xref: /linux/drivers/spi/spi-bcm2835.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Broadcom BCM2835 SPI Controllers
4  *
5  * Copyright (C) 2012 Chris Boot
6  * Copyright (C) 2013 Stephen Warren
7  * Copyright (C) 2015 Martin Sperl
8  *
9  * This driver is inspired by:
10  * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11  * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
12  */
13 
14 #include <linux/cleanup.h>
15 #include <linux/clk.h>
16 #include <linux/completion.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dmaengine.h>
21 #include <linux/err.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/platform_device.h>
29 #include <linux/gpio/consumer.h>
30 #include <linux/gpio/machine.h> /* FIXME: using GPIO lookup tables */
31 #include <linux/of_irq.h>
32 #include <linux/overflow.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 
36 /* SPI register offsets */
37 #define BCM2835_SPI_CS			0x00
38 #define BCM2835_SPI_FIFO		0x04
39 #define BCM2835_SPI_CLK			0x08
40 #define BCM2835_SPI_DLEN		0x0c
41 #define BCM2835_SPI_LTOH		0x10
42 #define BCM2835_SPI_DC			0x14
43 
44 /* Bitfields in CS */
45 #define BCM2835_SPI_CS_LEN_LONG		0x02000000
46 #define BCM2835_SPI_CS_DMA_LEN		0x01000000
47 #define BCM2835_SPI_CS_CSPOL2		0x00800000
48 #define BCM2835_SPI_CS_CSPOL1		0x00400000
49 #define BCM2835_SPI_CS_CSPOL0		0x00200000
50 #define BCM2835_SPI_CS_RXF		0x00100000
51 #define BCM2835_SPI_CS_RXR		0x00080000
52 #define BCM2835_SPI_CS_TXD		0x00040000
53 #define BCM2835_SPI_CS_RXD		0x00020000
54 #define BCM2835_SPI_CS_DONE		0x00010000
55 #define BCM2835_SPI_CS_LEN		0x00002000
56 #define BCM2835_SPI_CS_REN		0x00001000
57 #define BCM2835_SPI_CS_ADCS		0x00000800
58 #define BCM2835_SPI_CS_INTR		0x00000400
59 #define BCM2835_SPI_CS_INTD		0x00000200
60 #define BCM2835_SPI_CS_DMAEN		0x00000100
61 #define BCM2835_SPI_CS_TA		0x00000080
62 #define BCM2835_SPI_CS_CSPOL		0x00000040
63 #define BCM2835_SPI_CS_CLEAR_RX		0x00000020
64 #define BCM2835_SPI_CS_CLEAR_TX		0x00000010
65 #define BCM2835_SPI_CS_CPOL		0x00000008
66 #define BCM2835_SPI_CS_CPHA		0x00000004
67 #define BCM2835_SPI_CS_CS_10		0x00000002
68 #define BCM2835_SPI_CS_CS_01		0x00000001
69 
70 #define BCM2835_SPI_FIFO_SIZE		64
71 #define BCM2835_SPI_FIFO_SIZE_3_4	48
72 #define BCM2835_SPI_DMA_MIN_LENGTH	96
73 #define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
74 				| SPI_NO_CS | SPI_3WIRE)
75 
76 #define DRV_NAME	"spi-bcm2835"
77 
78 /* define polling limits */
79 static unsigned int polling_limit_us = 30;
80 module_param(polling_limit_us, uint, 0664);
81 MODULE_PARM_DESC(polling_limit_us,
82 		 "time in us to run a transfer in polling mode\n");
83 
84 /**
85  * struct bcm2835_spi - BCM2835 SPI controller
86  * @regs: base address of register map
87  * @clk: core clock, divided to calculate serial clock
88  * @cs_gpio: chip-select GPIO descriptor
89  * @clk_hz: core clock cached speed
90  * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
91  * @tfr: SPI transfer currently processed
92  * @ctlr: SPI controller reverse lookup
93  * @tx_buf: pointer whence next transmitted byte is read
94  * @rx_buf: pointer where next received byte is written
95  * @tx_len: remaining bytes to transmit
96  * @rx_len: remaining bytes to receive
97  * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
98  *	length is not a multiple of 4 (to overcome hardware limitation)
99  * @rx_prologue: bytes received without DMA if first RX sglist entry's
100  *	length is not a multiple of 4 (to overcome hardware limitation)
101  * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
102  * @debugfs_dir: the debugfs directory - neede to remove debugfs when
103  *      unloading the module
104  * @count_transfer_polling: count of how often polling mode is used
105  * @count_transfer_irq: count of how often interrupt mode is used
106  * @count_transfer_irq_after_polling: count of how often we fall back to
107  *      interrupt mode after starting in polling mode.
108  *      These are counted as well in @count_transfer_polling and
109  *      @count_transfer_irq
110  * @count_transfer_dma: count how often dma mode is used
111  * @target: SPI target currently selected
112  *	(used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
113  * @tx_dma_active: whether a TX DMA descriptor is in progress
114  * @rx_dma_active: whether a RX DMA descriptor is in progress
115  *	(used by bcm2835_spi_dma_tx_done() to handle a race)
116  * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
117  *	(cyclically copies from zero page to TX FIFO)
118  * @fill_tx_addr: bus address of zero page
119  */
120 struct bcm2835_spi {
121 	void __iomem *regs;
122 	struct clk *clk;
123 	struct gpio_desc *cs_gpio;
124 	unsigned long clk_hz;
125 	int irq;
126 	struct spi_transfer *tfr;
127 	struct spi_controller *ctlr;
128 	const u8 *tx_buf;
129 	u8 *rx_buf;
130 	int tx_len;
131 	int rx_len;
132 	int tx_prologue;
133 	int rx_prologue;
134 	unsigned int tx_spillover;
135 
136 	struct dentry *debugfs_dir;
137 	u64 count_transfer_polling;
138 	u64 count_transfer_irq;
139 	u64 count_transfer_irq_after_polling;
140 	u64 count_transfer_dma;
141 
142 	struct bcm2835_spidev *target;
143 	unsigned int tx_dma_active;
144 	unsigned int rx_dma_active;
145 	struct dma_async_tx_descriptor *fill_tx_desc;
146 	dma_addr_t fill_tx_addr;
147 };
148 
149 /**
150  * struct bcm2835_spidev - BCM2835 SPI target
151  * @prepare_cs: precalculated CS register value for ->prepare_message()
152  *	(uses target-specific clock polarity and phase settings)
153  * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
154  *	(cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
155  * @clear_rx_addr: bus address of @clear_rx_cs
156  * @clear_rx_cs: precalculated CS register value to clear RX FIFO
157  *	(uses target-specific clock polarity and phase settings)
158  */
159 struct bcm2835_spidev {
160 	u32 prepare_cs;
161 	struct dma_async_tx_descriptor *clear_rx_desc;
162 	dma_addr_t clear_rx_addr;
163 	u32 clear_rx_cs ____cacheline_aligned;
164 };
165 
166 #if defined(CONFIG_DEBUG_FS)
167 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
168 				   const char *dname)
169 {
170 	char name[64];
171 	struct dentry *dir;
172 
173 	/* get full name */
174 	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
175 
176 	/* the base directory */
177 	dir = debugfs_create_dir(name, NULL);
178 	bs->debugfs_dir = dir;
179 
180 	/* the counters */
181 	debugfs_create_u64("count_transfer_polling", 0444, dir,
182 			   &bs->count_transfer_polling);
183 	debugfs_create_u64("count_transfer_irq", 0444, dir,
184 			   &bs->count_transfer_irq);
185 	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
186 			   &bs->count_transfer_irq_after_polling);
187 	debugfs_create_u64("count_transfer_dma", 0444, dir,
188 			   &bs->count_transfer_dma);
189 }
190 
191 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
192 {
193 	debugfs_remove_recursive(bs->debugfs_dir);
194 	bs->debugfs_dir = NULL;
195 }
196 #else
197 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
198 				   const char *dname)
199 {
200 }
201 
202 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
203 {
204 }
205 #endif /* CONFIG_DEBUG_FS */
206 
207 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
208 {
209 	return readl(bs->regs + reg);
210 }
211 
212 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
213 {
214 	writel(val, bs->regs + reg);
215 }
216 
217 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
218 {
219 	u8 byte;
220 
221 	while ((bs->rx_len) &&
222 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
223 		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
224 		if (bs->rx_buf)
225 			*bs->rx_buf++ = byte;
226 		bs->rx_len--;
227 	}
228 }
229 
230 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
231 {
232 	u8 byte;
233 
234 	while ((bs->tx_len) &&
235 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
236 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
237 		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
238 		bs->tx_len--;
239 	}
240 }
241 
242 /**
243  * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
244  * @bs: BCM2835 SPI controller
245  * @count: bytes to read from RX FIFO
246  *
247  * The caller must ensure that @bs->rx_len is greater than or equal to @count,
248  * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
249  * in the CS register is set (such that a read from the FIFO register receives
250  * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
251  */
252 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
253 {
254 	u32 val;
255 	int len;
256 
257 	bs->rx_len -= count;
258 
259 	do {
260 		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
261 		len = min(count, 4);
262 		memcpy(bs->rx_buf, &val, len);
263 		bs->rx_buf += len;
264 		count -= 4;
265 	} while (count > 0);
266 }
267 
268 /**
269  * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
270  * @bs: BCM2835 SPI controller
271  * @count: bytes to write to TX FIFO
272  *
273  * The caller must ensure that @bs->tx_len is greater than or equal to @count,
274  * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
275  * in the CS register is set (such that a write to the FIFO register transmits
276  * 32-bit instead of just 8-bit).
277  */
278 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
279 {
280 	u32 val;
281 	int len;
282 
283 	bs->tx_len -= count;
284 
285 	do {
286 		if (bs->tx_buf) {
287 			len = min(count, 4);
288 			memcpy(&val, bs->tx_buf, len);
289 			bs->tx_buf += len;
290 		} else {
291 			val = 0;
292 		}
293 		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
294 		count -= 4;
295 	} while (count > 0);
296 }
297 
298 /**
299  * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
300  * @bs: BCM2835 SPI controller
301  *
302  * The caller must ensure that the RX FIFO can accommodate as many bytes
303  * as have been written to the TX FIFO:  Transmission is halted once the
304  * RX FIFO is full, causing this function to spin forever.
305  */
306 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
307 {
308 	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
309 		cpu_relax();
310 }
311 
312 /**
313  * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
314  * @bs: BCM2835 SPI controller
315  * @count: bytes available for reading in RX FIFO
316  */
317 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
318 {
319 	u8 val;
320 
321 	count = min(count, bs->rx_len);
322 	bs->rx_len -= count;
323 
324 	do {
325 		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
326 		if (bs->rx_buf)
327 			*bs->rx_buf++ = val;
328 	} while (--count);
329 }
330 
331 /**
332  * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
333  * @bs: BCM2835 SPI controller
334  * @count: bytes available for writing in TX FIFO
335  */
336 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
337 {
338 	u8 val;
339 
340 	count = min(count, bs->tx_len);
341 	bs->tx_len -= count;
342 
343 	do {
344 		val = bs->tx_buf ? *bs->tx_buf++ : 0;
345 		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
346 	} while (--count);
347 }
348 
349 static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
350 {
351 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
352 
353 	/* Disable SPI interrupts and transfer */
354 	cs &= ~(BCM2835_SPI_CS_INTR |
355 		BCM2835_SPI_CS_INTD |
356 		BCM2835_SPI_CS_DMAEN |
357 		BCM2835_SPI_CS_TA);
358 	/*
359 	 * Transmission sometimes breaks unless the DONE bit is written at the
360 	 * end of every transfer.  The spec says it's a RO bit.  Either the
361 	 * spec is wrong and the bit is actually of type RW1C, or it's a
362 	 * hardware erratum.
363 	 */
364 	cs |= BCM2835_SPI_CS_DONE;
365 	/* and reset RX/TX FIFOS */
366 	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
367 
368 	/* and reset the SPI_HW */
369 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
370 	/* as well as DLEN */
371 	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
372 }
373 
374 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
375 {
376 	struct bcm2835_spi *bs = dev_id;
377 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
378 
379 	/* Bail out early if interrupts are not enabled */
380 	if (!(cs & BCM2835_SPI_CS_INTR))
381 		return IRQ_NONE;
382 
383 	/*
384 	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
385 	 * or if RXR is set (RX FIFO >= ¾ full).
386 	 */
387 	if (cs & BCM2835_SPI_CS_RXF)
388 		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
389 	else if (cs & BCM2835_SPI_CS_RXR)
390 		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
391 
392 	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
393 		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
394 
395 	/* Read as many bytes as possible from FIFO */
396 	bcm2835_rd_fifo(bs);
397 	/* Write as many bytes as possible to FIFO */
398 	bcm2835_wr_fifo(bs);
399 
400 	if (!bs->rx_len) {
401 		/* Transfer complete - reset SPI HW */
402 		bcm2835_spi_reset_hw(bs);
403 		/* wake up the framework */
404 		spi_finalize_current_transfer(bs->ctlr);
405 	}
406 
407 	return IRQ_HANDLED;
408 }
409 
410 static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
411 					struct spi_device *spi,
412 					struct spi_transfer *tfr,
413 					u32 cs, bool fifo_empty)
414 {
415 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
416 
417 	/* update usage statistics */
418 	bs->count_transfer_irq++;
419 
420 	/*
421 	 * Enable HW block, but with interrupts still disabled.
422 	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
423 	 */
424 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
425 
426 	/* fill TX FIFO as much as possible */
427 	if (fifo_empty)
428 		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
429 	bcm2835_wr_fifo(bs);
430 
431 	/* enable interrupts */
432 	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
433 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
434 
435 	/* signal that we need to wait for completion */
436 	return 1;
437 }
438 
439 /**
440  * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
441  * @ctlr: SPI host controller
442  * @tfr: SPI transfer
443  * @bs: BCM2835 SPI controller
444  * @cs: CS register
445  *
446  * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
447  * Only the final write access is permitted to transmit less than 4 bytes, the
448  * SPI controller deduces its intended size from the DLEN register.
449  *
450  * If a TX or RX sglist contains multiple entries, one per page, and the first
451  * entry starts in the middle of a page, that first entry's length may not be
452  * a multiple of 4.  Subsequent entries are fine because they span an entire
453  * page, hence do have a length that's a multiple of 4.
454  *
455  * This cannot happen with kmalloc'ed buffers (which is what most clients use)
456  * because they are contiguous in physical memory and therefore not split on
457  * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
458  * buffers.
459  *
460  * The DMA engine is incapable of combining sglist entries into a continuous
461  * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
462  * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
463  * entry is rounded up by throwing away received bytes.
464  *
465  * Overcome this limitation by transferring the first few bytes without DMA:
466  * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
467  * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
468  * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
469  * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
470  *
471  * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
472  * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
473  * Caution, the additional 4 bytes spill over to the second TX sglist entry
474  * if the length of the first is *exactly* 1.
475  *
476  * At most 6 bytes are written and at most 3 bytes read.  Do we know the
477  * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
478  *
479  * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
480  * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
481  * the width but also garbles the FIFO's contents.  The prologue must therefore
482  * be transmitted in 32-bit width to ensure that the following DMA transfer can
483  * pick up the residue in the RX FIFO in ungarbled form.
484  */
485 static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
486 					  struct spi_transfer *tfr,
487 					  struct bcm2835_spi *bs,
488 					  u32 cs)
489 {
490 	int tx_remaining;
491 
492 	bs->tfr		 = tfr;
493 	bs->tx_prologue  = 0;
494 	bs->rx_prologue  = 0;
495 	bs->tx_spillover = false;
496 
497 	if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
498 		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
499 
500 	if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
501 		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
502 
503 		if (bs->rx_prologue > bs->tx_prologue) {
504 			if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
505 				bs->tx_prologue  = bs->rx_prologue;
506 			} else {
507 				bs->tx_prologue += 4;
508 				bs->tx_spillover =
509 					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
510 			}
511 		}
512 	}
513 
514 	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
515 	if (!bs->tx_prologue)
516 		return;
517 
518 	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
519 	if (bs->rx_prologue) {
520 		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
521 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
522 						  | BCM2835_SPI_CS_DMAEN);
523 		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
524 		bcm2835_wait_tx_fifo_empty(bs);
525 		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
526 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
527 						  | BCM2835_SPI_CS_CLEAR_TX
528 						  | BCM2835_SPI_CS_DONE);
529 
530 		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
531 					   sg_dma_address(&tfr->rx_sg.sgl[0]),
532 					   bs->rx_prologue, DMA_FROM_DEVICE);
533 
534 		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
535 		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
536 	}
537 
538 	if (!bs->tx_buf)
539 		return;
540 
541 	/*
542 	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
543 	 * Also adjust second entry if prologue spills over to it.
544 	 */
545 	tx_remaining = bs->tx_prologue - bs->rx_prologue;
546 	if (tx_remaining) {
547 		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
548 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
549 						  | BCM2835_SPI_CS_DMAEN);
550 		bcm2835_wr_fifo_count(bs, tx_remaining);
551 		bcm2835_wait_tx_fifo_empty(bs);
552 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
553 						  | BCM2835_SPI_CS_DONE);
554 	}
555 
556 	if (likely(!bs->tx_spillover)) {
557 		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
558 		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
559 	} else {
560 		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
561 		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
562 		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
563 	}
564 }
565 
566 /**
567  * bcm2835_spi_undo_prologue() - reconstruct original sglist state
568  * @bs: BCM2835 SPI controller
569  *
570  * Undo changes which were made to an SPI transfer's sglist when transmitting
571  * the prologue.  This is necessary to ensure the same memory ranges are
572  * unmapped that were originally mapped.
573  */
574 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
575 {
576 	struct spi_transfer *tfr = bs->tfr;
577 
578 	if (!bs->tx_prologue)
579 		return;
580 
581 	if (bs->rx_prologue) {
582 		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
583 		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
584 	}
585 
586 	if (!bs->tx_buf)
587 		goto out;
588 
589 	if (likely(!bs->tx_spillover)) {
590 		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
591 		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
592 	} else {
593 		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
594 		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
595 		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
596 	}
597 out:
598 	bs->tx_prologue = 0;
599 }
600 
601 /**
602  * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
603  * @data: SPI host controller
604  *
605  * Used for bidirectional and RX-only transfers.
606  */
607 static void bcm2835_spi_dma_rx_done(void *data)
608 {
609 	struct spi_controller *ctlr = data;
610 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
611 
612 	/* terminate tx-dma as we do not have an irq for it
613 	 * because when the rx dma will terminate and this callback
614 	 * is called the tx-dma must have finished - can't get to this
615 	 * situation otherwise...
616 	 */
617 	dmaengine_terminate_async(ctlr->dma_tx);
618 	bs->tx_dma_active = false;
619 	bs->rx_dma_active = false;
620 	bcm2835_spi_undo_prologue(bs);
621 
622 	/* reset fifo and HW */
623 	bcm2835_spi_reset_hw(bs);
624 
625 	/* and mark as completed */;
626 	spi_finalize_current_transfer(ctlr);
627 }
628 
629 /**
630  * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
631  * @data: SPI host controller
632  *
633  * Used for TX-only transfers.
634  */
635 static void bcm2835_spi_dma_tx_done(void *data)
636 {
637 	struct spi_controller *ctlr = data;
638 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
639 
640 	/* busy-wait for TX FIFO to empty */
641 	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
642 		bcm2835_wr(bs, BCM2835_SPI_CS, bs->target->clear_rx_cs);
643 
644 	bs->tx_dma_active = false;
645 	smp_wmb();
646 
647 	/*
648 	 * In case of a very short transfer, RX DMA may not have been
649 	 * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
650 	 * to terminate it immediately after issuing.
651 	 */
652 	if (cmpxchg(&bs->rx_dma_active, true, false))
653 		dmaengine_terminate_async(ctlr->dma_rx);
654 
655 	bcm2835_spi_undo_prologue(bs);
656 	bcm2835_spi_reset_hw(bs);
657 	spi_finalize_current_transfer(ctlr);
658 }
659 
660 /**
661  * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
662  * @ctlr: SPI host controller
663  * @tfr: SPI transfer
664  * @bs: BCM2835 SPI controller
665  * @target: BCM2835 SPI target
666  * @is_tx: whether to submit DMA descriptor for TX or RX sglist
667  *
668  * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
669  * Return 0 on success or a negative error number.
670  */
671 static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
672 				  struct spi_transfer *tfr,
673 				  struct bcm2835_spi *bs,
674 				  struct bcm2835_spidev *target,
675 				  bool is_tx)
676 {
677 	struct dma_chan *chan;
678 	struct scatterlist *sgl;
679 	unsigned int nents;
680 	enum dma_transfer_direction dir;
681 	unsigned long flags;
682 
683 	struct dma_async_tx_descriptor *desc;
684 	dma_cookie_t cookie;
685 
686 	if (is_tx) {
687 		dir   = DMA_MEM_TO_DEV;
688 		chan  = ctlr->dma_tx;
689 		nents = tfr->tx_sg.nents;
690 		sgl   = tfr->tx_sg.sgl;
691 		flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
692 	} else {
693 		dir   = DMA_DEV_TO_MEM;
694 		chan  = ctlr->dma_rx;
695 		nents = tfr->rx_sg.nents;
696 		sgl   = tfr->rx_sg.sgl;
697 		flags = DMA_PREP_INTERRUPT;
698 	}
699 	/* prepare the channel */
700 	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
701 	if (!desc)
702 		return -EINVAL;
703 
704 	/*
705 	 * Completion is signaled by the RX channel for bidirectional and
706 	 * RX-only transfers; else by the TX channel for TX-only transfers.
707 	 */
708 	if (!is_tx) {
709 		desc->callback = bcm2835_spi_dma_rx_done;
710 		desc->callback_param = ctlr;
711 	} else if (!tfr->rx_buf) {
712 		desc->callback = bcm2835_spi_dma_tx_done;
713 		desc->callback_param = ctlr;
714 		bs->target = target;
715 	}
716 
717 	/* submit it to DMA-engine */
718 	cookie = dmaengine_submit(desc);
719 
720 	return dma_submit_error(cookie);
721 }
722 
723 /**
724  * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
725  * @ctlr: SPI host controller
726  * @tfr: SPI transfer
727  * @target: BCM2835 SPI target
728  * @cs: CS register
729  *
730  * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
731  * the TX and RX DMA channel to copy between memory and FIFO register.
732  *
733  * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
734  * memory is pointless.  However not reading the RX FIFO isn't an option either
735  * because transmission is halted once it's full.  As a workaround, cyclically
736  * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
737  *
738  * The CS register value is precalculated in bcm2835_spi_setup().  Normally
739  * this is called only once, on target registration.  A DMA descriptor to write
740  * this value is preallocated in bcm2835_dma_init().  All that's left to do
741  * when performing a TX-only transfer is to submit this descriptor to the RX
742  * DMA channel.  Latency is thereby minimized.  The descriptor does not
743  * generate any interrupts while running.  It must be terminated once the
744  * TX DMA channel is done.
745  *
746  * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
747  * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
748  * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
749  * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
750  * reduction in bus traffic and thus energy consumption is achieved.
751  *
752  * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
753  * copying from the zero page.  The DMA descriptor to do this is preallocated
754  * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
755  * done and can then be reused.
756  *
757  * The BCM2835 DMA driver autodetects when a transaction copies from the zero
758  * page and utilizes the DMA controller's ability to synthesize zeroes instead
759  * of copying them from memory.  This reduces traffic on the memory bus.  The
760  * feature is not available on so-called "lite" channels, but normally TX DMA
761  * is backed by a full-featured channel.
762  *
763  * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
764  * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
765  * has been counted down to zero (hardware erratum).  Thus, when the transfer
766  * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
767  * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
768  * performed at the end of an RX-only transfer.
769  */
770 static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
771 					struct spi_transfer *tfr,
772 					struct bcm2835_spidev *target,
773 					u32 cs)
774 {
775 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
776 	dma_cookie_t cookie;
777 	int ret;
778 
779 	/* update usage statistics */
780 	bs->count_transfer_dma++;
781 
782 	/*
783 	 * Transfer first few bytes without DMA if length of first TX or RX
784 	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
785 	 */
786 	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
787 
788 	/* setup tx-DMA */
789 	if (bs->tx_buf) {
790 		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, target, true);
791 	} else {
792 		cookie = dmaengine_submit(bs->fill_tx_desc);
793 		ret = dma_submit_error(cookie);
794 	}
795 	if (ret)
796 		goto err_reset_hw;
797 
798 	/* set the DMA length */
799 	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
800 
801 	/* start the HW */
802 	bcm2835_wr(bs, BCM2835_SPI_CS,
803 		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
804 
805 	bs->tx_dma_active = true;
806 	smp_wmb();
807 
808 	/* start TX early */
809 	dma_async_issue_pending(ctlr->dma_tx);
810 
811 	/* setup rx-DMA late - to run transfers while
812 	 * mapping of the rx buffers still takes place
813 	 * this saves 10us or more.
814 	 */
815 	if (bs->rx_buf) {
816 		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, target, false);
817 	} else {
818 		cookie = dmaengine_submit(target->clear_rx_desc);
819 		ret = dma_submit_error(cookie);
820 	}
821 	if (ret) {
822 		/* need to reset on errors */
823 		dmaengine_terminate_sync(ctlr->dma_tx);
824 		bs->tx_dma_active = false;
825 		goto err_reset_hw;
826 	}
827 
828 	/* start rx dma late */
829 	dma_async_issue_pending(ctlr->dma_rx);
830 	bs->rx_dma_active = true;
831 	smp_mb();
832 
833 	/*
834 	 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
835 	 * may run before RX DMA is issued.  Terminate RX DMA if so.
836 	 */
837 	if (!bs->rx_buf && !bs->tx_dma_active &&
838 	    cmpxchg(&bs->rx_dma_active, true, false)) {
839 		dmaengine_terminate_async(ctlr->dma_rx);
840 		bcm2835_spi_reset_hw(bs);
841 	}
842 
843 	/* wait for wakeup in framework */
844 	return 1;
845 
846 err_reset_hw:
847 	bcm2835_spi_reset_hw(bs);
848 	bcm2835_spi_undo_prologue(bs);
849 	return ret;
850 }
851 
852 static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
853 				struct spi_device *spi,
854 				struct spi_transfer *tfr)
855 {
856 	/* we start DMA efforts only on bigger transfers */
857 	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
858 		return false;
859 
860 	/* return OK */
861 	return true;
862 }
863 
864 static void bcm2835_dma_release(struct spi_controller *ctlr,
865 				struct bcm2835_spi *bs)
866 {
867 	if (ctlr->dma_tx) {
868 		dmaengine_terminate_sync(ctlr->dma_tx);
869 
870 		if (bs->fill_tx_desc)
871 			dmaengine_desc_free(bs->fill_tx_desc);
872 
873 		if (bs->fill_tx_addr)
874 			dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
875 					     bs->fill_tx_addr, sizeof(u32),
876 					     DMA_TO_DEVICE,
877 					     DMA_ATTR_SKIP_CPU_SYNC);
878 
879 		dma_release_channel(ctlr->dma_tx);
880 		ctlr->dma_tx = NULL;
881 	}
882 
883 	if (ctlr->dma_rx) {
884 		dmaengine_terminate_sync(ctlr->dma_rx);
885 		dma_release_channel(ctlr->dma_rx);
886 		ctlr->dma_rx = NULL;
887 	}
888 }
889 
890 static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
891 			    struct bcm2835_spi *bs)
892 {
893 	struct dma_slave_config slave_config;
894 	const __be32 *addr;
895 	dma_addr_t dma_reg_base;
896 	int ret;
897 
898 	/* base address in dma-space */
899 	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
900 	if (!addr) {
901 		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
902 		/* Fall back to interrupt mode */
903 		return 0;
904 	}
905 	dma_reg_base = be32_to_cpup(addr);
906 
907 	/* get tx/rx dma */
908 	ctlr->dma_tx = dma_request_chan(dev, "tx");
909 	if (IS_ERR(ctlr->dma_tx)) {
910 		ret = dev_err_probe(dev, PTR_ERR(ctlr->dma_tx),
911 			"no tx-dma configuration found - not using dma mode\n");
912 		ctlr->dma_tx = NULL;
913 		goto err;
914 	}
915 	ctlr->dma_rx = dma_request_chan(dev, "rx");
916 	if (IS_ERR(ctlr->dma_rx)) {
917 		ret = dev_err_probe(dev, PTR_ERR(ctlr->dma_rx),
918 			"no rx-dma configuration found - not using dma mode\n");
919 		ctlr->dma_rx = NULL;
920 		goto err_release;
921 	}
922 
923 	/*
924 	 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
925 	 * or, in case of an RX-only transfer, cyclically copies from the zero
926 	 * page to the FIFO using a preallocated, reusable descriptor.
927 	 */
928 	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
929 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
930 
931 	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
932 	if (ret)
933 		goto err_config;
934 
935 	bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
936 					      ZERO_PAGE(0), 0, sizeof(u32),
937 					      DMA_TO_DEVICE,
938 					      DMA_ATTR_SKIP_CPU_SYNC);
939 	if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
940 		dev_err(dev, "cannot map zero page - not using DMA mode\n");
941 		bs->fill_tx_addr = 0;
942 		ret = -ENOMEM;
943 		goto err_release;
944 	}
945 
946 	bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
947 						     bs->fill_tx_addr,
948 						     sizeof(u32), 0,
949 						     DMA_MEM_TO_DEV, 0);
950 	if (!bs->fill_tx_desc) {
951 		dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
952 		ret = -ENOMEM;
953 		goto err_release;
954 	}
955 
956 	ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
957 	if (ret) {
958 		dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
959 		goto err_release;
960 	}
961 
962 	/*
963 	 * The RX DMA channel is used bidirectionally:  It either reads the
964 	 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
965 	 * precalculated value to the CS register to clear the RX FIFO.
966 	 */
967 	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
968 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
969 	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
970 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
971 
972 	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
973 	if (ret)
974 		goto err_config;
975 
976 	/* all went well, so set can_dma */
977 	ctlr->can_dma = bcm2835_spi_can_dma;
978 
979 	return 0;
980 
981 err_config:
982 	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
983 		ret);
984 err_release:
985 	bcm2835_dma_release(ctlr, bs);
986 err:
987 	/*
988 	 * Only report error for deferred probing, otherwise fall back to
989 	 * interrupt mode
990 	 */
991 	if (ret != -EPROBE_DEFER)
992 		ret = 0;
993 
994 	return ret;
995 }
996 
997 static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
998 					 struct spi_device *spi,
999 					 struct spi_transfer *tfr,
1000 					 u32 cs)
1001 {
1002 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1003 	unsigned long timeout;
1004 
1005 	/* update usage statistics */
1006 	bs->count_transfer_polling++;
1007 
1008 	/* enable HW block without interrupts */
1009 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1010 
1011 	/* fill in the fifo before timeout calculations
1012 	 * if we are interrupted here, then the data is
1013 	 * getting transferred by the HW while we are interrupted
1014 	 */
1015 	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1016 
1017 	/* set the timeout to at least 2 jiffies */
1018 	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1019 
1020 	/* loop until finished the transfer */
1021 	while (bs->rx_len) {
1022 		/* fill in tx fifo with remaining data */
1023 		bcm2835_wr_fifo(bs);
1024 
1025 		/* read from fifo as much as possible */
1026 		bcm2835_rd_fifo(bs);
1027 
1028 		/* if there is still data pending to read
1029 		 * then check the timeout
1030 		 */
1031 		if (bs->rx_len && time_after(jiffies, timeout)) {
1032 			dev_dbg_ratelimited(&spi->dev,
1033 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1034 					    jiffies - timeout,
1035 					    bs->tx_len, bs->rx_len);
1036 			/* fall back to interrupt mode */
1037 
1038 			/* update usage statistics */
1039 			bs->count_transfer_irq_after_polling++;
1040 
1041 			return bcm2835_spi_transfer_one_irq(ctlr, spi,
1042 							    tfr, cs, false);
1043 		}
1044 	}
1045 
1046 	/* Transfer complete - reset SPI HW */
1047 	bcm2835_spi_reset_hw(bs);
1048 	/* and return without waiting for completion */
1049 	return 0;
1050 }
1051 
1052 static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1053 				    struct spi_device *spi,
1054 				    struct spi_transfer *tfr)
1055 {
1056 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1057 	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1058 	unsigned long spi_hz, cdiv;
1059 	unsigned long hz_per_byte, byte_limit;
1060 	u32 cs = target->prepare_cs;
1061 
1062 	/* set clock */
1063 	spi_hz = tfr->speed_hz;
1064 
1065 	if (spi_hz >= bs->clk_hz / 2) {
1066 		cdiv = 2; /* clk_hz/2 is the fastest we can go */
1067 	} else if (spi_hz) {
1068 		/* CDIV must be a multiple of two */
1069 		cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz);
1070 		cdiv += (cdiv % 2);
1071 
1072 		if (cdiv >= 65536)
1073 			cdiv = 0; /* 0 is the slowest we can go */
1074 	} else {
1075 		cdiv = 0; /* 0 is the slowest we can go */
1076 	}
1077 	tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536);
1078 	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1079 
1080 	/* handle all the 3-wire mode */
1081 	if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1082 		cs |= BCM2835_SPI_CS_REN;
1083 
1084 	/* set transmit buffers and length */
1085 	bs->tx_buf = tfr->tx_buf;
1086 	bs->rx_buf = tfr->rx_buf;
1087 	bs->tx_len = tfr->len;
1088 	bs->rx_len = tfr->len;
1089 
1090 	/* Calculate the estimated time in us the transfer runs.  Note that
1091 	 * there is 1 idle clocks cycles after each byte getting transferred
1092 	 * so we have 9 cycles/byte.  This is used to find the number of Hz
1093 	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
1094 	 * per 300,000 Hz of bus clock.
1095 	 */
1096 	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1097 	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
1098 
1099 	/* run in polling mode for short transfers */
1100 	if (tfr->len < byte_limit)
1101 		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1102 
1103 	/* run in dma mode if conditions are right
1104 	 * Note that unlike poll or interrupt mode DMA mode does not have
1105 	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1106 	 */
1107 	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1108 		return bcm2835_spi_transfer_one_dma(ctlr, tfr, target, cs);
1109 
1110 	/* run in interrupt-mode */
1111 	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1112 }
1113 
1114 static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1115 				       struct spi_message *msg)
1116 {
1117 	struct spi_device *spi = msg->spi;
1118 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1119 	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1120 	int ret;
1121 
1122 	if (ctlr->can_dma) {
1123 		/*
1124 		 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1125 		 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1126 		 * aligned) if the limit is exceeded.
1127 		 */
1128 		ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1129 						  GFP_KERNEL | GFP_DMA);
1130 		if (ret)
1131 			return ret;
1132 	}
1133 
1134 	/*
1135 	 * Set up clock polarity before spi_transfer_one_message() asserts
1136 	 * chip select to avoid a gratuitous clock signal edge.
1137 	 */
1138 	bcm2835_wr(bs, BCM2835_SPI_CS, target->prepare_cs);
1139 
1140 	return 0;
1141 }
1142 
1143 static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1144 				   struct spi_message *msg)
1145 {
1146 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1147 
1148 	/* if an error occurred and we have an active dma, then terminate */
1149 	if (ctlr->dma_tx) {
1150 		dmaengine_terminate_sync(ctlr->dma_tx);
1151 		bs->tx_dma_active = false;
1152 	}
1153 	if (ctlr->dma_rx) {
1154 		dmaengine_terminate_sync(ctlr->dma_rx);
1155 		bs->rx_dma_active = false;
1156 	}
1157 	bcm2835_spi_undo_prologue(bs);
1158 
1159 	/* and reset */
1160 	bcm2835_spi_reset_hw(bs);
1161 }
1162 
1163 static void bcm2835_spi_cleanup(struct spi_device *spi)
1164 {
1165 	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1166 	struct spi_controller *ctlr = spi->controller;
1167 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1168 
1169 	if (target->clear_rx_desc)
1170 		dmaengine_desc_free(target->clear_rx_desc);
1171 
1172 	if (target->clear_rx_addr)
1173 		dma_unmap_single(ctlr->dma_rx->device->dev,
1174 				 target->clear_rx_addr,
1175 				 sizeof(u32),
1176 				 DMA_TO_DEVICE);
1177 
1178 	gpiod_put(bs->cs_gpio);
1179 	spi_set_csgpiod(spi, 0, NULL);
1180 
1181 	kfree(target);
1182 }
1183 
1184 static int bcm2835_spi_setup_dma(struct spi_controller *ctlr,
1185 				 struct spi_device *spi,
1186 				 struct bcm2835_spi *bs,
1187 				 struct bcm2835_spidev *target)
1188 {
1189 	int ret;
1190 
1191 	if (!ctlr->dma_rx)
1192 		return 0;
1193 
1194 	target->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
1195 					       &target->clear_rx_cs,
1196 					       sizeof(u32),
1197 					       DMA_TO_DEVICE);
1198 	if (dma_mapping_error(ctlr->dma_rx->device->dev, target->clear_rx_addr)) {
1199 		dev_err(&spi->dev, "cannot map clear_rx_cs\n");
1200 		target->clear_rx_addr = 0;
1201 		return -ENOMEM;
1202 	}
1203 
1204 	target->clear_rx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
1205 						          target->clear_rx_addr,
1206 						          sizeof(u32), 0,
1207 						          DMA_MEM_TO_DEV, 0);
1208 	if (!target->clear_rx_desc) {
1209 		dev_err(&spi->dev, "cannot prepare clear_rx_desc\n");
1210 		return -ENOMEM;
1211 	}
1212 
1213 	ret = dmaengine_desc_set_reuse(target->clear_rx_desc);
1214 	if (ret) {
1215 		dev_err(&spi->dev, "cannot reuse clear_rx_desc\n");
1216 		return ret;
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 static int bcm2835_spi_setup(struct spi_device *spi)
1223 {
1224 	struct spi_controller *ctlr = spi->controller;
1225 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1226 	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1227 	struct gpiod_lookup_table *lookup __free(kfree) = NULL;
1228 	int ret;
1229 	u32 cs;
1230 
1231 	if (!target) {
1232 		target = kzalloc(ALIGN(sizeof(*target), dma_get_cache_alignment()),
1233 			      GFP_KERNEL);
1234 		if (!target)
1235 			return -ENOMEM;
1236 
1237 		spi_set_ctldata(spi, target);
1238 
1239 		ret = bcm2835_spi_setup_dma(ctlr, spi, bs, target);
1240 		if (ret)
1241 			goto err_cleanup;
1242 	}
1243 
1244 	/*
1245 	 * Precalculate SPI target's CS register value for ->prepare_message():
1246 	 * The driver always uses software-controlled GPIO chip select, hence
1247 	 * set the hardware-controlled native chip select to an invalid value
1248 	 * to prevent it from interfering.
1249 	 */
1250 	cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1251 	if (spi->mode & SPI_CPOL)
1252 		cs |= BCM2835_SPI_CS_CPOL;
1253 	if (spi->mode & SPI_CPHA)
1254 		cs |= BCM2835_SPI_CS_CPHA;
1255 	target->prepare_cs = cs;
1256 
1257 	/*
1258 	 * Precalculate SPI target's CS register value to clear RX FIFO
1259 	 * in case of a TX-only DMA transfer.
1260 	 */
1261 	if (ctlr->dma_rx) {
1262 		target->clear_rx_cs = cs | BCM2835_SPI_CS_TA |
1263 					BCM2835_SPI_CS_DMAEN |
1264 					BCM2835_SPI_CS_CLEAR_RX;
1265 		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1266 					   target->clear_rx_addr,
1267 					   sizeof(u32),
1268 					   DMA_TO_DEVICE);
1269 	}
1270 
1271 	/*
1272 	 * sanity checking the native-chipselects
1273 	 */
1274 	if (spi->mode & SPI_NO_CS)
1275 		return 0;
1276 	/*
1277 	 * The SPI core has successfully requested the CS GPIO line from the
1278 	 * device tree, so we are done.
1279 	 */
1280 	if (spi_get_csgpiod(spi, 0))
1281 		return 0;
1282 	if (spi_get_chipselect(spi, 0) > 1) {
1283 		/* error in the case of native CS requested with CS > 1
1284 		 * officially there is a CS2, but it is not documented
1285 		 * which GPIO is connected with that...
1286 		 */
1287 		dev_err(&spi->dev,
1288 			"setup: only two native chip-selects are supported\n");
1289 		ret = -EINVAL;
1290 		goto err_cleanup;
1291 	}
1292 
1293 	/*
1294 	 * TODO: The code below is a slightly better alternative to the utter
1295 	 * abuse of the GPIO API that I found here before. It creates a
1296 	 * temporary lookup table, assigns it to the SPI device, gets the GPIO
1297 	 * descriptor and then releases the lookup table.
1298 	 *
1299 	 * More on the problem that it addresses:
1300 	 *   https://www.spinics.net/lists/linux-gpio/msg36218.html
1301 	 */
1302 	lookup = kzalloc(struct_size(lookup, table, 2), GFP_KERNEL);
1303 	if (!lookup) {
1304 		ret = -ENOMEM;
1305 		goto err_cleanup;
1306 	}
1307 
1308 	lookup->dev_id = dev_name(&spi->dev);
1309 	lookup->table[0] = GPIO_LOOKUP("pinctrl-bcm2835",
1310 				       8 - (spi_get_chipselect(spi, 0)),
1311 				       "cs", GPIO_LOOKUP_FLAGS_DEFAULT);
1312 
1313 	gpiod_add_lookup_table(lookup);
1314 
1315 	bs->cs_gpio = gpiod_get(&spi->dev, "cs", GPIOD_OUT_LOW);
1316 	gpiod_remove_lookup_table(lookup);
1317 	if (IS_ERR(bs->cs_gpio)) {
1318 		ret = PTR_ERR(bs->cs_gpio);
1319 		goto err_cleanup;
1320 	}
1321 
1322 	spi_set_csgpiod(spi, 0, bs->cs_gpio);
1323 
1324 	/* and set up the "mode" and level */
1325 	dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1326 		 spi_get_chipselect(spi, 0));
1327 
1328 	return 0;
1329 
1330 err_cleanup:
1331 	bcm2835_spi_cleanup(spi);
1332 	return ret;
1333 }
1334 
1335 static int bcm2835_spi_probe(struct platform_device *pdev)
1336 {
1337 	struct spi_controller *ctlr;
1338 	struct bcm2835_spi *bs;
1339 	int err;
1340 
1341 	ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*bs));
1342 	if (!ctlr)
1343 		return -ENOMEM;
1344 
1345 	platform_set_drvdata(pdev, ctlr);
1346 
1347 	ctlr->use_gpio_descriptors = true;
1348 	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1349 	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1350 	ctlr->num_chipselect = 3;
1351 	ctlr->setup = bcm2835_spi_setup;
1352 	ctlr->cleanup = bcm2835_spi_cleanup;
1353 	ctlr->transfer_one = bcm2835_spi_transfer_one;
1354 	ctlr->handle_err = bcm2835_spi_handle_err;
1355 	ctlr->prepare_message = bcm2835_spi_prepare_message;
1356 	ctlr->dev.of_node = pdev->dev.of_node;
1357 
1358 	bs = spi_controller_get_devdata(ctlr);
1359 	bs->ctlr = ctlr;
1360 
1361 	bs->regs = devm_platform_ioremap_resource(pdev, 0);
1362 	if (IS_ERR(bs->regs))
1363 		return PTR_ERR(bs->regs);
1364 
1365 	bs->clk = devm_clk_get_enabled(&pdev->dev, NULL);
1366 	if (IS_ERR(bs->clk))
1367 		return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
1368 				     "could not get clk\n");
1369 
1370 	ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;
1371 
1372 	bs->irq = platform_get_irq(pdev, 0);
1373 	if (bs->irq < 0)
1374 		return bs->irq;
1375 
1376 	bs->clk_hz = clk_get_rate(bs->clk);
1377 
1378 	err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1379 	if (err)
1380 		return err;
1381 
1382 	/* initialise the hardware with the default polarities */
1383 	bcm2835_wr(bs, BCM2835_SPI_CS,
1384 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1385 
1386 	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt,
1387 			       IRQF_SHARED, dev_name(&pdev->dev), bs);
1388 	if (err) {
1389 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1390 		goto out_dma_release;
1391 	}
1392 
1393 	err = spi_register_controller(ctlr);
1394 	if (err) {
1395 		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1396 			err);
1397 		goto out_dma_release;
1398 	}
1399 
1400 	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1401 
1402 	return 0;
1403 
1404 out_dma_release:
1405 	bcm2835_dma_release(ctlr, bs);
1406 	return err;
1407 }
1408 
1409 static void bcm2835_spi_remove(struct platform_device *pdev)
1410 {
1411 	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1412 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1413 
1414 	bcm2835_debugfs_remove(bs);
1415 
1416 	spi_unregister_controller(ctlr);
1417 
1418 	bcm2835_dma_release(ctlr, bs);
1419 
1420 	/* Clear FIFOs, and disable the HW block */
1421 	bcm2835_wr(bs, BCM2835_SPI_CS,
1422 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1423 }
1424 
1425 static const struct of_device_id bcm2835_spi_match[] = {
1426 	{ .compatible = "brcm,bcm2835-spi", },
1427 	{}
1428 };
1429 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1430 
1431 static struct platform_driver bcm2835_spi_driver = {
1432 	.driver		= {
1433 		.name		= DRV_NAME,
1434 		.of_match_table	= bcm2835_spi_match,
1435 	},
1436 	.probe		= bcm2835_spi_probe,
1437 	.remove_new	= bcm2835_spi_remove,
1438 	.shutdown	= bcm2835_spi_remove,
1439 };
1440 module_platform_driver(bcm2835_spi_driver);
1441 
1442 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1443 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1444 MODULE_LICENSE("GPL");
1445