1 /* 2 * Broadcom BCM63XX High Speed SPI Controller driver 3 * 4 * Copyright 2000-2010 Broadcom Corporation 5 * Copyright 2012-2013 Jonas Gorski <jogo@openwrt.org> 6 * 7 * Licensed under the GNU/GPL. See COPYING for details. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/init.h> 12 #include <linux/io.h> 13 #include <linux/clk.h> 14 #include <linux/module.h> 15 #include <linux/platform_device.h> 16 #include <linux/delay.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/err.h> 19 #include <linux/interrupt.h> 20 #include <linux/spi/spi.h> 21 #include <linux/mutex.h> 22 #include <linux/of.h> 23 #include <linux/spi/spi-mem.h> 24 #include <linux/mtd/spi-nor.h> 25 #include <linux/reset.h> 26 #include <linux/pm_runtime.h> 27 28 #define HSSPI_GLOBAL_CTRL_REG 0x0 29 #define GLOBAL_CTRL_CS_POLARITY_SHIFT 0 30 #define GLOBAL_CTRL_CS_POLARITY_MASK 0x000000ff 31 #define GLOBAL_CTRL_PLL_CLK_CTRL_SHIFT 8 32 #define GLOBAL_CTRL_PLL_CLK_CTRL_MASK 0x0000ff00 33 #define GLOBAL_CTRL_CLK_GATE_SSOFF BIT(16) 34 #define GLOBAL_CTRL_CLK_POLARITY BIT(17) 35 #define GLOBAL_CTRL_MOSI_IDLE BIT(18) 36 37 #define HSSPI_GLOBAL_EXT_TRIGGER_REG 0x4 38 39 #define HSSPI_INT_STATUS_REG 0x8 40 #define HSSPI_INT_STATUS_MASKED_REG 0xc 41 #define HSSPI_INT_MASK_REG 0x10 42 43 #define HSSPI_PINGx_CMD_DONE(i) BIT((i * 8) + 0) 44 #define HSSPI_PINGx_RX_OVER(i) BIT((i * 8) + 1) 45 #define HSSPI_PINGx_TX_UNDER(i) BIT((i * 8) + 2) 46 #define HSSPI_PINGx_POLL_TIMEOUT(i) BIT((i * 8) + 3) 47 #define HSSPI_PINGx_CTRL_INVAL(i) BIT((i * 8) + 4) 48 49 #define HSSPI_INT_CLEAR_ALL 0xff001f1f 50 51 #define HSSPI_PINGPONG_COMMAND_REG(x) (0x80 + (x) * 0x40) 52 #define PINGPONG_CMD_COMMAND_MASK 0xf 53 #define PINGPONG_COMMAND_NOOP 0 54 #define PINGPONG_COMMAND_START_NOW 1 55 #define PINGPONG_COMMAND_START_TRIGGER 2 56 #define PINGPONG_COMMAND_HALT 3 57 #define PINGPONG_COMMAND_FLUSH 4 58 #define PINGPONG_CMD_PROFILE_SHIFT 8 59 #define PINGPONG_CMD_SS_SHIFT 12 60 61 #define HSSPI_PINGPONG_STATUS_REG(x) (0x84 + (x) * 0x40) 62 #define HSSPI_PINGPONG_STATUS_SRC_BUSY BIT(1) 63 64 #define HSSPI_PROFILE_CLK_CTRL_REG(x) (0x100 + (x) * 0x20) 65 #define CLK_CTRL_FREQ_CTRL_MASK 0x0000ffff 66 #define CLK_CTRL_SPI_CLK_2X_SEL BIT(14) 67 #define CLK_CTRL_ACCUM_RST_ON_LOOP BIT(15) 68 69 #define HSSPI_PROFILE_SIGNAL_CTRL_REG(x) (0x104 + (x) * 0x20) 70 #define SIGNAL_CTRL_LATCH_RISING BIT(12) 71 #define SIGNAL_CTRL_LAUNCH_RISING BIT(13) 72 #define SIGNAL_CTRL_ASYNC_INPUT_PATH BIT(16) 73 74 #define HSSPI_PROFILE_MODE_CTRL_REG(x) (0x108 + (x) * 0x20) 75 #define MODE_CTRL_MULTIDATA_RD_STRT_SHIFT 8 76 #define MODE_CTRL_MULTIDATA_WR_STRT_SHIFT 12 77 #define MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT 16 78 #define MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT 18 79 #define MODE_CTRL_MODE_3WIRE BIT(20) 80 #define MODE_CTRL_PREPENDBYTE_CNT_SHIFT 24 81 82 #define HSSPI_FIFO_REG(x) (0x200 + (x) * 0x200) 83 84 85 #define HSSPI_OP_MULTIBIT BIT(11) 86 #define HSSPI_OP_CODE_SHIFT 13 87 #define HSSPI_OP_SLEEP (0 << HSSPI_OP_CODE_SHIFT) 88 #define HSSPI_OP_READ_WRITE (1 << HSSPI_OP_CODE_SHIFT) 89 #define HSSPI_OP_WRITE (2 << HSSPI_OP_CODE_SHIFT) 90 #define HSSPI_OP_READ (3 << HSSPI_OP_CODE_SHIFT) 91 #define HSSPI_OP_SETIRQ (4 << HSSPI_OP_CODE_SHIFT) 92 93 #define HSSPI_BUFFER_LEN 512 94 #define HSSPI_OPCODE_LEN 2 95 96 #define HSSPI_MAX_PREPEND_LEN 15 97 98 /* 99 * Some chip require 30MHz but other require 25MHz. Use smaller value to cover 100 * both cases. 101 */ 102 #define HSSPI_MAX_SYNC_CLOCK 25000000 103 104 #define HSSPI_SPI_MAX_CS 8 105 #define HSSPI_BUS_NUM 1 /* 0 is legacy SPI */ 106 #define HSSPI_POLL_STATUS_TIMEOUT_MS 100 107 108 #define HSSPI_WAIT_MODE_POLLING 0 109 #define HSSPI_WAIT_MODE_INTR 1 110 #define HSSPI_WAIT_MODE_MAX HSSPI_WAIT_MODE_INTR 111 112 /* 113 * Default transfer mode is auto. If the msg is prependable, use the prepend 114 * mode. If not, falls back to use the dummy cs workaround mode but limit the 115 * clock to 25MHz to make sure it works in all board design. 116 */ 117 #define HSSPI_XFER_MODE_AUTO 0 118 #define HSSPI_XFER_MODE_PREPEND 1 119 #define HSSPI_XFER_MODE_DUMMYCS 2 120 #define HSSPI_XFER_MODE_MAX HSSPI_XFER_MODE_DUMMYCS 121 122 #define bcm63xx_prepend_printk_on_checkfail(bs, fmt, ...) \ 123 do { \ 124 if (bs->xfer_mode == HSSPI_XFER_MODE_AUTO) \ 125 dev_dbg(&bs->pdev->dev, fmt, ##__VA_ARGS__); \ 126 else if (bs->xfer_mode == HSSPI_XFER_MODE_PREPEND) \ 127 dev_err(&bs->pdev->dev, fmt, ##__VA_ARGS__); \ 128 } while (0) 129 130 struct bcm63xx_hsspi { 131 struct completion done; 132 struct mutex bus_mutex; 133 struct mutex msg_mutex; 134 struct platform_device *pdev; 135 struct clk *clk; 136 struct clk *pll_clk; 137 void __iomem *regs; 138 u8 __iomem *fifo; 139 140 u32 speed_hz; 141 u8 cs_polarity; 142 u32 wait_mode; 143 u32 xfer_mode; 144 u32 prepend_cnt; 145 u8 *prepend_buf; 146 }; 147 148 static ssize_t wait_mode_show(struct device *dev, struct device_attribute *attr, 149 char *buf) 150 { 151 struct spi_controller *ctrl = dev_get_drvdata(dev); 152 struct bcm63xx_hsspi *bs = spi_master_get_devdata(ctrl); 153 154 return sprintf(buf, "%d\n", bs->wait_mode); 155 } 156 157 static ssize_t wait_mode_store(struct device *dev, struct device_attribute *attr, 158 const char *buf, size_t count) 159 { 160 struct spi_controller *ctrl = dev_get_drvdata(dev); 161 struct bcm63xx_hsspi *bs = spi_master_get_devdata(ctrl); 162 u32 val; 163 164 if (kstrtou32(buf, 10, &val)) 165 return -EINVAL; 166 167 if (val > HSSPI_WAIT_MODE_MAX) { 168 dev_warn(dev, "invalid wait mode %u\n", val); 169 return -EINVAL; 170 } 171 172 mutex_lock(&bs->msg_mutex); 173 bs->wait_mode = val; 174 /* clear interrupt status to avoid spurious int on next transfer */ 175 if (val == HSSPI_WAIT_MODE_INTR) 176 __raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG); 177 mutex_unlock(&bs->msg_mutex); 178 179 return count; 180 } 181 182 static DEVICE_ATTR_RW(wait_mode); 183 184 static ssize_t xfer_mode_show(struct device *dev, struct device_attribute *attr, 185 char *buf) 186 { 187 struct spi_controller *ctrl = dev_get_drvdata(dev); 188 struct bcm63xx_hsspi *bs = spi_master_get_devdata(ctrl); 189 190 return sprintf(buf, "%d\n", bs->xfer_mode); 191 } 192 193 static ssize_t xfer_mode_store(struct device *dev, struct device_attribute *attr, 194 const char *buf, size_t count) 195 { 196 struct spi_controller *ctrl = dev_get_drvdata(dev); 197 struct bcm63xx_hsspi *bs = spi_master_get_devdata(ctrl); 198 u32 val; 199 200 if (kstrtou32(buf, 10, &val)) 201 return -EINVAL; 202 203 if (val > HSSPI_XFER_MODE_MAX) { 204 dev_warn(dev, "invalid xfer mode %u\n", val); 205 return -EINVAL; 206 } 207 208 mutex_lock(&bs->msg_mutex); 209 bs->xfer_mode = val; 210 mutex_unlock(&bs->msg_mutex); 211 212 return count; 213 } 214 215 static DEVICE_ATTR_RW(xfer_mode); 216 217 static struct attribute *bcm63xx_hsspi_attrs[] = { 218 &dev_attr_wait_mode.attr, 219 &dev_attr_xfer_mode.attr, 220 NULL, 221 }; 222 223 static const struct attribute_group bcm63xx_hsspi_group = { 224 .attrs = bcm63xx_hsspi_attrs, 225 }; 226 227 static void bcm63xx_hsspi_set_clk(struct bcm63xx_hsspi *bs, 228 struct spi_device *spi, int hz); 229 230 static size_t bcm63xx_hsspi_max_message_size(struct spi_device *spi) 231 { 232 return HSSPI_BUFFER_LEN - HSSPI_OPCODE_LEN; 233 } 234 235 static int bcm63xx_hsspi_wait_cmd(struct bcm63xx_hsspi *bs) 236 { 237 unsigned long limit; 238 u32 reg = 0; 239 int rc = 0; 240 241 if (bs->wait_mode == HSSPI_WAIT_MODE_INTR) { 242 if (wait_for_completion_timeout(&bs->done, HZ) == 0) 243 rc = 1; 244 } else { 245 /* polling mode checks for status busy bit */ 246 limit = jiffies + msecs_to_jiffies(HSSPI_POLL_STATUS_TIMEOUT_MS); 247 248 while (!time_after(jiffies, limit)) { 249 reg = __raw_readl(bs->regs + HSSPI_PINGPONG_STATUS_REG(0)); 250 if (reg & HSSPI_PINGPONG_STATUS_SRC_BUSY) 251 cpu_relax(); 252 else 253 break; 254 } 255 if (reg & HSSPI_PINGPONG_STATUS_SRC_BUSY) 256 rc = 1; 257 } 258 259 if (rc) 260 dev_err(&bs->pdev->dev, "transfer timed out!\n"); 261 262 return rc; 263 } 264 265 static bool bcm63xx_prepare_prepend_transfer(struct spi_master *master, 266 struct spi_message *msg, 267 struct spi_transfer *t_prepend) 268 { 269 270 struct bcm63xx_hsspi *bs = spi_master_get_devdata(master); 271 bool tx_only = false; 272 struct spi_transfer *t; 273 274 /* 275 * Multiple transfers within a message may be combined into one transfer 276 * to the controller using its prepend feature. A SPI message is prependable 277 * only if the following are all true: 278 * 1. One or more half duplex write transfer in single bit mode 279 * 2. Optional full duplex read/write at the end 280 * 3. No delay and cs_change between transfers 281 */ 282 bs->prepend_cnt = 0; 283 list_for_each_entry(t, &msg->transfers, transfer_list) { 284 if ((spi_delay_to_ns(&t->delay, t) > 0) || t->cs_change) { 285 bcm63xx_prepend_printk_on_checkfail(bs, 286 "Delay or cs change not supported in prepend mode!\n"); 287 return false; 288 } 289 290 tx_only = false; 291 if (t->tx_buf && !t->rx_buf) { 292 tx_only = true; 293 if (bs->prepend_cnt + t->len > 294 (HSSPI_BUFFER_LEN - HSSPI_OPCODE_LEN)) { 295 bcm63xx_prepend_printk_on_checkfail(bs, 296 "exceed max buf len, abort prepending transfers!\n"); 297 return false; 298 } 299 300 if (t->tx_nbits > SPI_NBITS_SINGLE && 301 !list_is_last(&t->transfer_list, &msg->transfers)) { 302 bcm63xx_prepend_printk_on_checkfail(bs, 303 "multi-bit prepend buf not supported!\n"); 304 return false; 305 } 306 307 if (t->tx_nbits == SPI_NBITS_SINGLE) { 308 memcpy(bs->prepend_buf + bs->prepend_cnt, t->tx_buf, t->len); 309 bs->prepend_cnt += t->len; 310 } 311 } else { 312 if (!list_is_last(&t->transfer_list, &msg->transfers)) { 313 bcm63xx_prepend_printk_on_checkfail(bs, 314 "rx/tx_rx transfer not supported when it is not last one!\n"); 315 return false; 316 } 317 } 318 319 if (list_is_last(&t->transfer_list, &msg->transfers)) { 320 memcpy(t_prepend, t, sizeof(struct spi_transfer)); 321 322 if (tx_only && t->tx_nbits == SPI_NBITS_SINGLE) { 323 /* 324 * if the last one is also a single bit tx only transfer, merge 325 * all of them into one single tx transfer 326 */ 327 t_prepend->len = bs->prepend_cnt; 328 t_prepend->tx_buf = bs->prepend_buf; 329 bs->prepend_cnt = 0; 330 } else { 331 /* 332 * if the last one is not a tx only transfer or dual tx xfer, all 333 * the previous transfers are sent through prepend bytes and 334 * make sure it does not exceed the max prepend len 335 */ 336 if (bs->prepend_cnt > HSSPI_MAX_PREPEND_LEN) { 337 bcm63xx_prepend_printk_on_checkfail(bs, 338 "exceed max prepend len, abort prepending transfers!\n"); 339 return false; 340 } 341 } 342 } 343 } 344 345 return true; 346 } 347 348 static int bcm63xx_hsspi_do_prepend_txrx(struct spi_device *spi, 349 struct spi_transfer *t) 350 { 351 struct bcm63xx_hsspi *bs = spi_master_get_devdata(spi->master); 352 unsigned int chip_select = spi->chip_select; 353 u16 opcode = 0, val; 354 const u8 *tx = t->tx_buf; 355 u8 *rx = t->rx_buf; 356 u32 reg = 0; 357 358 /* 359 * shouldn't happen as we set the max_message_size in the probe. 360 * but check it again in case some driver does not honor the max size 361 */ 362 if (t->len + bs->prepend_cnt > (HSSPI_BUFFER_LEN - HSSPI_OPCODE_LEN)) { 363 dev_warn(&bs->pdev->dev, 364 "Prepend message large than fifo size len %d prepend %d\n", 365 t->len, bs->prepend_cnt); 366 return -EINVAL; 367 } 368 369 bcm63xx_hsspi_set_clk(bs, spi, t->speed_hz); 370 371 if (tx && rx) 372 opcode = HSSPI_OP_READ_WRITE; 373 else if (tx) 374 opcode = HSSPI_OP_WRITE; 375 else if (rx) 376 opcode = HSSPI_OP_READ; 377 378 if ((opcode == HSSPI_OP_READ && t->rx_nbits == SPI_NBITS_DUAL) || 379 (opcode == HSSPI_OP_WRITE && t->tx_nbits == SPI_NBITS_DUAL)) { 380 opcode |= HSSPI_OP_MULTIBIT; 381 382 if (t->rx_nbits == SPI_NBITS_DUAL) { 383 reg |= 1 << MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT; 384 reg |= bs->prepend_cnt << MODE_CTRL_MULTIDATA_RD_STRT_SHIFT; 385 } 386 if (t->tx_nbits == SPI_NBITS_DUAL) { 387 reg |= 1 << MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT; 388 reg |= bs->prepend_cnt << MODE_CTRL_MULTIDATA_WR_STRT_SHIFT; 389 } 390 } 391 392 reg |= bs->prepend_cnt << MODE_CTRL_PREPENDBYTE_CNT_SHIFT; 393 __raw_writel(reg | 0xff, 394 bs->regs + HSSPI_PROFILE_MODE_CTRL_REG(chip_select)); 395 396 reinit_completion(&bs->done); 397 if (bs->prepend_cnt) 398 memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN, bs->prepend_buf, 399 bs->prepend_cnt); 400 if (tx) 401 memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN + bs->prepend_cnt, tx, 402 t->len); 403 404 *(__be16 *)(&val) = cpu_to_be16(opcode | t->len); 405 __raw_writew(val, bs->fifo); 406 /* enable interrupt */ 407 if (bs->wait_mode == HSSPI_WAIT_MODE_INTR) 408 __raw_writel(HSSPI_PINGx_CMD_DONE(0), bs->regs + HSSPI_INT_MASK_REG); 409 410 /* start the transfer */ 411 reg = chip_select << PINGPONG_CMD_SS_SHIFT | 412 chip_select << PINGPONG_CMD_PROFILE_SHIFT | 413 PINGPONG_COMMAND_START_NOW; 414 __raw_writel(reg, bs->regs + HSSPI_PINGPONG_COMMAND_REG(0)); 415 416 if (bcm63xx_hsspi_wait_cmd(bs)) 417 return -ETIMEDOUT; 418 419 if (rx) 420 memcpy_fromio(rx, bs->fifo, t->len); 421 422 return 0; 423 } 424 425 static void bcm63xx_hsspi_set_cs(struct bcm63xx_hsspi *bs, unsigned int cs, 426 bool active) 427 { 428 u32 reg; 429 430 mutex_lock(&bs->bus_mutex); 431 reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG); 432 433 reg &= ~BIT(cs); 434 if (active == !(bs->cs_polarity & BIT(cs))) 435 reg |= BIT(cs); 436 437 __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG); 438 mutex_unlock(&bs->bus_mutex); 439 } 440 441 static void bcm63xx_hsspi_set_clk(struct bcm63xx_hsspi *bs, 442 struct spi_device *spi, int hz) 443 { 444 unsigned int profile = spi->chip_select; 445 u32 reg; 446 447 reg = DIV_ROUND_UP(2048, DIV_ROUND_UP(bs->speed_hz, hz)); 448 __raw_writel(CLK_CTRL_ACCUM_RST_ON_LOOP | reg, 449 bs->regs + HSSPI_PROFILE_CLK_CTRL_REG(profile)); 450 451 reg = __raw_readl(bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(profile)); 452 if (hz > HSSPI_MAX_SYNC_CLOCK) 453 reg |= SIGNAL_CTRL_ASYNC_INPUT_PATH; 454 else 455 reg &= ~SIGNAL_CTRL_ASYNC_INPUT_PATH; 456 __raw_writel(reg, bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(profile)); 457 458 mutex_lock(&bs->bus_mutex); 459 /* setup clock polarity */ 460 reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG); 461 reg &= ~GLOBAL_CTRL_CLK_POLARITY; 462 if (spi->mode & SPI_CPOL) 463 reg |= GLOBAL_CTRL_CLK_POLARITY; 464 __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG); 465 mutex_unlock(&bs->bus_mutex); 466 } 467 468 static int bcm63xx_hsspi_do_txrx(struct spi_device *spi, struct spi_transfer *t) 469 { 470 struct bcm63xx_hsspi *bs = spi_master_get_devdata(spi->master); 471 unsigned int chip_select = spi->chip_select; 472 u16 opcode = 0, val; 473 int pending = t->len; 474 int step_size = HSSPI_BUFFER_LEN; 475 const u8 *tx = t->tx_buf; 476 u8 *rx = t->rx_buf; 477 u32 reg = 0; 478 479 bcm63xx_hsspi_set_clk(bs, spi, t->speed_hz); 480 if (!t->cs_off) 481 bcm63xx_hsspi_set_cs(bs, spi->chip_select, true); 482 483 if (tx && rx) 484 opcode = HSSPI_OP_READ_WRITE; 485 else if (tx) 486 opcode = HSSPI_OP_WRITE; 487 else if (rx) 488 opcode = HSSPI_OP_READ; 489 490 if (opcode != HSSPI_OP_READ) 491 step_size -= HSSPI_OPCODE_LEN; 492 493 if ((opcode == HSSPI_OP_READ && t->rx_nbits == SPI_NBITS_DUAL) || 494 (opcode == HSSPI_OP_WRITE && t->tx_nbits == SPI_NBITS_DUAL)) { 495 opcode |= HSSPI_OP_MULTIBIT; 496 497 if (t->rx_nbits == SPI_NBITS_DUAL) 498 reg |= 1 << MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT; 499 if (t->tx_nbits == SPI_NBITS_DUAL) 500 reg |= 1 << MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT; 501 } 502 503 __raw_writel(reg | 0xff, 504 bs->regs + HSSPI_PROFILE_MODE_CTRL_REG(chip_select)); 505 506 while (pending > 0) { 507 int curr_step = min_t(int, step_size, pending); 508 509 reinit_completion(&bs->done); 510 if (tx) { 511 memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN, tx, curr_step); 512 tx += curr_step; 513 } 514 515 *(__be16 *)(&val) = cpu_to_be16(opcode | curr_step); 516 __raw_writew(val, bs->fifo); 517 518 /* enable interrupt */ 519 if (bs->wait_mode == HSSPI_WAIT_MODE_INTR) 520 __raw_writel(HSSPI_PINGx_CMD_DONE(0), 521 bs->regs + HSSPI_INT_MASK_REG); 522 523 reg = !chip_select << PINGPONG_CMD_SS_SHIFT | 524 chip_select << PINGPONG_CMD_PROFILE_SHIFT | 525 PINGPONG_COMMAND_START_NOW; 526 __raw_writel(reg, bs->regs + HSSPI_PINGPONG_COMMAND_REG(0)); 527 528 if (bcm63xx_hsspi_wait_cmd(bs)) 529 return -ETIMEDOUT; 530 531 if (rx) { 532 memcpy_fromio(rx, bs->fifo, curr_step); 533 rx += curr_step; 534 } 535 536 pending -= curr_step; 537 } 538 539 return 0; 540 } 541 542 static int bcm63xx_hsspi_setup(struct spi_device *spi) 543 { 544 struct bcm63xx_hsspi *bs = spi_master_get_devdata(spi->master); 545 u32 reg; 546 547 reg = __raw_readl(bs->regs + 548 HSSPI_PROFILE_SIGNAL_CTRL_REG(spi->chip_select)); 549 reg &= ~(SIGNAL_CTRL_LAUNCH_RISING | SIGNAL_CTRL_LATCH_RISING); 550 if (spi->mode & SPI_CPHA) 551 reg |= SIGNAL_CTRL_LAUNCH_RISING; 552 else 553 reg |= SIGNAL_CTRL_LATCH_RISING; 554 __raw_writel(reg, bs->regs + 555 HSSPI_PROFILE_SIGNAL_CTRL_REG(spi->chip_select)); 556 557 mutex_lock(&bs->bus_mutex); 558 reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG); 559 560 /* only change actual polarities if there is no transfer */ 561 if ((reg & GLOBAL_CTRL_CS_POLARITY_MASK) == bs->cs_polarity) { 562 if (spi->mode & SPI_CS_HIGH) 563 reg |= BIT(spi->chip_select); 564 else 565 reg &= ~BIT(spi->chip_select); 566 __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG); 567 } 568 569 if (spi->mode & SPI_CS_HIGH) 570 bs->cs_polarity |= BIT(spi->chip_select); 571 else 572 bs->cs_polarity &= ~BIT(spi->chip_select); 573 574 mutex_unlock(&bs->bus_mutex); 575 576 return 0; 577 } 578 579 static int bcm63xx_hsspi_do_dummy_cs_txrx(struct spi_device *spi, 580 struct spi_message *msg) 581 { 582 struct bcm63xx_hsspi *bs = spi_master_get_devdata(spi->master); 583 int status = -EINVAL; 584 int dummy_cs; 585 bool keep_cs = false; 586 struct spi_transfer *t; 587 588 /* 589 * This controller does not support keeping CS active during idle. 590 * To work around this, we use the following ugly hack: 591 * 592 * a. Invert the target chip select's polarity so it will be active. 593 * b. Select a "dummy" chip select to use as the hardware target. 594 * c. Invert the dummy chip select's polarity so it will be inactive 595 * during the actual transfers. 596 * d. Tell the hardware to send to the dummy chip select. Thanks to 597 * the multiplexed nature of SPI the actual target will receive 598 * the transfer and we see its response. 599 * 600 * e. At the end restore the polarities again to their default values. 601 */ 602 603 dummy_cs = !spi->chip_select; 604 bcm63xx_hsspi_set_cs(bs, dummy_cs, true); 605 606 list_for_each_entry(t, &msg->transfers, transfer_list) { 607 /* 608 * We are here because one of reasons below: 609 * a. Message is not prependable and in default auto xfer mode. This mean 610 * we fallback to dummy cs mode at maximum 25MHz safe clock rate. 611 * b. User set to use the dummy cs mode. 612 */ 613 if (bs->xfer_mode == HSSPI_XFER_MODE_AUTO) { 614 if (t->speed_hz > HSSPI_MAX_SYNC_CLOCK) { 615 t->speed_hz = HSSPI_MAX_SYNC_CLOCK; 616 dev_warn_once(&bs->pdev->dev, 617 "Force to dummy cs mode. Reduce the speed to %dHz", 618 t->speed_hz); 619 } 620 } 621 622 status = bcm63xx_hsspi_do_txrx(spi, t); 623 if (status) 624 break; 625 626 msg->actual_length += t->len; 627 628 spi_transfer_delay_exec(t); 629 630 /* use existing cs change logic from spi_transfer_one_message */ 631 if (t->cs_change) { 632 if (list_is_last(&t->transfer_list, &msg->transfers)) { 633 keep_cs = true; 634 } else { 635 if (!t->cs_off) 636 bcm63xx_hsspi_set_cs(bs, spi->chip_select, false); 637 638 spi_transfer_cs_change_delay_exec(msg, t); 639 640 if (!list_next_entry(t, transfer_list)->cs_off) 641 bcm63xx_hsspi_set_cs(bs, spi->chip_select, true); 642 } 643 } else if (!list_is_last(&t->transfer_list, &msg->transfers) && 644 t->cs_off != list_next_entry(t, transfer_list)->cs_off) { 645 bcm63xx_hsspi_set_cs(bs, spi->chip_select, t->cs_off); 646 } 647 } 648 649 bcm63xx_hsspi_set_cs(bs, dummy_cs, false); 650 if (status || !keep_cs) 651 bcm63xx_hsspi_set_cs(bs, spi->chip_select, false); 652 653 return status; 654 } 655 656 static int bcm63xx_hsspi_transfer_one(struct spi_master *master, 657 struct spi_message *msg) 658 { 659 struct bcm63xx_hsspi *bs = spi_master_get_devdata(master); 660 struct spi_device *spi = msg->spi; 661 int status = -EINVAL; 662 bool prependable = false; 663 struct spi_transfer t_prepend; 664 665 mutex_lock(&bs->msg_mutex); 666 667 if (bs->xfer_mode != HSSPI_XFER_MODE_DUMMYCS) 668 prependable = bcm63xx_prepare_prepend_transfer(master, msg, &t_prepend); 669 670 if (prependable) { 671 status = bcm63xx_hsspi_do_prepend_txrx(spi, &t_prepend); 672 msg->actual_length = (t_prepend.len + bs->prepend_cnt); 673 } else { 674 if (bs->xfer_mode == HSSPI_XFER_MODE_PREPEND) { 675 dev_err(&bs->pdev->dev, 676 "User sets prepend mode but msg not prependable! Abort transfer\n"); 677 status = -EINVAL; 678 } else 679 status = bcm63xx_hsspi_do_dummy_cs_txrx(spi, msg); 680 } 681 682 mutex_unlock(&bs->msg_mutex); 683 msg->status = status; 684 spi_finalize_current_message(master); 685 686 return 0; 687 } 688 689 static bool bcm63xx_hsspi_mem_supports_op(struct spi_mem *mem, 690 const struct spi_mem_op *op) 691 { 692 if (!spi_mem_default_supports_op(mem, op)) 693 return false; 694 695 /* Controller doesn't support spi mem dual io mode */ 696 if ((op->cmd.opcode == SPINOR_OP_READ_1_2_2) || 697 (op->cmd.opcode == SPINOR_OP_READ_1_2_2_4B) || 698 (op->cmd.opcode == SPINOR_OP_READ_1_2_2_DTR) || 699 (op->cmd.opcode == SPINOR_OP_READ_1_2_2_DTR_4B)) 700 return false; 701 702 return true; 703 } 704 705 static const struct spi_controller_mem_ops bcm63xx_hsspi_mem_ops = { 706 .supports_op = bcm63xx_hsspi_mem_supports_op, 707 }; 708 709 static irqreturn_t bcm63xx_hsspi_interrupt(int irq, void *dev_id) 710 { 711 struct bcm63xx_hsspi *bs = (struct bcm63xx_hsspi *)dev_id; 712 713 if (__raw_readl(bs->regs + HSSPI_INT_STATUS_MASKED_REG) == 0) 714 return IRQ_NONE; 715 716 __raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG); 717 __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG); 718 719 complete(&bs->done); 720 721 return IRQ_HANDLED; 722 } 723 724 static int bcm63xx_hsspi_probe(struct platform_device *pdev) 725 { 726 struct spi_master *master; 727 struct bcm63xx_hsspi *bs; 728 void __iomem *regs; 729 struct device *dev = &pdev->dev; 730 struct clk *clk, *pll_clk = NULL; 731 int irq, ret; 732 u32 reg, rate, num_cs = HSSPI_SPI_MAX_CS; 733 struct reset_control *reset; 734 735 irq = platform_get_irq(pdev, 0); 736 if (irq < 0) 737 return irq; 738 739 regs = devm_platform_ioremap_resource(pdev, 0); 740 if (IS_ERR(regs)) 741 return PTR_ERR(regs); 742 743 clk = devm_clk_get(dev, "hsspi"); 744 745 if (IS_ERR(clk)) 746 return PTR_ERR(clk); 747 748 reset = devm_reset_control_get_optional_exclusive(dev, NULL); 749 if (IS_ERR(reset)) 750 return PTR_ERR(reset); 751 752 ret = clk_prepare_enable(clk); 753 if (ret) 754 return ret; 755 756 ret = reset_control_reset(reset); 757 if (ret) { 758 dev_err(dev, "unable to reset device: %d\n", ret); 759 goto out_disable_clk; 760 } 761 762 rate = clk_get_rate(clk); 763 if (!rate) { 764 pll_clk = devm_clk_get(dev, "pll"); 765 766 if (IS_ERR(pll_clk)) { 767 ret = PTR_ERR(pll_clk); 768 goto out_disable_clk; 769 } 770 771 ret = clk_prepare_enable(pll_clk); 772 if (ret) 773 goto out_disable_clk; 774 775 rate = clk_get_rate(pll_clk); 776 if (!rate) { 777 ret = -EINVAL; 778 goto out_disable_pll_clk; 779 } 780 } 781 782 master = spi_alloc_master(&pdev->dev, sizeof(*bs)); 783 if (!master) { 784 ret = -ENOMEM; 785 goto out_disable_pll_clk; 786 } 787 788 bs = spi_master_get_devdata(master); 789 bs->pdev = pdev; 790 bs->clk = clk; 791 bs->pll_clk = pll_clk; 792 bs->regs = regs; 793 bs->speed_hz = rate; 794 bs->fifo = (u8 __iomem *)(bs->regs + HSSPI_FIFO_REG(0)); 795 bs->wait_mode = HSSPI_WAIT_MODE_POLLING; 796 bs->prepend_buf = devm_kzalloc(dev, HSSPI_BUFFER_LEN, GFP_KERNEL); 797 if (!bs->prepend_buf) { 798 ret = -ENOMEM; 799 goto out_put_master; 800 } 801 802 mutex_init(&bs->bus_mutex); 803 mutex_init(&bs->msg_mutex); 804 init_completion(&bs->done); 805 806 master->mem_ops = &bcm63xx_hsspi_mem_ops; 807 master->dev.of_node = dev->of_node; 808 if (!dev->of_node) 809 master->bus_num = HSSPI_BUS_NUM; 810 811 of_property_read_u32(dev->of_node, "num-cs", &num_cs); 812 if (num_cs > 8) { 813 dev_warn(dev, "unsupported number of cs (%i), reducing to 8\n", 814 num_cs); 815 num_cs = HSSPI_SPI_MAX_CS; 816 } 817 master->num_chipselect = num_cs; 818 master->setup = bcm63xx_hsspi_setup; 819 master->transfer_one_message = bcm63xx_hsspi_transfer_one; 820 master->max_transfer_size = bcm63xx_hsspi_max_message_size; 821 master->max_message_size = bcm63xx_hsspi_max_message_size; 822 823 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | 824 SPI_RX_DUAL | SPI_TX_DUAL; 825 master->bits_per_word_mask = SPI_BPW_MASK(8); 826 master->auto_runtime_pm = true; 827 828 platform_set_drvdata(pdev, master); 829 830 /* Initialize the hardware */ 831 __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG); 832 833 /* clean up any pending interrupts */ 834 __raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG); 835 836 /* read out default CS polarities */ 837 reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG); 838 bs->cs_polarity = reg & GLOBAL_CTRL_CS_POLARITY_MASK; 839 __raw_writel(reg | GLOBAL_CTRL_CLK_GATE_SSOFF, 840 bs->regs + HSSPI_GLOBAL_CTRL_REG); 841 842 if (irq > 0) { 843 ret = devm_request_irq(dev, irq, bcm63xx_hsspi_interrupt, IRQF_SHARED, 844 pdev->name, bs); 845 846 if (ret) 847 goto out_put_master; 848 } 849 850 pm_runtime_enable(&pdev->dev); 851 852 ret = sysfs_create_group(&pdev->dev.kobj, &bcm63xx_hsspi_group); 853 if (ret) { 854 dev_err(&pdev->dev, "couldn't register sysfs group\n"); 855 goto out_pm_disable; 856 } 857 858 /* register and we are done */ 859 ret = devm_spi_register_master(dev, master); 860 if (ret) 861 goto out_sysgroup_disable; 862 863 dev_info(dev, "Broadcom 63XX High Speed SPI Controller driver"); 864 865 return 0; 866 867 out_sysgroup_disable: 868 sysfs_remove_group(&pdev->dev.kobj, &bcm63xx_hsspi_group); 869 out_pm_disable: 870 pm_runtime_disable(&pdev->dev); 871 out_put_master: 872 spi_master_put(master); 873 out_disable_pll_clk: 874 clk_disable_unprepare(pll_clk); 875 out_disable_clk: 876 clk_disable_unprepare(clk); 877 return ret; 878 } 879 880 881 static int bcm63xx_hsspi_remove(struct platform_device *pdev) 882 { 883 struct spi_master *master = platform_get_drvdata(pdev); 884 struct bcm63xx_hsspi *bs = spi_master_get_devdata(master); 885 886 /* reset the hardware and block queue progress */ 887 __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG); 888 clk_disable_unprepare(bs->pll_clk); 889 clk_disable_unprepare(bs->clk); 890 sysfs_remove_group(&pdev->dev.kobj, &bcm63xx_hsspi_group); 891 892 return 0; 893 } 894 895 #ifdef CONFIG_PM_SLEEP 896 static int bcm63xx_hsspi_suspend(struct device *dev) 897 { 898 struct spi_master *master = dev_get_drvdata(dev); 899 struct bcm63xx_hsspi *bs = spi_master_get_devdata(master); 900 901 spi_master_suspend(master); 902 clk_disable_unprepare(bs->pll_clk); 903 clk_disable_unprepare(bs->clk); 904 905 return 0; 906 } 907 908 static int bcm63xx_hsspi_resume(struct device *dev) 909 { 910 struct spi_master *master = dev_get_drvdata(dev); 911 struct bcm63xx_hsspi *bs = spi_master_get_devdata(master); 912 int ret; 913 914 ret = clk_prepare_enable(bs->clk); 915 if (ret) 916 return ret; 917 918 if (bs->pll_clk) { 919 ret = clk_prepare_enable(bs->pll_clk); 920 if (ret) { 921 clk_disable_unprepare(bs->clk); 922 return ret; 923 } 924 } 925 926 spi_master_resume(master); 927 928 return 0; 929 } 930 #endif 931 932 static SIMPLE_DEV_PM_OPS(bcm63xx_hsspi_pm_ops, bcm63xx_hsspi_suspend, 933 bcm63xx_hsspi_resume); 934 935 static const struct of_device_id bcm63xx_hsspi_of_match[] = { 936 { .compatible = "brcm,bcm6328-hsspi", }, 937 { .compatible = "brcm,bcmbca-hsspi-v1.0", }, 938 { }, 939 }; 940 MODULE_DEVICE_TABLE(of, bcm63xx_hsspi_of_match); 941 942 static struct platform_driver bcm63xx_hsspi_driver = { 943 .driver = { 944 .name = "bcm63xx-hsspi", 945 .pm = &bcm63xx_hsspi_pm_ops, 946 .of_match_table = bcm63xx_hsspi_of_match, 947 }, 948 .probe = bcm63xx_hsspi_probe, 949 .remove = bcm63xx_hsspi_remove, 950 }; 951 952 module_platform_driver(bcm63xx_hsspi_driver); 953 954 MODULE_ALIAS("platform:bcm63xx_hsspi"); 955 MODULE_DESCRIPTION("Broadcom BCM63xx High Speed SPI Controller driver"); 956 MODULE_AUTHOR("Jonas Gorski <jogo@openwrt.org>"); 957 MODULE_LICENSE("GPL"); 958