xref: /linux/drivers/spi/spi-cadence-quadspi.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32 
33 #define CQSPI_NAME			"cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT		4
35 
36 static_assert(CQSPI_MAX_CHIPSELECT <= SPI_DEVICE_CS_CNT_MAX);
37 
38 /* Quirks */
39 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
40 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
41 #define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
42 #define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
43 #define CQSPI_SLOW_SRAM		BIT(4)
44 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR	BIT(5)
45 #define CQSPI_RD_NO_IRQ			BIT(6)
46 #define CQSPI_DMA_SET_MASK		BIT(7)
47 #define CQSPI_SUPPORT_DEVICE_RESET	BIT(8)
48 #define CQSPI_DISABLE_STIG_MODE		BIT(9)
49 #define CQSPI_DISABLE_RUNTIME_PM	BIT(10)
50 
51 /* Capabilities */
52 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
53 #define CQSPI_SUPPORTS_QUAD		BIT(1)
54 
55 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
56 
57 enum {
58 	CLK_QSPI_APB = 0,
59 	CLK_QSPI_AHB,
60 	CLK_QSPI_NUM,
61 };
62 
63 struct cqspi_st;
64 
65 struct cqspi_flash_pdata {
66 	struct cqspi_st	*cqspi;
67 	u32		clk_rate;
68 	u32		read_delay;
69 	u32		tshsl_ns;
70 	u32		tsd2d_ns;
71 	u32		tchsh_ns;
72 	u32		tslch_ns;
73 	u8		cs;
74 };
75 
76 struct cqspi_st {
77 	struct platform_device	*pdev;
78 	struct spi_controller	*host;
79 	struct clk		*clk;
80 	struct clk		*clks[CLK_QSPI_NUM];
81 	unsigned int		sclk;
82 
83 	void __iomem		*iobase;
84 	void __iomem		*ahb_base;
85 	resource_size_t		ahb_size;
86 	struct completion	transfer_complete;
87 
88 	struct dma_chan		*rx_chan;
89 	struct completion	rx_dma_complete;
90 	dma_addr_t		mmap_phys_base;
91 
92 	int			current_cs;
93 	unsigned long		master_ref_clk_hz;
94 	bool			is_decoded_cs;
95 	u32			fifo_depth;
96 	u32			fifo_width;
97 	u32			num_chipselect;
98 	bool			rclk_en;
99 	u32			trigger_address;
100 	u32			wr_delay;
101 	bool			use_direct_mode;
102 	bool			use_direct_mode_wr;
103 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
104 	bool			use_dma_read;
105 	u32			pd_dev_id;
106 	bool			wr_completion;
107 	bool			slow_sram;
108 	bool			apb_ahb_hazard;
109 
110 	bool			is_jh7110; /* Flag for StarFive JH7110 SoC */
111 	bool			disable_stig_mode;
112 	refcount_t		refcount;
113 	refcount_t		inflight_ops;
114 
115 	const struct cqspi_driver_platdata *ddata;
116 };
117 
118 struct cqspi_driver_platdata {
119 	u32 hwcaps_mask;
120 	u16 quirks;
121 	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
122 				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
123 	u32 (*get_dma_status)(struct cqspi_st *cqspi);
124 	int (*jh7110_clk_init)(struct platform_device *pdev,
125 			       struct cqspi_st *cqspi);
126 };
127 
128 /* Operation timeout value */
129 #define CQSPI_TIMEOUT_MS			500
130 #define CQSPI_READ_TIMEOUT_MS			10
131 #define CQSPI_BUSYWAIT_TIMEOUT_US		500
132 
133 /* Runtime_pm autosuspend delay */
134 #define CQSPI_AUTOSUSPEND_TIMEOUT		2000
135 
136 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
137 #define CQSPI_DUMMY_BYTES_MAX			4
138 #define CQSPI_DUMMY_CLKS_MAX			31
139 
140 #define CQSPI_STIG_DATA_LEN_MAX			8
141 
142 /* Register map */
143 #define CQSPI_REG_CONFIG			0x00
144 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
145 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
146 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
147 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
148 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
149 #define CQSPI_REG_CONFIG_BAUD_LSB		19
150 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
151 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
152 #define CQSPI_REG_CONFIG_IDLE_LSB		31
153 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
154 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
155 #define CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK    BIT(5)
156 #define CQSPI_REG_CONFIG_RESET_CFG_FLD_MASK    BIT(6)
157 
158 #define CQSPI_REG_RD_INSTR			0x04
159 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
160 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
161 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
162 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
163 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
164 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
165 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
166 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
167 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
168 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
169 
170 #define CQSPI_REG_WR_INSTR			0x08
171 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
172 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
173 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
174 
175 #define CQSPI_REG_DELAY				0x0C
176 #define CQSPI_REG_DELAY_TSLCH_LSB		0
177 #define CQSPI_REG_DELAY_TCHSH_LSB		8
178 #define CQSPI_REG_DELAY_TSD2D_LSB		16
179 #define CQSPI_REG_DELAY_TSHSL_LSB		24
180 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
181 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
182 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
183 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
184 
185 #define CQSPI_REG_READCAPTURE			0x10
186 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
187 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
188 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
189 
190 #define CQSPI_REG_SIZE				0x14
191 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
192 #define CQSPI_REG_SIZE_PAGE_LSB			4
193 #define CQSPI_REG_SIZE_BLOCK_LSB		16
194 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
195 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
196 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
197 
198 #define CQSPI_REG_SRAMPARTITION			0x18
199 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
200 
201 #define CQSPI_REG_DMA				0x20
202 #define CQSPI_REG_DMA_SINGLE_LSB		0
203 #define CQSPI_REG_DMA_BURST_LSB			8
204 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
205 #define CQSPI_REG_DMA_BURST_MASK		0xFF
206 
207 #define CQSPI_REG_REMAP				0x24
208 #define CQSPI_REG_MODE_BIT			0x28
209 
210 #define CQSPI_REG_SDRAMLEVEL			0x2C
211 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
212 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
213 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
214 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
215 
216 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
217 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
218 
219 #define CQSPI_REG_IRQSTATUS			0x40
220 #define CQSPI_REG_IRQMASK			0x44
221 
222 #define CQSPI_REG_INDIRECTRD			0x60
223 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
224 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
225 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
226 
227 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
228 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
229 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
230 
231 #define CQSPI_REG_CMDCTRL			0x90
232 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
233 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
234 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
235 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
236 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
237 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
238 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
239 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
240 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
241 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
242 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
243 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
244 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
245 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
246 
247 #define CQSPI_REG_INDIRECTWR			0x70
248 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
249 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
250 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
251 
252 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
253 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
254 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
255 
256 #define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
257 
258 #define CQSPI_REG_CMDADDRESS			0x94
259 #define CQSPI_REG_CMDREADDATALOWER		0xA0
260 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
261 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
262 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
263 
264 #define CQSPI_REG_POLLING_STATUS		0xB0
265 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
266 
267 #define CQSPI_REG_OP_EXT_LOWER			0xE0
268 #define CQSPI_REG_OP_EXT_READ_LSB		24
269 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
270 #define CQSPI_REG_OP_EXT_STIG_LSB		0
271 
272 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
273 
274 #define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
275 #define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
276 
277 #define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
278 
279 #define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
280 #define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
281 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
282 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
283 
284 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
285 
286 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
287 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
288 
289 /* Interrupt status bits */
290 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
291 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
292 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
293 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
294 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
295 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
296 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
297 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
298 
299 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
300 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
301 					 CQSPI_REG_IRQ_IND_COMP)
302 
303 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
304 					 CQSPI_REG_IRQ_WATERMARK	| \
305 					 CQSPI_REG_IRQ_UNDERFLOW)
306 
307 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
308 #define CQSPI_DMA_UNALIGN		0x3
309 
310 #define CQSPI_REG_VERSAL_DMA_VAL		0x602
311 
312 static int cqspi_wait_for_bit(const struct cqspi_driver_platdata *ddata,
313 			      void __iomem *reg, const u32 mask, bool clr,
314 			      bool busywait)
315 {
316 	u64 timeout_us = CQSPI_TIMEOUT_MS * USEC_PER_MSEC;
317 	u32 val;
318 
319 	if (busywait) {
320 		int ret = readl_relaxed_poll_timeout(reg, val,
321 						     (((clr ? ~val : val) & mask) == mask),
322 						     0, CQSPI_BUSYWAIT_TIMEOUT_US);
323 
324 		if (ret != -ETIMEDOUT)
325 			return ret;
326 
327 		timeout_us -= CQSPI_BUSYWAIT_TIMEOUT_US;
328 	}
329 
330 	return readl_relaxed_poll_timeout(reg, val,
331 					  (((clr ? ~val : val) & mask) == mask),
332 					  10, timeout_us);
333 }
334 
335 static bool cqspi_is_idle(struct cqspi_st *cqspi)
336 {
337 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
338 
339 	return reg & BIT(CQSPI_REG_CONFIG_IDLE_LSB);
340 }
341 
342 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
343 {
344 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
345 
346 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
347 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
348 }
349 
350 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
351 {
352 	u32 dma_status;
353 
354 	dma_status = readl(cqspi->iobase +
355 					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
356 	writel(dma_status, cqspi->iobase +
357 		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
358 
359 	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
360 }
361 
362 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
363 {
364 	struct cqspi_st *cqspi = dev;
365 	const struct cqspi_driver_platdata *ddata = cqspi->ddata;
366 	unsigned int irq_status;
367 
368 	/* Read interrupt status */
369 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
370 
371 	/* Clear interrupt */
372 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
373 
374 	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
375 		if (ddata->get_dma_status(cqspi)) {
376 			complete(&cqspi->transfer_complete);
377 			return IRQ_HANDLED;
378 		}
379 	}
380 
381 	else if (!cqspi->slow_sram)
382 		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
383 	else
384 		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
385 
386 	if (irq_status)
387 		complete(&cqspi->transfer_complete);
388 
389 	return IRQ_HANDLED;
390 }
391 
392 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
393 {
394 	u32 rdreg = 0;
395 
396 	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
397 	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
398 	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
399 
400 	return rdreg;
401 }
402 
403 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
404 {
405 	unsigned int dummy_clk;
406 
407 	if (!op->dummy.nbytes)
408 		return 0;
409 
410 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
411 	if (op->cmd.dtr)
412 		dummy_clk /= 2;
413 
414 	return dummy_clk;
415 }
416 
417 static int cqspi_wait_idle(struct cqspi_st *cqspi)
418 {
419 	const unsigned int poll_idle_retry = 3;
420 	unsigned int count = 0;
421 	unsigned long timeout;
422 
423 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
424 	while (1) {
425 		/*
426 		 * Read few times in succession to ensure the controller
427 		 * is indeed idle, that is, the bit does not transition
428 		 * low again.
429 		 */
430 		if (cqspi_is_idle(cqspi))
431 			count++;
432 		else
433 			count = 0;
434 
435 		if (count >= poll_idle_retry)
436 			return 0;
437 
438 		if (time_after(jiffies, timeout)) {
439 			/* Timeout, in busy mode. */
440 			dev_err(&cqspi->pdev->dev,
441 				"QSPI is still busy after %dms timeout.\n",
442 				CQSPI_TIMEOUT_MS);
443 			return -ETIMEDOUT;
444 		}
445 
446 		cpu_relax();
447 	}
448 }
449 
450 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
451 {
452 	void __iomem *reg_base = cqspi->iobase;
453 	int ret;
454 
455 	/* Write the CMDCTRL without start execution. */
456 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
457 	/* Start execute */
458 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
459 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
460 
461 	/* Polling for completion. */
462 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_CMDCTRL,
463 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1, true);
464 	if (ret) {
465 		dev_err(&cqspi->pdev->dev,
466 			"Flash command execution timed out.\n");
467 		return ret;
468 	}
469 
470 	/* Polling QSPI idle status. */
471 	return cqspi_wait_idle(cqspi);
472 }
473 
474 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
475 				  const struct spi_mem_op *op,
476 				  unsigned int shift)
477 {
478 	struct cqspi_st *cqspi = f_pdata->cqspi;
479 	void __iomem *reg_base = cqspi->iobase;
480 	unsigned int reg;
481 	u8 ext;
482 
483 	if (op->cmd.nbytes != 2)
484 		return -EINVAL;
485 
486 	/* Opcode extension is the LSB. */
487 	ext = op->cmd.opcode & 0xff;
488 
489 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
490 	reg &= ~(0xff << shift);
491 	reg |= ext << shift;
492 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
493 
494 	return 0;
495 }
496 
497 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
498 			    const struct spi_mem_op *op, unsigned int shift)
499 {
500 	struct cqspi_st *cqspi = f_pdata->cqspi;
501 	void __iomem *reg_base = cqspi->iobase;
502 	unsigned int reg;
503 	int ret;
504 
505 	reg = readl(reg_base + CQSPI_REG_CONFIG);
506 
507 	/*
508 	 * We enable dual byte opcode here. The callers have to set up the
509 	 * extension opcode based on which type of operation it is.
510 	 */
511 	if (op->cmd.dtr) {
512 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
513 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
514 
515 		/* Set up command opcode extension. */
516 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
517 		if (ret)
518 			return ret;
519 	} else {
520 		unsigned int mask = CQSPI_REG_CONFIG_DTR_PROTO | CQSPI_REG_CONFIG_DUAL_OPCODE;
521 		/* Shortcut if DTR is already disabled. */
522 		if ((reg & mask) == 0)
523 			return 0;
524 		reg &= ~mask;
525 	}
526 
527 	writel(reg, reg_base + CQSPI_REG_CONFIG);
528 
529 	return cqspi_wait_idle(cqspi);
530 }
531 
532 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
533 			      const struct spi_mem_op *op)
534 {
535 	struct cqspi_st *cqspi = f_pdata->cqspi;
536 	void __iomem *reg_base = cqspi->iobase;
537 	u8 *rxbuf = op->data.buf.in;
538 	u8 opcode;
539 	size_t n_rx = op->data.nbytes;
540 	unsigned int rdreg;
541 	unsigned int reg;
542 	unsigned int dummy_clk;
543 	size_t read_len;
544 	int status;
545 
546 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
547 	if (status)
548 		return status;
549 
550 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
551 		dev_err(&cqspi->pdev->dev,
552 			"Invalid input argument, len %zu rxbuf 0x%p\n",
553 			n_rx, rxbuf);
554 		return -EINVAL;
555 	}
556 
557 	if (op->cmd.dtr)
558 		opcode = op->cmd.opcode >> 8;
559 	else
560 		opcode = op->cmd.opcode;
561 
562 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
563 
564 	rdreg = cqspi_calc_rdreg(op);
565 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
566 
567 	dummy_clk = cqspi_calc_dummy(op);
568 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
569 		return -EOPNOTSUPP;
570 
571 	if (dummy_clk)
572 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
573 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
574 
575 	reg |= BIT(CQSPI_REG_CMDCTRL_RD_EN_LSB);
576 
577 	/* 0 means 1 byte. */
578 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
579 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
580 
581 	/* setup ADDR BIT field */
582 	if (op->addr.nbytes) {
583 		reg |= BIT(CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
584 		reg |= ((op->addr.nbytes - 1) &
585 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
586 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
587 
588 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
589 	}
590 
591 	status = cqspi_exec_flash_cmd(cqspi, reg);
592 	if (status)
593 		return status;
594 
595 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
596 
597 	/* Put the read value into rx_buf */
598 	read_len = (n_rx > 4) ? 4 : n_rx;
599 	memcpy(rxbuf, &reg, read_len);
600 	rxbuf += read_len;
601 
602 	if (n_rx > 4) {
603 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
604 
605 		read_len = n_rx - read_len;
606 		memcpy(rxbuf, &reg, read_len);
607 	}
608 
609 	/* Reset CMD_CTRL Reg once command read completes */
610 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
611 
612 	return 0;
613 }
614 
615 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
616 			       const struct spi_mem_op *op)
617 {
618 	struct cqspi_st *cqspi = f_pdata->cqspi;
619 	void __iomem *reg_base = cqspi->iobase;
620 	u8 opcode;
621 	const u8 *txbuf = op->data.buf.out;
622 	size_t n_tx = op->data.nbytes;
623 	unsigned int reg;
624 	unsigned int data;
625 	size_t write_len;
626 	int ret;
627 
628 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
629 	if (ret)
630 		return ret;
631 
632 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
633 		dev_err(&cqspi->pdev->dev,
634 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
635 			n_tx, txbuf);
636 		return -EINVAL;
637 	}
638 
639 	reg = cqspi_calc_rdreg(op);
640 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
641 
642 	if (op->cmd.dtr)
643 		opcode = op->cmd.opcode >> 8;
644 	else
645 		opcode = op->cmd.opcode;
646 
647 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
648 
649 	if (op->addr.nbytes) {
650 		reg |= BIT(CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
651 		reg |= ((op->addr.nbytes - 1) &
652 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
653 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
654 
655 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
656 	}
657 
658 	if (n_tx) {
659 		reg |= BIT(CQSPI_REG_CMDCTRL_WR_EN_LSB);
660 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
661 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
662 		data = 0;
663 		write_len = (n_tx > 4) ? 4 : n_tx;
664 		memcpy(&data, txbuf, write_len);
665 		txbuf += write_len;
666 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
667 
668 		if (n_tx > 4) {
669 			data = 0;
670 			write_len = n_tx - 4;
671 			memcpy(&data, txbuf, write_len);
672 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
673 		}
674 	}
675 
676 	ret = cqspi_exec_flash_cmd(cqspi, reg);
677 
678 	/* Reset CMD_CTRL Reg once command write completes */
679 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
680 
681 	return ret;
682 }
683 
684 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
685 			    const struct spi_mem_op *op)
686 {
687 	struct cqspi_st *cqspi = f_pdata->cqspi;
688 	void __iomem *reg_base = cqspi->iobase;
689 	unsigned int dummy_clk = 0;
690 	unsigned int reg;
691 	int ret;
692 	u8 opcode;
693 
694 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
695 	if (ret)
696 		return ret;
697 
698 	if (op->cmd.dtr)
699 		opcode = op->cmd.opcode >> 8;
700 	else
701 		opcode = op->cmd.opcode;
702 
703 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
704 	reg |= cqspi_calc_rdreg(op);
705 
706 	/* Setup dummy clock cycles */
707 	dummy_clk = cqspi_calc_dummy(op);
708 
709 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
710 		return -EOPNOTSUPP;
711 
712 	if (dummy_clk)
713 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
714 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
715 
716 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
717 
718 	/* Set address width */
719 	reg = readl(reg_base + CQSPI_REG_SIZE);
720 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
721 	reg |= (op->addr.nbytes - 1);
722 	writel(reg, reg_base + CQSPI_REG_SIZE);
723 	readl(reg_base + CQSPI_REG_SIZE); /* Flush posted write. */
724 	return 0;
725 }
726 
727 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
728 				       u8 *rxbuf, loff_t from_addr,
729 				       const size_t n_rx)
730 {
731 	struct cqspi_st *cqspi = f_pdata->cqspi;
732 	bool use_irq = !(cqspi->ddata && cqspi->ddata->quirks & CQSPI_RD_NO_IRQ);
733 	struct device *dev = &cqspi->pdev->dev;
734 	void __iomem *reg_base = cqspi->iobase;
735 	void __iomem *ahb_base = cqspi->ahb_base;
736 	unsigned int remaining = n_rx;
737 	unsigned int mod_bytes = n_rx % 4;
738 	unsigned int bytes_to_read = 0;
739 	u8 *rxbuf_end = rxbuf + n_rx;
740 	int ret = 0;
741 
742 	if (!refcount_read(&cqspi->refcount))
743 		return -ENODEV;
744 
745 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
746 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
747 
748 	/* Clear all interrupts. */
749 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
750 
751 	/*
752 	 * On SoCFPGA platform reading the SRAM is slow due to
753 	 * hardware limitation and causing read interrupt storm to CPU,
754 	 * so enabling only watermark interrupt to disable all read
755 	 * interrupts later as we want to run "bytes to read" loop with
756 	 * all the read interrupts disabled for max performance.
757 	 */
758 
759 	if (use_irq && cqspi->slow_sram)
760 		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
761 	else if (use_irq)
762 		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
763 	else
764 		writel(0, reg_base + CQSPI_REG_IRQMASK);
765 
766 	reinit_completion(&cqspi->transfer_complete);
767 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
768 	       reg_base + CQSPI_REG_INDIRECTRD);
769 	readl(reg_base + CQSPI_REG_INDIRECTRD); /* Flush posted write. */
770 
771 	while (remaining > 0) {
772 		if (use_irq &&
773 		    !wait_for_completion_timeout(&cqspi->transfer_complete,
774 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
775 			ret = -ETIMEDOUT;
776 
777 		/*
778 		 * Disable all read interrupts until
779 		 * we are out of "bytes to read"
780 		 */
781 		if (cqspi->slow_sram)
782 			writel(0x0, reg_base + CQSPI_REG_IRQMASK);
783 
784 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
785 
786 		if (ret && bytes_to_read == 0) {
787 			dev_err(dev, "Indirect read timeout, no bytes\n");
788 			goto failrd;
789 		}
790 
791 		while (bytes_to_read != 0) {
792 			unsigned int word_remain = round_down(remaining, 4);
793 
794 			bytes_to_read *= cqspi->fifo_width;
795 			bytes_to_read = bytes_to_read > remaining ?
796 					remaining : bytes_to_read;
797 			bytes_to_read = round_down(bytes_to_read, 4);
798 			/* Read 4 byte word chunks then single bytes */
799 			if (bytes_to_read) {
800 				ioread32_rep(ahb_base, rxbuf,
801 					     (bytes_to_read / 4));
802 			} else if (!word_remain && mod_bytes) {
803 				unsigned int temp = ioread32(ahb_base);
804 
805 				bytes_to_read = mod_bytes;
806 				memcpy(rxbuf, &temp, min((unsigned int)
807 							 (rxbuf_end - rxbuf),
808 							 bytes_to_read));
809 			}
810 			rxbuf += bytes_to_read;
811 			remaining -= bytes_to_read;
812 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
813 		}
814 
815 		if (use_irq && remaining > 0) {
816 			reinit_completion(&cqspi->transfer_complete);
817 			if (cqspi->slow_sram)
818 				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
819 		}
820 	}
821 
822 	/* Check indirect done status */
823 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTRD,
824 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0, true);
825 	if (ret) {
826 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
827 		goto failrd;
828 	}
829 
830 	/* Disable interrupt */
831 	writel(0, reg_base + CQSPI_REG_IRQMASK);
832 
833 	/* Clear indirect completion status */
834 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
835 
836 	return 0;
837 
838 failrd:
839 	/* Disable interrupt */
840 	writel(0, reg_base + CQSPI_REG_IRQMASK);
841 
842 	/* Cancel the indirect read */
843 	writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
844 	       reg_base + CQSPI_REG_INDIRECTRD);
845 	return ret;
846 }
847 
848 static void cqspi_device_reset(struct cqspi_st *cqspi)
849 {
850 	u32 reg;
851 
852 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
853 	reg |= CQSPI_REG_CONFIG_RESET_CFG_FLD_MASK;
854 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
855 	/*
856 	 * NOTE: Delay timing implementation is derived from
857 	 * spi_nor_hw_reset()
858 	 */
859 	writel(reg & ~CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
860 	usleep_range(1, 5);
861 	writel(reg | CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
862 	usleep_range(100, 150);
863 	writel(reg & ~CQSPI_REG_CONFIG_RESET_PIN_FLD_MASK, cqspi->iobase + CQSPI_REG_CONFIG);
864 	usleep_range(1000, 1200);
865 }
866 
867 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
868 {
869 	void __iomem *reg_base = cqspi->iobase;
870 	unsigned int reg;
871 
872 	reg = readl(reg_base + CQSPI_REG_CONFIG);
873 
874 	if (enable)
875 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
876 	else
877 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
878 
879 	writel(reg, reg_base + CQSPI_REG_CONFIG);
880 }
881 
882 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
883 					  u_char *rxbuf, loff_t from_addr,
884 					  size_t n_rx)
885 {
886 	struct cqspi_st *cqspi = f_pdata->cqspi;
887 	struct device *dev = &cqspi->pdev->dev;
888 	void __iomem *reg_base = cqspi->iobase;
889 	u32 reg, bytes_to_dma;
890 	loff_t addr = from_addr;
891 	void *buf = rxbuf;
892 	dma_addr_t dma_addr;
893 	u8 bytes_rem;
894 	int ret = 0;
895 
896 	bytes_rem = n_rx % 4;
897 	bytes_to_dma = (n_rx - bytes_rem);
898 
899 	if (!bytes_to_dma)
900 		goto nondmard;
901 
902 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
903 	if (ret)
904 		return ret;
905 
906 	cqspi_controller_enable(cqspi, 0);
907 
908 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
909 	reg |= CQSPI_REG_CONFIG_DMA_MASK;
910 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
911 
912 	cqspi_controller_enable(cqspi, 1);
913 
914 	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
915 	if (dma_mapping_error(dev, dma_addr)) {
916 		dev_err(dev, "dma mapping failed\n");
917 		return -ENOMEM;
918 	}
919 
920 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
921 	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
922 	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
923 	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
924 
925 	/* Clear all interrupts. */
926 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
927 
928 	/* Enable DMA done interrupt */
929 	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
930 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
931 
932 	/* Default DMA periph configuration */
933 	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
934 
935 	/* Configure DMA Dst address */
936 	writel(lower_32_bits(dma_addr),
937 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
938 	writel(upper_32_bits(dma_addr),
939 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
940 
941 	/* Configure DMA Src address */
942 	writel(cqspi->trigger_address, reg_base +
943 	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
944 
945 	/* Set DMA destination size */
946 	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
947 
948 	/* Set DMA destination control */
949 	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
950 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
951 
952 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
953 	       reg_base + CQSPI_REG_INDIRECTRD);
954 
955 	reinit_completion(&cqspi->transfer_complete);
956 
957 	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
958 					 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
959 		ret = -ETIMEDOUT;
960 		goto failrd;
961 	}
962 
963 	/* Disable DMA interrupt */
964 	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
965 
966 	/* Clear indirect completion status */
967 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
968 	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
969 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
970 
971 	cqspi_controller_enable(cqspi, 0);
972 
973 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
974 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
975 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
976 
977 	cqspi_controller_enable(cqspi, 1);
978 
979 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
980 					PM_OSPI_MUX_SEL_LINEAR);
981 	if (ret)
982 		return ret;
983 
984 nondmard:
985 	if (bytes_rem) {
986 		addr += bytes_to_dma;
987 		buf += bytes_to_dma;
988 		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
989 						  bytes_rem);
990 		if (ret)
991 			return ret;
992 	}
993 
994 	return 0;
995 
996 failrd:
997 	/* Disable DMA interrupt */
998 	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
999 
1000 	/* Cancel the indirect read */
1001 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1002 	       reg_base + CQSPI_REG_INDIRECTRD);
1003 
1004 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
1005 
1006 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1007 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
1008 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1009 
1010 	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
1011 
1012 	return ret;
1013 }
1014 
1015 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
1016 			     const struct spi_mem_op *op)
1017 {
1018 	unsigned int reg;
1019 	int ret;
1020 	struct cqspi_st *cqspi = f_pdata->cqspi;
1021 	void __iomem *reg_base = cqspi->iobase;
1022 	u8 opcode;
1023 
1024 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
1025 	if (ret)
1026 		return ret;
1027 
1028 	if (op->cmd.dtr)
1029 		opcode = op->cmd.opcode >> 8;
1030 	else
1031 		opcode = op->cmd.opcode;
1032 
1033 	/* Set opcode. */
1034 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
1035 	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
1036 	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
1037 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
1038 	reg = cqspi_calc_rdreg(op);
1039 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
1040 
1041 	/*
1042 	 * SPI NAND flashes require the address of the status register to be
1043 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
1044 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
1045 	 * command in DTR mode.
1046 	 *
1047 	 * But this controller does not support address phase in the Read SR
1048 	 * command when doing auto-HW polling. So, disable write completion
1049 	 * polling on the controller's side. spinand and spi-nor will take
1050 	 * care of polling the status register.
1051 	 */
1052 	if (cqspi->wr_completion) {
1053 		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1054 		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
1055 		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1056 		/*
1057 		 * DAC mode require auto polling as flash needs to be polled
1058 		 * for write completion in case of bubble in SPI transaction
1059 		 * due to slow CPU/DMA master.
1060 		 */
1061 		cqspi->use_direct_mode_wr = false;
1062 	}
1063 
1064 	reg = readl(reg_base + CQSPI_REG_SIZE);
1065 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1066 	reg |= (op->addr.nbytes - 1);
1067 	writel(reg, reg_base + CQSPI_REG_SIZE);
1068 	readl(reg_base + CQSPI_REG_SIZE); /* Flush posted write. */
1069 	return 0;
1070 }
1071 
1072 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1073 					loff_t to_addr, const u8 *txbuf,
1074 					const size_t n_tx)
1075 {
1076 	struct cqspi_st *cqspi = f_pdata->cqspi;
1077 	struct device *dev = &cqspi->pdev->dev;
1078 	void __iomem *reg_base = cqspi->iobase;
1079 	unsigned int remaining = n_tx;
1080 	unsigned int write_bytes;
1081 	int ret;
1082 
1083 	if (!refcount_read(&cqspi->refcount))
1084 		return -ENODEV;
1085 
1086 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1087 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1088 
1089 	/* Clear all interrupts. */
1090 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1091 
1092 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1093 
1094 	reinit_completion(&cqspi->transfer_complete);
1095 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1096 	       reg_base + CQSPI_REG_INDIRECTWR);
1097 	readl(reg_base + CQSPI_REG_INDIRECTWR); /* Flush posted write. */
1098 
1099 	/*
1100 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1101 	 * Controller programming sequence, couple of cycles of
1102 	 * QSPI_REF_CLK delay is required for the above bit to
1103 	 * be internally synchronized by the QSPI module. Provide 5
1104 	 * cycles of delay.
1105 	 */
1106 	if (cqspi->wr_delay)
1107 		ndelay(cqspi->wr_delay);
1108 
1109 	/*
1110 	 * If a hazard exists between the APB and AHB interfaces, perform a
1111 	 * dummy readback from the controller to ensure synchronization.
1112 	 */
1113 	if (cqspi->apb_ahb_hazard)
1114 		readl(reg_base + CQSPI_REG_INDIRECTWR);
1115 
1116 	while (remaining > 0) {
1117 		size_t write_words, mod_bytes;
1118 
1119 		write_bytes = remaining;
1120 		write_words = write_bytes / 4;
1121 		mod_bytes = write_bytes % 4;
1122 		/* Write 4 bytes at a time then single bytes. */
1123 		if (write_words) {
1124 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1125 			txbuf += (write_words * 4);
1126 		}
1127 		if (mod_bytes) {
1128 			unsigned int temp = 0xFFFFFFFF;
1129 
1130 			memcpy(&temp, txbuf, mod_bytes);
1131 			iowrite32(temp, cqspi->ahb_base);
1132 			txbuf += mod_bytes;
1133 		}
1134 
1135 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1136 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1137 			dev_err(dev, "Indirect write timeout\n");
1138 			ret = -ETIMEDOUT;
1139 			goto failwr;
1140 		}
1141 
1142 		remaining -= write_bytes;
1143 
1144 		if (remaining > 0)
1145 			reinit_completion(&cqspi->transfer_complete);
1146 	}
1147 
1148 	/* Check indirect done status */
1149 	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTWR,
1150 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0, false);
1151 	if (ret) {
1152 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1153 		goto failwr;
1154 	}
1155 
1156 	/* Disable interrupt. */
1157 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1158 
1159 	/* Clear indirect completion status */
1160 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1161 
1162 	cqspi_wait_idle(cqspi);
1163 
1164 	return 0;
1165 
1166 failwr:
1167 	/* Disable interrupt. */
1168 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1169 
1170 	/* Cancel the indirect write */
1171 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1172 	       reg_base + CQSPI_REG_INDIRECTWR);
1173 	return ret;
1174 }
1175 
1176 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1177 {
1178 	struct cqspi_st *cqspi = f_pdata->cqspi;
1179 	void __iomem *reg_base = cqspi->iobase;
1180 	unsigned int chip_select = f_pdata->cs;
1181 	unsigned int reg;
1182 
1183 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1184 	if (cqspi->is_decoded_cs) {
1185 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1186 	} else {
1187 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1188 
1189 		/* Convert CS if without decoder.
1190 		 * CS0 to 4b'1110
1191 		 * CS1 to 4b'1101
1192 		 * CS2 to 4b'1011
1193 		 * CS3 to 4b'0111
1194 		 */
1195 		chip_select = 0xF & ~BIT(chip_select);
1196 	}
1197 
1198 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1199 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1200 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1201 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1202 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1203 }
1204 
1205 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1206 					   const unsigned int ns_val)
1207 {
1208 	unsigned int ticks;
1209 
1210 	ticks = ref_clk_hz / 1000;	/* kHz */
1211 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1212 
1213 	return ticks;
1214 }
1215 
1216 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1217 {
1218 	struct cqspi_st *cqspi = f_pdata->cqspi;
1219 	void __iomem *iobase = cqspi->iobase;
1220 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1221 	unsigned int tshsl, tchsh, tslch, tsd2d;
1222 	unsigned int reg;
1223 	unsigned int tsclk;
1224 
1225 	/* calculate the number of ref ticks for one sclk tick */
1226 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1227 
1228 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1229 	/* this particular value must be at least one sclk */
1230 	if (tshsl < tsclk)
1231 		tshsl = tsclk;
1232 
1233 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1234 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1235 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1236 
1237 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1238 	       << CQSPI_REG_DELAY_TSHSL_LSB;
1239 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1240 		<< CQSPI_REG_DELAY_TCHSH_LSB;
1241 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1242 		<< CQSPI_REG_DELAY_TSLCH_LSB;
1243 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1244 		<< CQSPI_REG_DELAY_TSD2D_LSB;
1245 	writel(reg, iobase + CQSPI_REG_DELAY);
1246 }
1247 
1248 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1249 {
1250 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1251 	void __iomem *reg_base = cqspi->iobase;
1252 	u32 reg, div;
1253 
1254 	/* Recalculate the baudrate divisor based on QSPI specification. */
1255 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1256 
1257 	/* Maximum baud divisor */
1258 	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1259 		div = CQSPI_REG_CONFIG_BAUD_MASK;
1260 		dev_warn(&cqspi->pdev->dev,
1261 			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1262 			cqspi->sclk, ref_clk_hz/((div+1)*2));
1263 	}
1264 
1265 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1266 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1267 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1268 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1269 }
1270 
1271 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1272 				   const bool bypass,
1273 				   const unsigned int delay)
1274 {
1275 	void __iomem *reg_base = cqspi->iobase;
1276 	unsigned int reg;
1277 
1278 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1279 
1280 	if (bypass)
1281 		reg |= BIT(CQSPI_REG_READCAPTURE_BYPASS_LSB);
1282 	else
1283 		reg &= ~BIT(CQSPI_REG_READCAPTURE_BYPASS_LSB);
1284 
1285 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1286 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1287 
1288 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1289 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1290 
1291 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1292 }
1293 
1294 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1295 			    unsigned long sclk)
1296 {
1297 	struct cqspi_st *cqspi = f_pdata->cqspi;
1298 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1299 	int switch_ck = (cqspi->sclk != sclk);
1300 
1301 	if (switch_cs || switch_ck)
1302 		cqspi_controller_enable(cqspi, 0);
1303 
1304 	/* Switch chip select. */
1305 	if (switch_cs) {
1306 		cqspi->current_cs = f_pdata->cs;
1307 		cqspi_chipselect(f_pdata);
1308 	}
1309 
1310 	/* Setup baudrate divisor and delays */
1311 	if (switch_ck) {
1312 		cqspi->sclk = sclk;
1313 		cqspi_config_baudrate_div(cqspi);
1314 		cqspi_delay(f_pdata);
1315 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1316 				       f_pdata->read_delay);
1317 	}
1318 
1319 	if (switch_cs || switch_ck)
1320 		cqspi_controller_enable(cqspi, 1);
1321 }
1322 
1323 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1324 			   const struct spi_mem_op *op)
1325 {
1326 	struct cqspi_st *cqspi = f_pdata->cqspi;
1327 	loff_t to = op->addr.val;
1328 	size_t len = op->data.nbytes;
1329 	const u_char *buf = op->data.buf.out;
1330 	int ret;
1331 
1332 	ret = cqspi_write_setup(f_pdata, op);
1333 	if (ret)
1334 		return ret;
1335 
1336 	/*
1337 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1338 	 * address (all 0s) with the read status register command in DTR mode.
1339 	 * But this controller does not support sending dummy address bytes to
1340 	 * the flash when it is polling the write completion register in DTR
1341 	 * mode. So, we can not use direct mode when in DTR mode for writing
1342 	 * data.
1343 	 */
1344 	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1345 	    cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1346 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1347 		return cqspi_wait_idle(cqspi);
1348 	}
1349 
1350 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1351 }
1352 
1353 static void cqspi_rx_dma_callback(void *param)
1354 {
1355 	struct cqspi_st *cqspi = param;
1356 
1357 	complete(&cqspi->rx_dma_complete);
1358 }
1359 
1360 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1361 				     u_char *buf, loff_t from, size_t len)
1362 {
1363 	struct cqspi_st *cqspi = f_pdata->cqspi;
1364 	struct device *dev = &cqspi->pdev->dev;
1365 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1366 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1367 	int ret = 0;
1368 	struct dma_async_tx_descriptor *tx;
1369 	dma_cookie_t cookie;
1370 	dma_addr_t dma_dst;
1371 	struct device *ddev;
1372 
1373 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1374 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1375 		return 0;
1376 	}
1377 
1378 	ddev = cqspi->rx_chan->device->dev;
1379 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1380 	if (dma_mapping_error(ddev, dma_dst)) {
1381 		dev_err(dev, "dma mapping failed\n");
1382 		return -ENOMEM;
1383 	}
1384 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1385 				       len, flags);
1386 	if (!tx) {
1387 		dev_err(dev, "device_prep_dma_memcpy error\n");
1388 		ret = -EIO;
1389 		goto err_unmap;
1390 	}
1391 
1392 	tx->callback = cqspi_rx_dma_callback;
1393 	tx->callback_param = cqspi;
1394 	cookie = tx->tx_submit(tx);
1395 	reinit_completion(&cqspi->rx_dma_complete);
1396 
1397 	ret = dma_submit_error(cookie);
1398 	if (ret) {
1399 		dev_err(dev, "dma_submit_error %d\n", cookie);
1400 		ret = -EIO;
1401 		goto err_unmap;
1402 	}
1403 
1404 	dma_async_issue_pending(cqspi->rx_chan);
1405 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1406 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1407 		dmaengine_terminate_sync(cqspi->rx_chan);
1408 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1409 		ret = -ETIMEDOUT;
1410 		goto err_unmap;
1411 	}
1412 
1413 err_unmap:
1414 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1415 
1416 	return ret;
1417 }
1418 
1419 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1420 			  const struct spi_mem_op *op)
1421 {
1422 	struct cqspi_st *cqspi = f_pdata->cqspi;
1423 	const struct cqspi_driver_platdata *ddata = cqspi->ddata;
1424 	loff_t from = op->addr.val;
1425 	size_t len = op->data.nbytes;
1426 	u_char *buf = op->data.buf.in;
1427 	u64 dma_align = (u64)(uintptr_t)buf;
1428 	int ret;
1429 
1430 	ret = cqspi_read_setup(f_pdata, op);
1431 	if (ret)
1432 		return ret;
1433 
1434 	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1435 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1436 
1437 	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1438 	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1439 		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1440 
1441 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1442 }
1443 
1444 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1445 {
1446 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1447 	struct cqspi_flash_pdata *f_pdata;
1448 
1449 	f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1450 	cqspi_configure(f_pdata, op->max_freq);
1451 
1452 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1453 	/*
1454 	 * Performing reads in DAC mode forces to read minimum 4 bytes
1455 	 * which is unsupported on some flash devices during register
1456 	 * reads, prefer STIG mode for such small reads.
1457 	 */
1458 		if (!op->addr.nbytes ||
1459 		    (op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX &&
1460 		     !cqspi->disable_stig_mode))
1461 			return cqspi_command_read(f_pdata, op);
1462 
1463 		return cqspi_read(f_pdata, op);
1464 	}
1465 
1466 	if (!op->addr.nbytes || !op->data.buf.out)
1467 		return cqspi_command_write(f_pdata, op);
1468 
1469 	return cqspi_write(f_pdata, op);
1470 }
1471 
1472 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1473 {
1474 	int ret;
1475 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1476 	struct device *dev = &cqspi->pdev->dev;
1477 	const struct cqspi_driver_platdata *ddata = of_device_get_match_data(dev);
1478 
1479 	if (refcount_read(&cqspi->inflight_ops) == 0)
1480 		return -ENODEV;
1481 
1482 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM))) {
1483 		ret = pm_runtime_resume_and_get(dev);
1484 		if (ret) {
1485 			dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1486 			return ret;
1487 		}
1488 	}
1489 
1490 	if (!refcount_read(&cqspi->refcount))
1491 		return -EBUSY;
1492 
1493 	refcount_inc(&cqspi->inflight_ops);
1494 
1495 	if (!refcount_read(&cqspi->refcount)) {
1496 		if (refcount_read(&cqspi->inflight_ops))
1497 			refcount_dec(&cqspi->inflight_ops);
1498 		return -EBUSY;
1499 	}
1500 
1501 	ret = cqspi_mem_process(mem, op);
1502 
1503 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM)))
1504 		pm_runtime_put_autosuspend(dev);
1505 
1506 	if (ret)
1507 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1508 
1509 	if (refcount_read(&cqspi->inflight_ops) > 1)
1510 		refcount_dec(&cqspi->inflight_ops);
1511 
1512 	return ret;
1513 }
1514 
1515 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1516 				  const struct spi_mem_op *op)
1517 {
1518 	bool all_true, all_false;
1519 
1520 	/*
1521 	 * op->dummy.dtr is required for converting nbytes into ncycles.
1522 	 * Also, don't check the dtr field of the op phase having zero nbytes.
1523 	 */
1524 	all_true = op->cmd.dtr &&
1525 		   (!op->addr.nbytes || op->addr.dtr) &&
1526 		   (!op->dummy.nbytes || op->dummy.dtr) &&
1527 		   (!op->data.nbytes || op->data.dtr);
1528 
1529 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1530 		    !op->data.dtr;
1531 
1532 	if (all_true) {
1533 		/* Right now we only support 8-8-8 DTR mode. */
1534 		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1535 			return false;
1536 		if (op->addr.nbytes && op->addr.buswidth != 8)
1537 			return false;
1538 		if (op->data.nbytes && op->data.buswidth != 8)
1539 			return false;
1540 	} else if (!all_false) {
1541 		/* Mixed DTR modes are not supported. */
1542 		return false;
1543 	}
1544 
1545 	return spi_mem_default_supports_op(mem, op);
1546 }
1547 
1548 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1549 				    struct cqspi_flash_pdata *f_pdata,
1550 				    struct device_node *np)
1551 {
1552 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1553 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1554 		return -ENXIO;
1555 	}
1556 
1557 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1558 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1559 		return -ENXIO;
1560 	}
1561 
1562 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1563 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1564 		return -ENXIO;
1565 	}
1566 
1567 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1568 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1569 		return -ENXIO;
1570 	}
1571 
1572 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1573 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1574 		return -ENXIO;
1575 	}
1576 
1577 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1578 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1579 		return -ENXIO;
1580 	}
1581 
1582 	return 0;
1583 }
1584 
1585 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1586 {
1587 	struct device *dev = &cqspi->pdev->dev;
1588 	struct device_node *np = dev->of_node;
1589 	u32 id[2];
1590 
1591 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1592 
1593 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1594 		/* Zero signals FIFO depth should be runtime detected. */
1595 		cqspi->fifo_depth = 0;
1596 	}
1597 
1598 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1599 		dev_err(dev, "couldn't determine fifo-width\n");
1600 		return -ENXIO;
1601 	}
1602 
1603 	if (of_property_read_u32(np, "cdns,trigger-address",
1604 				 &cqspi->trigger_address)) {
1605 		dev_err(dev, "couldn't determine trigger-address\n");
1606 		return -ENXIO;
1607 	}
1608 
1609 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1610 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1611 
1612 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1613 
1614 	if (!of_property_read_u32_array(np, "power-domains", id,
1615 					ARRAY_SIZE(id)))
1616 		cqspi->pd_dev_id = id[1];
1617 
1618 	return 0;
1619 }
1620 
1621 static void cqspi_controller_init(struct cqspi_st *cqspi)
1622 {
1623 	u32 reg;
1624 
1625 	/* Configure the remap address register, no remap */
1626 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1627 
1628 	/* Disable all interrupts. */
1629 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1630 
1631 	/* Configure the SRAM split to 1:1 . */
1632 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1633 
1634 	/* Load indirect trigger address. */
1635 	writel(cqspi->trigger_address,
1636 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1637 
1638 	/* Program read watermark -- 1/2 of the FIFO. */
1639 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1640 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1641 	/* Program write watermark -- 1/8 of the FIFO. */
1642 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1643 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1644 
1645 	/* Disable direct access controller */
1646 	if (!cqspi->use_direct_mode) {
1647 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1648 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1649 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1650 	}
1651 
1652 	/* Enable DMA interface */
1653 	if (cqspi->use_dma_read) {
1654 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1655 		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1656 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1657 	}
1658 }
1659 
1660 static void cqspi_controller_detect_fifo_depth(struct cqspi_st *cqspi)
1661 {
1662 	struct device *dev = &cqspi->pdev->dev;
1663 	u32 reg, fifo_depth;
1664 
1665 	/*
1666 	 * Bits N-1:0 are writable while bits 31:N are read as zero, with 2^N
1667 	 * the FIFO depth.
1668 	 */
1669 	writel(U32_MAX, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1670 	reg = readl(cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1671 	fifo_depth = reg + 1;
1672 
1673 	/* FIFO depth of zero means no value from devicetree was provided. */
1674 	if (cqspi->fifo_depth == 0) {
1675 		cqspi->fifo_depth = fifo_depth;
1676 		dev_dbg(dev, "using FIFO depth of %u\n", fifo_depth);
1677 	} else if (fifo_depth != cqspi->fifo_depth) {
1678 		dev_warn(dev, "detected FIFO depth (%u) different from config (%u)\n",
1679 			 fifo_depth, cqspi->fifo_depth);
1680 	}
1681 }
1682 
1683 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1684 {
1685 	dma_cap_mask_t mask;
1686 
1687 	dma_cap_zero(mask);
1688 	dma_cap_set(DMA_MEMCPY, mask);
1689 
1690 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1691 	if (IS_ERR(cqspi->rx_chan)) {
1692 		int ret = PTR_ERR(cqspi->rx_chan);
1693 
1694 		cqspi->rx_chan = NULL;
1695 		if (ret == -ENODEV) {
1696 			/* DMA support is not mandatory */
1697 			dev_info(&cqspi->pdev->dev, "No Rx DMA available\n");
1698 			return 0;
1699 		}
1700 
1701 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1702 	}
1703 	init_completion(&cqspi->rx_dma_complete);
1704 
1705 	return 0;
1706 }
1707 
1708 static const char *cqspi_get_name(struct spi_mem *mem)
1709 {
1710 	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1711 	struct device *dev = &cqspi->pdev->dev;
1712 
1713 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1714 			      spi_get_chipselect(mem->spi, 0));
1715 }
1716 
1717 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1718 	.exec_op = cqspi_exec_mem_op,
1719 	.get_name = cqspi_get_name,
1720 	.supports_op = cqspi_supports_mem_op,
1721 };
1722 
1723 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1724 	.dtr = true,
1725 	.per_op_freq = true,
1726 };
1727 
1728 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1729 {
1730 	struct platform_device *pdev = cqspi->pdev;
1731 	struct device *dev = &pdev->dev;
1732 	struct cqspi_flash_pdata *f_pdata;
1733 	int ret, cs, max_cs = -1;
1734 
1735 	/* Get flash device data */
1736 	for_each_available_child_of_node_scoped(dev->of_node, np) {
1737 		ret = of_property_read_u32(np, "reg", &cs);
1738 		if (ret) {
1739 			dev_err(dev, "Couldn't determine chip select.\n");
1740 			return ret;
1741 		}
1742 
1743 		if (cs >= cqspi->num_chipselect) {
1744 			dev_err(dev, "Chip select %d out of range.\n", cs);
1745 			return -EINVAL;
1746 		}
1747 
1748 		max_cs = max_t(int, cs, max_cs);
1749 
1750 		f_pdata = &cqspi->f_pdata[cs];
1751 		f_pdata->cqspi = cqspi;
1752 		f_pdata->cs = cs;
1753 
1754 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1755 		if (ret)
1756 			return ret;
1757 	}
1758 
1759 	if (max_cs < 0) {
1760 		dev_err(dev, "No flash device declared\n");
1761 		return -ENODEV;
1762 	}
1763 
1764 	cqspi->num_chipselect = max_cs + 1;
1765 	return 0;
1766 }
1767 
1768 static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1769 {
1770 	static struct clk_bulk_data qspiclk[] = {
1771 		{ .id = "apb" },
1772 		{ .id = "ahb" },
1773 	};
1774 
1775 	int ret = 0;
1776 
1777 	ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1778 	if (ret) {
1779 		dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1780 		return ret;
1781 	}
1782 
1783 	cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1784 	cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1785 
1786 	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1787 	if (ret) {
1788 		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1789 		return ret;
1790 	}
1791 
1792 	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1793 	if (ret) {
1794 		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1795 		goto disable_apb_clk;
1796 	}
1797 
1798 	cqspi->is_jh7110 = true;
1799 
1800 	return 0;
1801 
1802 disable_apb_clk:
1803 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1804 
1805 	return ret;
1806 }
1807 
1808 static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1809 {
1810 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1811 	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1812 }
1813 static int cqspi_probe(struct platform_device *pdev)
1814 {
1815 	const struct cqspi_driver_platdata *ddata;
1816 	struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1817 	struct device *dev = &pdev->dev;
1818 	struct spi_controller *host;
1819 	struct resource *res_ahb;
1820 	struct cqspi_st *cqspi;
1821 	int ret;
1822 	int irq;
1823 
1824 	host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1825 	if (!host)
1826 		return -ENOMEM;
1827 
1828 	host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1829 	host->mem_ops = &cqspi_mem_ops;
1830 	host->mem_caps = &cqspi_mem_caps;
1831 	host->dev.of_node = pdev->dev.of_node;
1832 
1833 	cqspi = spi_controller_get_devdata(host);
1834 
1835 	cqspi->pdev = pdev;
1836 	cqspi->host = host;
1837 	cqspi->is_jh7110 = false;
1838 	cqspi->ddata = ddata = of_device_get_match_data(dev);
1839 	platform_set_drvdata(pdev, cqspi);
1840 
1841 	/* Obtain configuration from OF. */
1842 	ret = cqspi_of_get_pdata(cqspi);
1843 	if (ret) {
1844 		dev_err(dev, "Cannot get mandatory OF data.\n");
1845 		return -ENODEV;
1846 	}
1847 
1848 	/* Obtain QSPI clock. */
1849 	cqspi->clk = devm_clk_get(dev, NULL);
1850 	if (IS_ERR(cqspi->clk)) {
1851 		dev_err(dev, "Cannot claim QSPI clock.\n");
1852 		ret = PTR_ERR(cqspi->clk);
1853 		return ret;
1854 	}
1855 
1856 	/* Obtain and remap controller address. */
1857 	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1858 	if (IS_ERR(cqspi->iobase)) {
1859 		dev_err(dev, "Cannot remap controller address.\n");
1860 		ret = PTR_ERR(cqspi->iobase);
1861 		return ret;
1862 	}
1863 
1864 	/* Obtain and remap AHB address. */
1865 	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1866 	if (IS_ERR(cqspi->ahb_base)) {
1867 		dev_err(dev, "Cannot remap AHB address.\n");
1868 		ret = PTR_ERR(cqspi->ahb_base);
1869 		return ret;
1870 	}
1871 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1872 	cqspi->ahb_size = resource_size(res_ahb);
1873 
1874 	init_completion(&cqspi->transfer_complete);
1875 
1876 	/* Obtain IRQ line. */
1877 	irq = platform_get_irq(pdev, 0);
1878 	if (irq < 0)
1879 		return -ENXIO;
1880 
1881 	ret = pm_runtime_set_active(dev);
1882 	if (ret)
1883 		return ret;
1884 
1885 
1886 	ret = clk_prepare_enable(cqspi->clk);
1887 	if (ret) {
1888 		dev_err(dev, "Cannot enable QSPI clock.\n");
1889 		goto probe_clk_failed;
1890 	}
1891 
1892 	/* Obtain QSPI reset control */
1893 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1894 	if (IS_ERR(rstc)) {
1895 		ret = PTR_ERR(rstc);
1896 		dev_err(dev, "Cannot get QSPI reset.\n");
1897 		goto probe_reset_failed;
1898 	}
1899 
1900 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1901 	if (IS_ERR(rstc_ocp)) {
1902 		ret = PTR_ERR(rstc_ocp);
1903 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1904 		goto probe_reset_failed;
1905 	}
1906 
1907 	if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1908 		rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1909 		if (IS_ERR(rstc_ref)) {
1910 			ret = PTR_ERR(rstc_ref);
1911 			dev_err(dev, "Cannot get QSPI REF reset.\n");
1912 			goto probe_reset_failed;
1913 		}
1914 		reset_control_assert(rstc_ref);
1915 		reset_control_deassert(rstc_ref);
1916 	}
1917 
1918 	reset_control_assert(rstc);
1919 	reset_control_deassert(rstc);
1920 
1921 	reset_control_assert(rstc_ocp);
1922 	reset_control_deassert(rstc_ocp);
1923 
1924 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1925 	host->max_speed_hz = cqspi->master_ref_clk_hz;
1926 
1927 	/* write completion is supported by default */
1928 	cqspi->wr_completion = true;
1929 
1930 	if (ddata) {
1931 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1932 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1933 						cqspi->master_ref_clk_hz);
1934 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1935 			host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1936 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_QUAD)
1937 			host->mode_bits |= SPI_TX_QUAD;
1938 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1939 			cqspi->use_direct_mode = true;
1940 			cqspi->use_direct_mode_wr = true;
1941 		}
1942 		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1943 			cqspi->use_dma_read = true;
1944 		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1945 			cqspi->wr_completion = false;
1946 		if (ddata->quirks & CQSPI_SLOW_SRAM)
1947 			cqspi->slow_sram = true;
1948 		if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1949 			cqspi->apb_ahb_hazard = true;
1950 
1951 		if (ddata->jh7110_clk_init) {
1952 			ret = cqspi_jh7110_clk_init(pdev, cqspi);
1953 			if (ret)
1954 				goto probe_reset_failed;
1955 		}
1956 		if (ddata->quirks & CQSPI_DISABLE_STIG_MODE)
1957 			cqspi->disable_stig_mode = true;
1958 
1959 		if (ddata->quirks & CQSPI_DMA_SET_MASK) {
1960 			ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1961 			if (ret)
1962 				goto probe_reset_failed;
1963 		}
1964 	}
1965 
1966 	refcount_set(&cqspi->refcount, 1);
1967 	refcount_set(&cqspi->inflight_ops, 1);
1968 
1969 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1970 			       pdev->name, cqspi);
1971 	if (ret) {
1972 		dev_err(dev, "Cannot request IRQ.\n");
1973 		goto probe_reset_failed;
1974 	}
1975 
1976 	cqspi_wait_idle(cqspi);
1977 	cqspi_controller_enable(cqspi, 0);
1978 	cqspi_controller_detect_fifo_depth(cqspi);
1979 	cqspi_controller_init(cqspi);
1980 	cqspi_controller_enable(cqspi, 1);
1981 	cqspi->current_cs = -1;
1982 	cqspi->sclk = 0;
1983 
1984 	ret = cqspi_setup_flash(cqspi);
1985 	if (ret) {
1986 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1987 		goto probe_setup_failed;
1988 	}
1989 
1990 	host->num_chipselect = cqspi->num_chipselect;
1991 
1992 	if (ddata && (ddata->quirks & CQSPI_SUPPORT_DEVICE_RESET))
1993 		cqspi_device_reset(cqspi);
1994 
1995 	if (cqspi->use_direct_mode) {
1996 		ret = cqspi_request_mmap_dma(cqspi);
1997 		if (ret == -EPROBE_DEFER)
1998 			goto probe_setup_failed;
1999 	}
2000 
2001 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM))) {
2002 		pm_runtime_enable(dev);
2003 		pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
2004 		pm_runtime_use_autosuspend(dev);
2005 		pm_runtime_get_noresume(dev);
2006 	}
2007 
2008 	ret = spi_register_controller(host);
2009 	if (ret) {
2010 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
2011 		goto probe_setup_failed;
2012 	}
2013 
2014 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM))) {
2015 		pm_runtime_put_autosuspend(dev);
2016 		pm_runtime_mark_last_busy(dev);
2017 		pm_runtime_put_autosuspend(dev);
2018 	}
2019 
2020 	return 0;
2021 probe_setup_failed:
2022 	cqspi_controller_enable(cqspi, 0);
2023 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM)))
2024 		pm_runtime_disable(dev);
2025 probe_reset_failed:
2026 	if (cqspi->is_jh7110)
2027 		cqspi_jh7110_disable_clk(pdev, cqspi);
2028 	clk_disable_unprepare(cqspi->clk);
2029 probe_clk_failed:
2030 	return ret;
2031 }
2032 
2033 static void cqspi_remove(struct platform_device *pdev)
2034 {
2035 	const struct cqspi_driver_platdata *ddata;
2036 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
2037 	struct device *dev = &pdev->dev;
2038 
2039 	ddata = of_device_get_match_data(dev);
2040 
2041 	refcount_set(&cqspi->refcount, 0);
2042 
2043 	if (!refcount_dec_and_test(&cqspi->inflight_ops))
2044 		cqspi_wait_idle(cqspi);
2045 
2046 	spi_unregister_controller(cqspi->host);
2047 	cqspi_controller_enable(cqspi, 0);
2048 
2049 	if (cqspi->rx_chan)
2050 		dma_release_channel(cqspi->rx_chan);
2051 
2052 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM)))
2053 		if (pm_runtime_get_sync(&pdev->dev) >= 0)
2054 			clk_disable(cqspi->clk);
2055 
2056 	if (cqspi->is_jh7110)
2057 		cqspi_jh7110_disable_clk(pdev, cqspi);
2058 
2059 	if (!(ddata && (ddata->quirks & CQSPI_DISABLE_RUNTIME_PM))) {
2060 		pm_runtime_put_sync(&pdev->dev);
2061 		pm_runtime_disable(&pdev->dev);
2062 	}
2063 }
2064 
2065 static int cqspi_runtime_suspend(struct device *dev)
2066 {
2067 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2068 
2069 	cqspi_controller_enable(cqspi, 0);
2070 	clk_disable_unprepare(cqspi->clk);
2071 	return 0;
2072 }
2073 
2074 static int cqspi_runtime_resume(struct device *dev)
2075 {
2076 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2077 
2078 	clk_prepare_enable(cqspi->clk);
2079 	cqspi_wait_idle(cqspi);
2080 	cqspi_controller_enable(cqspi, 0);
2081 	cqspi_controller_init(cqspi);
2082 	cqspi_controller_enable(cqspi, 1);
2083 
2084 	cqspi->current_cs = -1;
2085 	cqspi->sclk = 0;
2086 	return 0;
2087 }
2088 
2089 static int cqspi_suspend(struct device *dev)
2090 {
2091 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2092 	int ret;
2093 
2094 	ret = spi_controller_suspend(cqspi->host);
2095 	if (ret)
2096 		return ret;
2097 
2098 	return pm_runtime_force_suspend(dev);
2099 }
2100 
2101 static int cqspi_resume(struct device *dev)
2102 {
2103 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2104 	int ret;
2105 
2106 	ret = pm_runtime_force_resume(dev);
2107 	if (ret) {
2108 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
2109 		return ret;
2110 	}
2111 
2112 	return spi_controller_resume(cqspi->host);
2113 }
2114 
2115 static const struct dev_pm_ops cqspi_dev_pm_ops = {
2116 	RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
2117 	SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
2118 };
2119 
2120 static const struct cqspi_driver_platdata cdns_qspi = {
2121 	.quirks = CQSPI_DISABLE_DAC_MODE,
2122 };
2123 
2124 static const struct cqspi_driver_platdata k2g_qspi = {
2125 	.quirks = CQSPI_NEEDS_WR_DELAY,
2126 };
2127 
2128 static const struct cqspi_driver_platdata am654_ospi = {
2129 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL | CQSPI_SUPPORTS_QUAD,
2130 	.quirks = CQSPI_NEEDS_WR_DELAY,
2131 };
2132 
2133 static const struct cqspi_driver_platdata intel_lgm_qspi = {
2134 	.quirks = CQSPI_DISABLE_DAC_MODE,
2135 };
2136 
2137 static const struct cqspi_driver_platdata socfpga_qspi = {
2138 	.quirks = CQSPI_DISABLE_DAC_MODE
2139 			| CQSPI_NO_SUPPORT_WR_COMPLETION
2140 			| CQSPI_SLOW_SRAM
2141 			| CQSPI_DISABLE_STIG_MODE
2142 			| CQSPI_DISABLE_RUNTIME_PM,
2143 };
2144 
2145 static const struct cqspi_driver_platdata versal_ospi = {
2146 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2147 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA
2148 			| CQSPI_DMA_SET_MASK,
2149 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2150 	.get_dma_status = cqspi_get_versal_dma_status,
2151 };
2152 
2153 static const struct cqspi_driver_platdata versal2_ospi = {
2154 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2155 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA
2156 			| CQSPI_DMA_SET_MASK
2157 			| CQSPI_SUPPORT_DEVICE_RESET,
2158 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2159 	.get_dma_status = cqspi_get_versal_dma_status,
2160 };
2161 
2162 static const struct cqspi_driver_platdata jh7110_qspi = {
2163 	.quirks = CQSPI_DISABLE_DAC_MODE,
2164 	.jh7110_clk_init = cqspi_jh7110_clk_init,
2165 };
2166 
2167 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2168 	.quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2169 };
2170 
2171 static const struct cqspi_driver_platdata mobileye_eyeq5_ospi = {
2172 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2173 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION |
2174 			CQSPI_RD_NO_IRQ,
2175 };
2176 
2177 static const struct of_device_id cqspi_dt_ids[] = {
2178 	{
2179 		.compatible = "cdns,qspi-nor",
2180 		.data = &cdns_qspi,
2181 	},
2182 	{
2183 		.compatible = "ti,k2g-qspi",
2184 		.data = &k2g_qspi,
2185 	},
2186 	{
2187 		.compatible = "ti,am654-ospi",
2188 		.data = &am654_ospi,
2189 	},
2190 	{
2191 		.compatible = "intel,lgm-qspi",
2192 		.data = &intel_lgm_qspi,
2193 	},
2194 	{
2195 		.compatible = "xlnx,versal-ospi-1.0",
2196 		.data = &versal_ospi,
2197 	},
2198 	{
2199 		.compatible = "intel,socfpga-qspi",
2200 		.data = &socfpga_qspi,
2201 	},
2202 	{
2203 		.compatible = "starfive,jh7110-qspi",
2204 		.data = &jh7110_qspi,
2205 	},
2206 	{
2207 		.compatible = "amd,pensando-elba-qspi",
2208 		.data = &pensando_cdns_qspi,
2209 	},
2210 	{
2211 		.compatible = "mobileye,eyeq5-ospi",
2212 		.data = &mobileye_eyeq5_ospi,
2213 	},
2214 	{
2215 		.compatible = "amd,versal2-ospi",
2216 		.data = &versal2_ospi,
2217 	},
2218 	{ /* end of table */ }
2219 };
2220 
2221 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2222 
2223 static struct platform_driver cqspi_platform_driver = {
2224 	.probe = cqspi_probe,
2225 	.remove = cqspi_remove,
2226 	.driver = {
2227 		.name = CQSPI_NAME,
2228 		.pm = pm_ptr(&cqspi_dev_pm_ops),
2229 		.of_match_table = cqspi_dt_ids,
2230 	},
2231 };
2232 
2233 module_platform_driver(cqspi_platform_driver);
2234 
2235 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2236 MODULE_LICENSE("GPL v2");
2237 MODULE_ALIAS("platform:" CQSPI_NAME);
2238 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2239 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2240 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2241 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2242 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
2243