform_driver cqspi_platform_driver = {
1893 	.probe = cqspi_probe,
1894 	.remove = cqspi_remove,
1895 	.driver = {
1896 		.name = CQSPI_NAME,
1897 		.pm = CQSPI_DEV_PM_OPS,
1898 		.of_match_table = cqspi_dt_ids,
1899 	},
1900 };
1901 
1902 module_platform_driver(cqspi_platform_driver);
1903 
1904 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1905 MODULE_LICENSE("GPL v2");
1906 MODULE_ALIAS("platform:" CQSPI_NAME);
1907 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1908 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1909 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1910 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1911 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
1912