xref: /linux/drivers/spi/spi-bcm2835aux.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * Driver for Broadcom BCM2835 auxiliary SPI Controllers
3  *
4  * the driver does not rely on the native chipselects at all
5  * but only uses the gpio type chipselects
6  *
7  * Based on: spi-bcm2835.c
8  *
9  * Copyright (C) 2015 Martin Sperl
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_device.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_irq.h>
35 #include <linux/regmap.h>
36 #include <linux/spi/spi.h>
37 #include <linux/spinlock.h>
38 
39 /*
40  * spi register defines
41  *
42  * note there is garbage in the "official" documentation,
43  * so some data is taken from the file:
44  *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
45  * inside of:
46  *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
47  */
48 
49 /* SPI register offsets */
50 #define BCM2835_AUX_SPI_CNTL0	0x00
51 #define BCM2835_AUX_SPI_CNTL1	0x04
52 #define BCM2835_AUX_SPI_STAT	0x08
53 #define BCM2835_AUX_SPI_PEEK	0x0C
54 #define BCM2835_AUX_SPI_IO	0x20
55 #define BCM2835_AUX_SPI_TXHOLD	0x30
56 
57 /* Bitfields in CNTL0 */
58 #define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
59 #define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
60 #define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
61 #define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
62 #define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
63 #define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
64 #define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
65 #define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
66 #define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
67 #define BCM2835_AUX_SPI_CNTL0_IN_RISING	0x00000400
68 #define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
69 #define BCM2835_AUX_SPI_CNTL0_OUT_RISING	0x00000100
70 #define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
71 #define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
72 #define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
73 
74 /* Bitfields in CNTL1 */
75 #define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
76 #define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000080
77 #define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000040
78 #define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
79 #define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
80 
81 /* Bitfields in STAT */
82 #define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
83 #define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
84 #define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
85 #define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
86 #define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
87 #define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
88 #define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
89 #define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
90 
91 /* timeout values */
92 #define BCM2835_AUX_SPI_POLLING_LIMIT_US	30
93 #define BCM2835_AUX_SPI_POLLING_JIFFIES		2
94 
95 struct bcm2835aux_spi {
96 	void __iomem *regs;
97 	struct clk *clk;
98 	int irq;
99 	u32 cntl[2];
100 	const u8 *tx_buf;
101 	u8 *rx_buf;
102 	int tx_len;
103 	int rx_len;
104 	int pending;
105 };
106 
107 static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg)
108 {
109 	return readl(bs->regs + reg);
110 }
111 
112 static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg,
113 				 u32 val)
114 {
115 	writel(val, bs->regs + reg);
116 }
117 
118 static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
119 {
120 	u32 data;
121 	int count = min(bs->rx_len, 3);
122 
123 	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
124 	if (bs->rx_buf) {
125 		switch (count) {
126 		case 4:
127 			*bs->rx_buf++ = (data >> 24) & 0xff;
128 			/* fallthrough */
129 		case 3:
130 			*bs->rx_buf++ = (data >> 16) & 0xff;
131 			/* fallthrough */
132 		case 2:
133 			*bs->rx_buf++ = (data >> 8) & 0xff;
134 			/* fallthrough */
135 		case 1:
136 			*bs->rx_buf++ = (data >> 0) & 0xff;
137 			/* fallthrough - no default */
138 		}
139 	}
140 	bs->rx_len -= count;
141 	bs->pending -= count;
142 }
143 
144 static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
145 {
146 	u32 data;
147 	u8 byte;
148 	int count;
149 	int i;
150 
151 	/* gather up to 3 bytes to write to the FIFO */
152 	count = min(bs->tx_len, 3);
153 	data = 0;
154 	for (i = 0; i < count; i++) {
155 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
156 		data |= byte << (8 * (2 - i));
157 	}
158 
159 	/* and set the variable bit-length */
160 	data |= (count * 8) << 24;
161 
162 	/* and decrement length */
163 	bs->tx_len -= count;
164 	bs->pending += count;
165 
166 	/* write to the correct TX-register */
167 	if (bs->tx_len)
168 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
169 	else
170 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
171 }
172 
173 static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
174 {
175 	/* disable spi clearing fifo and interrupts */
176 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
177 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
178 		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
179 }
180 
181 static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
182 {
183 	struct spi_master *master = dev_id;
184 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
185 	irqreturn_t ret = IRQ_NONE;
186 
187 	/* check if we have data to read */
188 	while (bs->rx_len &&
189 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
190 		  BCM2835_AUX_SPI_STAT_RX_EMPTY))) {
191 		bcm2835aux_rd_fifo(bs);
192 		ret = IRQ_HANDLED;
193 	}
194 
195 	/* check if we have data to write */
196 	while (bs->tx_len &&
197 	       (bs->pending < 12) &&
198 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
199 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
200 		bcm2835aux_wr_fifo(bs);
201 		ret = IRQ_HANDLED;
202 	}
203 
204 	/* and check if we have reached "done" */
205 	while (bs->rx_len &&
206 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
207 		  BCM2835_AUX_SPI_STAT_BUSY))) {
208 		bcm2835aux_rd_fifo(bs);
209 		ret = IRQ_HANDLED;
210 	}
211 
212 	if (!bs->tx_len) {
213 		/* disable tx fifo empty interrupt */
214 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
215 			BCM2835_AUX_SPI_CNTL1_IDLE);
216 	}
217 
218 	/* and if rx_len is 0 then disable interrupts and wake up completion */
219 	if (!bs->rx_len) {
220 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
221 		complete(&master->xfer_completion);
222 	}
223 
224 	/* and return */
225 	return ret;
226 }
227 
228 static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
229 					     struct spi_device *spi,
230 					     struct spi_transfer *tfr)
231 {
232 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
233 
234 	/* enable interrupts */
235 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
236 		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
237 		BCM2835_AUX_SPI_CNTL1_IDLE);
238 
239 	/* and wait for finish... */
240 	return 1;
241 }
242 
243 static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
244 					   struct spi_device *spi,
245 					   struct spi_transfer *tfr)
246 {
247 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
248 
249 	/* fill in registers and fifos before enabling interrupts */
250 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
251 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
252 
253 	/* fill in tx fifo with data before enabling interrupts */
254 	while ((bs->tx_len) &&
255 	       (bs->pending < 12) &&
256 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
257 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
258 		bcm2835aux_wr_fifo(bs);
259 	}
260 
261 	/* now run the interrupt mode */
262 	return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
263 }
264 
265 static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
266 					    struct spi_device *spi,
267 					struct spi_transfer *tfr)
268 {
269 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
270 	unsigned long timeout;
271 	u32 stat;
272 
273 	/* configure spi */
274 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
275 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
276 
277 	/* set the timeout */
278 	timeout = jiffies + BCM2835_AUX_SPI_POLLING_JIFFIES;
279 
280 	/* loop until finished the transfer */
281 	while (bs->rx_len) {
282 		/* read status */
283 		stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
284 
285 		/* fill in tx fifo with remaining data */
286 		if ((bs->tx_len) && (!(stat & BCM2835_AUX_SPI_STAT_TX_FULL))) {
287 			bcm2835aux_wr_fifo(bs);
288 			continue;
289 		}
290 
291 		/* read data from fifo for both cases */
292 		if (!(stat & BCM2835_AUX_SPI_STAT_RX_EMPTY)) {
293 			bcm2835aux_rd_fifo(bs);
294 			continue;
295 		}
296 		if (!(stat & BCM2835_AUX_SPI_STAT_BUSY)) {
297 			bcm2835aux_rd_fifo(bs);
298 			continue;
299 		}
300 
301 		/* there is still data pending to read check the timeout */
302 		if (bs->rx_len && time_after(jiffies, timeout)) {
303 			dev_dbg_ratelimited(&spi->dev,
304 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
305 					    jiffies - timeout,
306 					    bs->tx_len, bs->rx_len);
307 			/* forward to interrupt handler */
308 			return __bcm2835aux_spi_transfer_one_irq(master,
309 							       spi, tfr);
310 		}
311 	}
312 
313 	/* and return without waiting for completion */
314 	return 0;
315 }
316 
317 static int bcm2835aux_spi_transfer_one(struct spi_master *master,
318 				       struct spi_device *spi,
319 				       struct spi_transfer *tfr)
320 {
321 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
322 	unsigned long spi_hz, clk_hz, speed;
323 	unsigned long spi_used_hz;
324 	unsigned long long xfer_time_us;
325 
326 	/* calculate the registers to handle
327 	 *
328 	 * note that we use the variable data mode, which
329 	 * is not optimal for longer transfers as we waste registers
330 	 * resulting (potentially) in more interrupts when transferring
331 	 * more than 12 bytes
332 	 */
333 
334 	/* set clock */
335 	spi_hz = tfr->speed_hz;
336 	clk_hz = clk_get_rate(bs->clk);
337 
338 	if (spi_hz >= clk_hz / 2) {
339 		speed = 0;
340 	} else if (spi_hz) {
341 		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
342 		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
343 			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
344 	} else { /* the slowest we can go */
345 		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
346 	}
347 	/* mask out old speed from previous spi_transfer */
348 	bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
349 	/* set the new speed */
350 	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
351 
352 	spi_used_hz = clk_hz / (2 * (speed + 1));
353 
354 	/* set transmit buffers and length */
355 	bs->tx_buf = tfr->tx_buf;
356 	bs->rx_buf = tfr->rx_buf;
357 	bs->tx_len = tfr->len;
358 	bs->rx_len = tfr->len;
359 	bs->pending = 0;
360 
361 	/* calculate the estimated time in us the transfer runs
362 	 * note that there are are 2 idle clocks after each
363 	 * chunk getting transferred - in our case the chunk size
364 	 * is 3 bytes, so we approximate this by 9 bits/byte
365 	 */
366 	xfer_time_us = tfr->len * 9 * 1000000;
367 	do_div(xfer_time_us, spi_used_hz);
368 
369 	/* run in polling mode for short transfers */
370 	if (xfer_time_us < BCM2835_AUX_SPI_POLLING_LIMIT_US)
371 		return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
372 
373 	/* run in interrupt mode for all others */
374 	return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
375 }
376 
377 static int bcm2835aux_spi_prepare_message(struct spi_master *master,
378 					  struct spi_message *msg)
379 {
380 	struct spi_device *spi = msg->spi;
381 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
382 
383 	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
384 		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
385 		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
386 	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
387 
388 	/* handle all the modes */
389 	if (spi->mode & SPI_CPOL) {
390 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
391 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
392 	} else {
393 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
394 	}
395 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
396 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
397 
398 	return 0;
399 }
400 
401 static int bcm2835aux_spi_unprepare_message(struct spi_master *master,
402 					    struct spi_message *msg)
403 {
404 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
405 
406 	bcm2835aux_spi_reset_hw(bs);
407 
408 	return 0;
409 }
410 
411 static void bcm2835aux_spi_handle_err(struct spi_master *master,
412 				      struct spi_message *msg)
413 {
414 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
415 
416 	bcm2835aux_spi_reset_hw(bs);
417 }
418 
419 static int bcm2835aux_spi_probe(struct platform_device *pdev)
420 {
421 	struct spi_master *master;
422 	struct bcm2835aux_spi *bs;
423 	struct resource *res;
424 	unsigned long clk_hz;
425 	int err;
426 
427 	master = spi_alloc_master(&pdev->dev, sizeof(*bs));
428 	if (!master) {
429 		dev_err(&pdev->dev, "spi_alloc_master() failed\n");
430 		return -ENOMEM;
431 	}
432 
433 	platform_set_drvdata(pdev, master);
434 	master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
435 	master->bits_per_word_mask = SPI_BPW_MASK(8);
436 	master->num_chipselect = -1;
437 	master->transfer_one = bcm2835aux_spi_transfer_one;
438 	master->handle_err = bcm2835aux_spi_handle_err;
439 	master->prepare_message = bcm2835aux_spi_prepare_message;
440 	master->unprepare_message = bcm2835aux_spi_unprepare_message;
441 	master->dev.of_node = pdev->dev.of_node;
442 
443 	bs = spi_master_get_devdata(master);
444 
445 	/* the main area */
446 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
447 	bs->regs = devm_ioremap_resource(&pdev->dev, res);
448 	if (IS_ERR(bs->regs)) {
449 		err = PTR_ERR(bs->regs);
450 		goto out_master_put;
451 	}
452 
453 	bs->clk = devm_clk_get(&pdev->dev, NULL);
454 	if ((!bs->clk) || (IS_ERR(bs->clk))) {
455 		err = PTR_ERR(bs->clk);
456 		dev_err(&pdev->dev, "could not get clk: %d\n", err);
457 		goto out_master_put;
458 	}
459 
460 	bs->irq = platform_get_irq(pdev, 0);
461 	if (bs->irq <= 0) {
462 		dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
463 		err = bs->irq ? bs->irq : -ENODEV;
464 		goto out_master_put;
465 	}
466 
467 	/* this also enables the HW block */
468 	err = clk_prepare_enable(bs->clk);
469 	if (err) {
470 		dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
471 		goto out_master_put;
472 	}
473 
474 	/* just checking if the clock returns a sane value */
475 	clk_hz = clk_get_rate(bs->clk);
476 	if (!clk_hz) {
477 		dev_err(&pdev->dev, "clock returns 0 Hz\n");
478 		err = -ENODEV;
479 		goto out_clk_disable;
480 	}
481 
482 	/* reset SPI-HW block */
483 	bcm2835aux_spi_reset_hw(bs);
484 
485 	err = devm_request_irq(&pdev->dev, bs->irq,
486 			       bcm2835aux_spi_interrupt,
487 			       IRQF_SHARED,
488 			       dev_name(&pdev->dev), master);
489 	if (err) {
490 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
491 		goto out_clk_disable;
492 	}
493 
494 	err = devm_spi_register_master(&pdev->dev, master);
495 	if (err) {
496 		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
497 		goto out_clk_disable;
498 	}
499 
500 	return 0;
501 
502 out_clk_disable:
503 	clk_disable_unprepare(bs->clk);
504 out_master_put:
505 	spi_master_put(master);
506 	return err;
507 }
508 
509 static int bcm2835aux_spi_remove(struct platform_device *pdev)
510 {
511 	struct spi_master *master = platform_get_drvdata(pdev);
512 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
513 
514 	bcm2835aux_spi_reset_hw(bs);
515 
516 	/* disable the HW block by releasing the clock */
517 	clk_disable_unprepare(bs->clk);
518 
519 	return 0;
520 }
521 
522 static const struct of_device_id bcm2835aux_spi_match[] = {
523 	{ .compatible = "brcm,bcm2835-aux-spi", },
524 	{}
525 };
526 MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
527 
528 static struct platform_driver bcm2835aux_spi_driver = {
529 	.driver		= {
530 		.name		= "spi-bcm2835aux",
531 		.of_match_table	= bcm2835aux_spi_match,
532 	},
533 	.probe		= bcm2835aux_spi_probe,
534 	.remove		= bcm2835aux_spi_remove,
535 };
536 module_platform_driver(bcm2835aux_spi_driver);
537 
538 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
539 MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
540 MODULE_LICENSE("GPL v2");
541