xref: /linux/drivers/spi/spi-butterfly.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * parport-to-butterfly adapter
4  *
5  * Copyright (C) 2005 David Brownell
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9 #include <linux/delay.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/parport.h>
13 
14 #include <linux/sched.h>
15 #include <linux/spi/spi.h>
16 #include <linux/spi/spi_bitbang.h>
17 #include <linux/spi/flash.h>
18 
19 #include <linux/mtd/partitions.h>
20 
21 /*
22  * This uses SPI to talk with an "AVR Butterfly", which is a $US20 card
23  * with a battery powered AVR microcontroller and lots of goodies.  You
24  * can use GCC to develop firmware for this.
25  *
26  * See Documentation/spi/butterfly.rst for information about how to build
27  * and use this custom parallel port cable.
28  */
29 
30 /* DATA output bits (pins 2..9 == D0..D7) */
31 #define	butterfly_nreset (1 << 1)		/* pin 3 */
32 
33 #define	spi_sck_bit	(1 << 0)		/* pin 2 */
34 #define	spi_mosi_bit	(1 << 7)		/* pin 9 */
35 
36 #define	vcc_bits	((1 << 6) | (1 << 5))	/* pins 7, 8 */
37 
38 /* STATUS input bits */
39 #define	spi_miso_bit	PARPORT_STATUS_BUSY	/* pin 11 */
40 
41 /* CONTROL output bits */
42 #define	spi_cs_bit	PARPORT_CONTROL_SELECT	/* pin 17 */
43 
44 static inline struct butterfly *spidev_to_pp(struct spi_device *spi)
45 {
46 	return spi->controller_data;
47 }
48 
49 struct butterfly {
50 	/* REVISIT ... for now, this must be first */
51 	struct spi_bitbang	bitbang;
52 
53 	struct parport		*port;
54 	struct pardevice	*pd;
55 
56 	u8			lastbyte;
57 
58 	struct spi_device	*dataflash;
59 	struct spi_device	*butterfly;
60 	struct spi_board_info	info[2];
61 
62 };
63 
64 /*----------------------------------------------------------------------*/
65 
66 static inline void
67 setsck(struct spi_device *spi, int is_on)
68 {
69 	struct butterfly	*pp = spidev_to_pp(spi);
70 	u8			bit, byte = pp->lastbyte;
71 
72 	bit = spi_sck_bit;
73 
74 	if (is_on)
75 		byte |= bit;
76 	else
77 		byte &= ~bit;
78 	parport_write_data(pp->port, byte);
79 	pp->lastbyte = byte;
80 }
81 
82 static inline void
83 setmosi(struct spi_device *spi, int is_on)
84 {
85 	struct butterfly	*pp = spidev_to_pp(spi);
86 	u8			bit, byte = pp->lastbyte;
87 
88 	bit = spi_mosi_bit;
89 
90 	if (is_on)
91 		byte |= bit;
92 	else
93 		byte &= ~bit;
94 	parport_write_data(pp->port, byte);
95 	pp->lastbyte = byte;
96 }
97 
98 static inline int getmiso(struct spi_device *spi)
99 {
100 	struct butterfly	*pp = spidev_to_pp(spi);
101 	int			value;
102 	u8			bit;
103 
104 	bit = spi_miso_bit;
105 
106 	/* only STATUS_BUSY is NOT negated */
107 	value = !(parport_read_status(pp->port) & bit);
108 	return (bit == PARPORT_STATUS_BUSY) ? value : !value;
109 }
110 
111 static void butterfly_chipselect(struct spi_device *spi, int value)
112 {
113 	struct butterfly	*pp = spidev_to_pp(spi);
114 
115 	/* set default clock polarity */
116 	if (value != BITBANG_CS_INACTIVE)
117 		setsck(spi, spi->mode & SPI_CPOL);
118 
119 	/* here, value == "activate or not";
120 	 * most PARPORT_CONTROL_* bits are negated, so we must
121 	 * morph it to value == "bit value to write in control register"
122 	 */
123 	if (spi_cs_bit == PARPORT_CONTROL_INIT)
124 		value = !value;
125 
126 	parport_frob_control(pp->port, spi_cs_bit, value ? spi_cs_bit : 0);
127 }
128 
129 /* we only needed to implement one mode here, and choose SPI_MODE_0 */
130 
131 #define spidelay(X)	do { } while (0)
132 /* #define spidelay	ndelay */
133 
134 #include "spi-bitbang-txrx.h"
135 
136 static u32
137 butterfly_txrx_word_mode0(struct spi_device *spi, unsigned nsecs, u32 word,
138 			  u8 bits, unsigned flags)
139 {
140 	return bitbang_txrx_be_cpha0(spi, nsecs, 0, flags, word, bits);
141 }
142 
143 /*----------------------------------------------------------------------*/
144 
145 /* override default partitioning with cmdlinepart */
146 static struct mtd_partition partitions[] = { {
147 	/* JFFS2 wants partitions of 4*N blocks for this device,
148 	 * so sectors 0 and 1 can't be partitions by themselves.
149 	 */
150 
151 	/* sector 0 = 8 pages * 264 bytes/page (1 block)
152 	 * sector 1 = 248 pages * 264 bytes/page
153 	 */
154 	.name		= "bookkeeping",	/* 66 KB */
155 	.offset		= 0,
156 	.size		= (8 + 248) * 264,
157 	/* .mask_flags	= MTD_WRITEABLE, */
158 }, {
159 	/* sector 2 = 256 pages * 264 bytes/page
160 	 * sectors 3-5 = 512 pages * 264 bytes/page
161 	 */
162 	.name		= "filesystem",		/* 462 KB */
163 	.offset		= MTDPART_OFS_APPEND,
164 	.size		= MTDPART_SIZ_FULL,
165 } };
166 
167 static struct flash_platform_data flash = {
168 	.name		= "butterflash",
169 	.parts		= partitions,
170 	.nr_parts	= ARRAY_SIZE(partitions),
171 };
172 
173 /* REVISIT remove this ugly global and its "only one" limitation */
174 static struct butterfly *butterfly;
175 
176 static void butterfly_attach(struct parport *p)
177 {
178 	struct pardevice	*pd;
179 	int			status;
180 	struct butterfly	*pp;
181 	struct spi_master	*master;
182 	struct device		*dev = p->physport->dev;
183 	struct pardev_cb	butterfly_cb;
184 
185 	if (butterfly || !dev)
186 		return;
187 
188 	/* REVISIT:  this just _assumes_ a butterfly is there ... no probe,
189 	 * and no way to be selective about what it binds to.
190 	 */
191 
192 	master = spi_alloc_master(dev, sizeof(*pp));
193 	if (!master) {
194 		status = -ENOMEM;
195 		goto done;
196 	}
197 	pp = spi_master_get_devdata(master);
198 
199 	/*
200 	 * SPI and bitbang hookup
201 	 *
202 	 * use default setup(), cleanup(), and transfer() methods; and
203 	 * only bother implementing mode 0.  Start it later.
204 	 */
205 	master->bus_num = 42;
206 	master->num_chipselect = 2;
207 
208 	pp->bitbang.master = master;
209 	pp->bitbang.chipselect = butterfly_chipselect;
210 	pp->bitbang.txrx_word[SPI_MODE_0] = butterfly_txrx_word_mode0;
211 
212 	/*
213 	 * parport hookup
214 	 */
215 	pp->port = p;
216 	memset(&butterfly_cb, 0, sizeof(butterfly_cb));
217 	butterfly_cb.private = pp;
218 	pd = parport_register_dev_model(p, "spi_butterfly", &butterfly_cb, 0);
219 	if (!pd) {
220 		status = -ENOMEM;
221 		goto clean0;
222 	}
223 	pp->pd = pd;
224 
225 	status = parport_claim(pd);
226 	if (status < 0)
227 		goto clean1;
228 
229 	/*
230 	 * Butterfly reset, powerup, run firmware
231 	 */
232 	pr_debug("%s: powerup/reset Butterfly\n", p->name);
233 
234 	/* nCS for dataflash (this bit is inverted on output) */
235 	parport_frob_control(pp->port, spi_cs_bit, 0);
236 
237 	/* stabilize power with chip in reset (nRESET), and
238 	 * spi_sck_bit clear (CPOL=0)
239 	 */
240 	pp->lastbyte |= vcc_bits;
241 	parport_write_data(pp->port, pp->lastbyte);
242 	msleep(5);
243 
244 	/* take it out of reset; assume long reset delay */
245 	pp->lastbyte |= butterfly_nreset;
246 	parport_write_data(pp->port, pp->lastbyte);
247 	msleep(100);
248 
249 	/*
250 	 * Start SPI ... for now, hide that we're two physical busses.
251 	 */
252 	status = spi_bitbang_start(&pp->bitbang);
253 	if (status < 0)
254 		goto clean2;
255 
256 	/* Bus 1 lets us talk to at45db041b (firmware disables AVR SPI), AVR
257 	 * (firmware resets at45, acts as spi slave) or neither (we ignore
258 	 * both, AVR uses AT45).  Here we expect firmware for the first option.
259 	 */
260 
261 	pp->info[0].max_speed_hz = 15 * 1000 * 1000;
262 	strcpy(pp->info[0].modalias, "mtd_dataflash");
263 	pp->info[0].platform_data = &flash;
264 	pp->info[0].chip_select = 1;
265 	pp->info[0].controller_data = pp;
266 	pp->dataflash = spi_new_device(pp->bitbang.master, &pp->info[0]);
267 	if (pp->dataflash)
268 		pr_debug("%s: dataflash at %s\n", p->name,
269 			 dev_name(&pp->dataflash->dev));
270 
271 	pr_info("%s: AVR Butterfly\n", p->name);
272 	butterfly = pp;
273 	return;
274 
275 clean2:
276 	/* turn off VCC */
277 	parport_write_data(pp->port, 0);
278 
279 	parport_release(pp->pd);
280 clean1:
281 	parport_unregister_device(pd);
282 clean0:
283 	spi_master_put(pp->bitbang.master);
284 done:
285 	pr_debug("%s: butterfly probe, fail %d\n", p->name, status);
286 }
287 
288 static void butterfly_detach(struct parport *p)
289 {
290 	struct butterfly	*pp;
291 
292 	/* FIXME this global is ugly ... but, how to quickly get from
293 	 * the parport to the "struct butterfly" associated with it?
294 	 * "old school" driver-internal device lists?
295 	 */
296 	if (!butterfly || butterfly->port != p)
297 		return;
298 	pp = butterfly;
299 	butterfly = NULL;
300 
301 	/* stop() unregisters child devices too */
302 	spi_bitbang_stop(&pp->bitbang);
303 
304 	/* turn off VCC */
305 	parport_write_data(pp->port, 0);
306 	msleep(10);
307 
308 	parport_release(pp->pd);
309 	parport_unregister_device(pp->pd);
310 
311 	spi_master_put(pp->bitbang.master);
312 }
313 
314 static struct parport_driver butterfly_driver = {
315 	.name =		"spi_butterfly",
316 	.match_port =	butterfly_attach,
317 	.detach =	butterfly_detach,
318 	.devmodel = true,
319 };
320 
321 static int __init butterfly_init(void)
322 {
323 	return parport_register_driver(&butterfly_driver);
324 }
325 device_initcall(butterfly_init);
326 
327 static void __exit butterfly_exit(void)
328 {
329 	parport_unregister_driver(&butterfly_driver);
330 }
331 module_exit(butterfly_exit);
332 
333 MODULE_DESCRIPTION("Parport Adapter driver for AVR Butterfly");
334 MODULE_LICENSE("GPL");
335