xref: /linux/drivers/spi/spi-axi-spi-engine.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SPI-Engine SPI controller driver
4  * Copyright 2015 Analog Devices Inc.
5  *  Author: Lars-Peter Clausen <lars@metafoo.de>
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/completion.h>
10 #include <linux/fpga/adi-axi-common.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/of.h>
14 #include <linux/module.h>
15 #include <linux/overflow.h>
16 #include <linux/platform_device.h>
17 #include <linux/spi/spi.h>
18 #include <trace/events/spi.h>
19 
20 #define SPI_ENGINE_REG_RESET			0x40
21 
22 #define SPI_ENGINE_REG_INT_ENABLE		0x80
23 #define SPI_ENGINE_REG_INT_PENDING		0x84
24 #define SPI_ENGINE_REG_INT_SOURCE		0x88
25 
26 #define SPI_ENGINE_REG_SYNC_ID			0xc0
27 
28 #define SPI_ENGINE_REG_CMD_FIFO_ROOM		0xd0
29 #define SPI_ENGINE_REG_SDO_FIFO_ROOM		0xd4
30 #define SPI_ENGINE_REG_SDI_FIFO_LEVEL		0xd8
31 
32 #define SPI_ENGINE_REG_CMD_FIFO			0xe0
33 #define SPI_ENGINE_REG_SDO_DATA_FIFO		0xe4
34 #define SPI_ENGINE_REG_SDI_DATA_FIFO		0xe8
35 #define SPI_ENGINE_REG_SDI_DATA_FIFO_PEEK	0xec
36 
37 #define SPI_ENGINE_INT_CMD_ALMOST_EMPTY		BIT(0)
38 #define SPI_ENGINE_INT_SDO_ALMOST_EMPTY		BIT(1)
39 #define SPI_ENGINE_INT_SDI_ALMOST_FULL		BIT(2)
40 #define SPI_ENGINE_INT_SYNC			BIT(3)
41 
42 #define SPI_ENGINE_CONFIG_CPHA			BIT(0)
43 #define SPI_ENGINE_CONFIG_CPOL			BIT(1)
44 #define SPI_ENGINE_CONFIG_3WIRE			BIT(2)
45 #define SPI_ENGINE_CONFIG_SDO_IDLE_HIGH		BIT(3)
46 
47 #define SPI_ENGINE_INST_TRANSFER		0x0
48 #define SPI_ENGINE_INST_ASSERT			0x1
49 #define SPI_ENGINE_INST_WRITE			0x2
50 #define SPI_ENGINE_INST_MISC			0x3
51 #define SPI_ENGINE_INST_CS_INV			0x4
52 
53 #define SPI_ENGINE_CMD_REG_CLK_DIV		0x0
54 #define SPI_ENGINE_CMD_REG_CONFIG		0x1
55 #define SPI_ENGINE_CMD_REG_XFER_BITS		0x2
56 
57 #define SPI_ENGINE_MISC_SYNC			0x0
58 #define SPI_ENGINE_MISC_SLEEP			0x1
59 
60 #define SPI_ENGINE_TRANSFER_WRITE		0x1
61 #define SPI_ENGINE_TRANSFER_READ		0x2
62 
63 /* Arbitrary sync ID for use by host->cur_msg */
64 #define AXI_SPI_ENGINE_CUR_MSG_SYNC_ID		0x1
65 
66 #define SPI_ENGINE_CMD(inst, arg1, arg2) \
67 	(((inst) << 12) | ((arg1) << 8) | (arg2))
68 
69 #define SPI_ENGINE_CMD_TRANSFER(flags, n) \
70 	SPI_ENGINE_CMD(SPI_ENGINE_INST_TRANSFER, (flags), (n))
71 #define SPI_ENGINE_CMD_ASSERT(delay, cs) \
72 	SPI_ENGINE_CMD(SPI_ENGINE_INST_ASSERT, (delay), (cs))
73 #define SPI_ENGINE_CMD_WRITE(reg, val) \
74 	SPI_ENGINE_CMD(SPI_ENGINE_INST_WRITE, (reg), (val))
75 #define SPI_ENGINE_CMD_SLEEP(delay) \
76 	SPI_ENGINE_CMD(SPI_ENGINE_INST_MISC, SPI_ENGINE_MISC_SLEEP, (delay))
77 #define SPI_ENGINE_CMD_SYNC(id) \
78 	SPI_ENGINE_CMD(SPI_ENGINE_INST_MISC, SPI_ENGINE_MISC_SYNC, (id))
79 #define SPI_ENGINE_CMD_CS_INV(flags) \
80 	SPI_ENGINE_CMD(SPI_ENGINE_INST_CS_INV, 0, (flags))
81 
82 struct spi_engine_program {
83 	unsigned int length;
84 	uint16_t instructions[] __counted_by(length);
85 };
86 
87 /**
88  * struct spi_engine_message_state - SPI engine per-message state
89  */
90 struct spi_engine_message_state {
91 	/** @cmd_length: Number of elements in cmd_buf array. */
92 	unsigned cmd_length;
93 	/** @cmd_buf: Array of commands not yet written to CMD FIFO. */
94 	const uint16_t *cmd_buf;
95 	/** @tx_xfer: Next xfer with tx_buf not yet fully written to TX FIFO. */
96 	struct spi_transfer *tx_xfer;
97 	/** @tx_length: Size of tx_buf in bytes. */
98 	unsigned int tx_length;
99 	/** @tx_buf: Bytes not yet written to TX FIFO. */
100 	const uint8_t *tx_buf;
101 	/** @rx_xfer: Next xfer with rx_buf not yet fully written to RX FIFO. */
102 	struct spi_transfer *rx_xfer;
103 	/** @rx_length: Size of tx_buf in bytes. */
104 	unsigned int rx_length;
105 	/** @rx_buf: Bytes not yet written to the RX FIFO. */
106 	uint8_t *rx_buf;
107 };
108 
109 struct spi_engine {
110 	struct clk *clk;
111 	struct clk *ref_clk;
112 
113 	spinlock_t lock;
114 
115 	void __iomem *base;
116 	struct spi_engine_message_state msg_state;
117 	struct completion msg_complete;
118 	unsigned int int_enable;
119 	/* shadows hardware CS inversion flag state */
120 	u8 cs_inv;
121 };
122 
123 static void spi_engine_program_add_cmd(struct spi_engine_program *p,
124 	bool dry, uint16_t cmd)
125 {
126 	p->length++;
127 
128 	if (!dry)
129 		p->instructions[p->length - 1] = cmd;
130 }
131 
132 static unsigned int spi_engine_get_config(struct spi_device *spi)
133 {
134 	unsigned int config = 0;
135 
136 	if (spi->mode & SPI_CPOL)
137 		config |= SPI_ENGINE_CONFIG_CPOL;
138 	if (spi->mode & SPI_CPHA)
139 		config |= SPI_ENGINE_CONFIG_CPHA;
140 	if (spi->mode & SPI_3WIRE)
141 		config |= SPI_ENGINE_CONFIG_3WIRE;
142 	if (spi->mode & SPI_MOSI_IDLE_HIGH)
143 		config |= SPI_ENGINE_CONFIG_SDO_IDLE_HIGH;
144 	if (spi->mode & SPI_MOSI_IDLE_LOW)
145 		config &= ~SPI_ENGINE_CONFIG_SDO_IDLE_HIGH;
146 
147 	return config;
148 }
149 
150 static void spi_engine_gen_xfer(struct spi_engine_program *p, bool dry,
151 	struct spi_transfer *xfer)
152 {
153 	unsigned int len;
154 
155 	if (xfer->bits_per_word <= 8)
156 		len = xfer->len;
157 	else if (xfer->bits_per_word <= 16)
158 		len = xfer->len / 2;
159 	else
160 		len = xfer->len / 4;
161 
162 	while (len) {
163 		unsigned int n = min(len, 256U);
164 		unsigned int flags = 0;
165 
166 		if (xfer->tx_buf)
167 			flags |= SPI_ENGINE_TRANSFER_WRITE;
168 		if (xfer->rx_buf)
169 			flags |= SPI_ENGINE_TRANSFER_READ;
170 
171 		spi_engine_program_add_cmd(p, dry,
172 			SPI_ENGINE_CMD_TRANSFER(flags, n - 1));
173 		len -= n;
174 	}
175 }
176 
177 static void spi_engine_gen_sleep(struct spi_engine_program *p, bool dry,
178 				 int delay_ns, int inst_ns, u32 sclk_hz)
179 {
180 	unsigned int t;
181 
182 	/*
183 	 * Negative delay indicates error, e.g. from spi_delay_to_ns(). And if
184 	 * delay is less that the instruction execution time, there is no need
185 	 * for an extra sleep instruction since the instruction execution time
186 	 * will already cover the required delay.
187 	 */
188 	if (delay_ns < 0 || delay_ns <= inst_ns)
189 		return;
190 
191 	t = DIV_ROUND_UP_ULL((u64)(delay_ns - inst_ns) * sclk_hz, NSEC_PER_SEC);
192 	while (t) {
193 		unsigned int n = min(t, 256U);
194 
195 		spi_engine_program_add_cmd(p, dry, SPI_ENGINE_CMD_SLEEP(n - 1));
196 		t -= n;
197 	}
198 }
199 
200 static void spi_engine_gen_cs(struct spi_engine_program *p, bool dry,
201 		struct spi_device *spi, bool assert)
202 {
203 	unsigned int mask = 0xff;
204 
205 	if (assert)
206 		mask ^= BIT(spi_get_chipselect(spi, 0));
207 
208 	spi_engine_program_add_cmd(p, dry, SPI_ENGINE_CMD_ASSERT(0, mask));
209 }
210 
211 /*
212  * Performs precompile steps on the message.
213  *
214  * The SPI core does most of the message/transfer validation and filling in
215  * fields for us via __spi_validate(). This fixes up anything remaining not
216  * done there.
217  *
218  * NB: This is separate from spi_engine_compile_message() because the latter
219  * is called twice and would otherwise result in double-evaluation.
220  */
221 static void spi_engine_precompile_message(struct spi_message *msg)
222 {
223 	unsigned int clk_div, max_hz = msg->spi->controller->max_speed_hz;
224 	struct spi_transfer *xfer;
225 
226 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
227 		clk_div = DIV_ROUND_UP(max_hz, xfer->speed_hz);
228 		xfer->effective_speed_hz = max_hz / min(clk_div, 256U);
229 	}
230 }
231 
232 static void spi_engine_compile_message(struct spi_message *msg, bool dry,
233 				       struct spi_engine_program *p)
234 {
235 	struct spi_device *spi = msg->spi;
236 	struct spi_controller *host = spi->controller;
237 	struct spi_transfer *xfer;
238 	int clk_div, new_clk_div, inst_ns;
239 	bool keep_cs = false;
240 	u8 bits_per_word = 0;
241 
242 	/*
243 	 * Take into account instruction execution time for more accurate sleep
244 	 * times, especially when the delay is small.
245 	 */
246 	inst_ns = DIV_ROUND_UP(NSEC_PER_SEC, host->max_speed_hz);
247 
248 	clk_div = 1;
249 
250 	spi_engine_program_add_cmd(p, dry,
251 		SPI_ENGINE_CMD_WRITE(SPI_ENGINE_CMD_REG_CONFIG,
252 			spi_engine_get_config(spi)));
253 
254 	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
255 	spi_engine_gen_cs(p, dry, spi, !xfer->cs_off);
256 
257 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
258 		new_clk_div = host->max_speed_hz / xfer->effective_speed_hz;
259 		if (new_clk_div != clk_div) {
260 			clk_div = new_clk_div;
261 			/* actual divider used is register value + 1 */
262 			spi_engine_program_add_cmd(p, dry,
263 				SPI_ENGINE_CMD_WRITE(SPI_ENGINE_CMD_REG_CLK_DIV,
264 					clk_div - 1));
265 		}
266 
267 		if (bits_per_word != xfer->bits_per_word && xfer->len) {
268 			bits_per_word = xfer->bits_per_word;
269 			spi_engine_program_add_cmd(p, dry,
270 				SPI_ENGINE_CMD_WRITE(SPI_ENGINE_CMD_REG_XFER_BITS,
271 					bits_per_word));
272 		}
273 
274 		spi_engine_gen_xfer(p, dry, xfer);
275 		spi_engine_gen_sleep(p, dry, spi_delay_to_ns(&xfer->delay, xfer),
276 				     inst_ns, xfer->effective_speed_hz);
277 
278 		if (xfer->cs_change) {
279 			if (list_is_last(&xfer->transfer_list, &msg->transfers)) {
280 				keep_cs = true;
281 			} else {
282 				if (!xfer->cs_off)
283 					spi_engine_gen_cs(p, dry, spi, false);
284 
285 				spi_engine_gen_sleep(p, dry, spi_delay_to_ns(
286 					&xfer->cs_change_delay, xfer), inst_ns,
287 					xfer->effective_speed_hz);
288 
289 				if (!list_next_entry(xfer, transfer_list)->cs_off)
290 					spi_engine_gen_cs(p, dry, spi, true);
291 			}
292 		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
293 			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
294 			spi_engine_gen_cs(p, dry, spi, xfer->cs_off);
295 		}
296 	}
297 
298 	if (!keep_cs)
299 		spi_engine_gen_cs(p, dry, spi, false);
300 
301 	/*
302 	 * Restore clockdiv to default so that future gen_sleep commands don't
303 	 * have to be aware of the current register state.
304 	 */
305 	if (clk_div != 1)
306 		spi_engine_program_add_cmd(p, dry,
307 			SPI_ENGINE_CMD_WRITE(SPI_ENGINE_CMD_REG_CLK_DIV, 0));
308 }
309 
310 static void spi_engine_xfer_next(struct spi_message *msg,
311 	struct spi_transfer **_xfer)
312 {
313 	struct spi_transfer *xfer = *_xfer;
314 
315 	if (!xfer) {
316 		xfer = list_first_entry(&msg->transfers,
317 			struct spi_transfer, transfer_list);
318 	} else if (list_is_last(&xfer->transfer_list, &msg->transfers)) {
319 		xfer = NULL;
320 	} else {
321 		xfer = list_next_entry(xfer, transfer_list);
322 	}
323 
324 	*_xfer = xfer;
325 }
326 
327 static void spi_engine_tx_next(struct spi_message *msg)
328 {
329 	struct spi_engine_message_state *st = msg->state;
330 	struct spi_transfer *xfer = st->tx_xfer;
331 
332 	do {
333 		spi_engine_xfer_next(msg, &xfer);
334 	} while (xfer && !xfer->tx_buf);
335 
336 	st->tx_xfer = xfer;
337 	if (xfer) {
338 		st->tx_length = xfer->len;
339 		st->tx_buf = xfer->tx_buf;
340 	} else {
341 		st->tx_buf = NULL;
342 	}
343 }
344 
345 static void spi_engine_rx_next(struct spi_message *msg)
346 {
347 	struct spi_engine_message_state *st = msg->state;
348 	struct spi_transfer *xfer = st->rx_xfer;
349 
350 	do {
351 		spi_engine_xfer_next(msg, &xfer);
352 	} while (xfer && !xfer->rx_buf);
353 
354 	st->rx_xfer = xfer;
355 	if (xfer) {
356 		st->rx_length = xfer->len;
357 		st->rx_buf = xfer->rx_buf;
358 	} else {
359 		st->rx_buf = NULL;
360 	}
361 }
362 
363 static bool spi_engine_write_cmd_fifo(struct spi_engine *spi_engine,
364 				      struct spi_message *msg)
365 {
366 	void __iomem *addr = spi_engine->base + SPI_ENGINE_REG_CMD_FIFO;
367 	struct spi_engine_message_state *st = msg->state;
368 	unsigned int n, m, i;
369 	const uint16_t *buf;
370 
371 	n = readl_relaxed(spi_engine->base + SPI_ENGINE_REG_CMD_FIFO_ROOM);
372 	while (n && st->cmd_length) {
373 		m = min(n, st->cmd_length);
374 		buf = st->cmd_buf;
375 		for (i = 0; i < m; i++)
376 			writel_relaxed(buf[i], addr);
377 		st->cmd_buf += m;
378 		st->cmd_length -= m;
379 		n -= m;
380 	}
381 
382 	return st->cmd_length != 0;
383 }
384 
385 static bool spi_engine_write_tx_fifo(struct spi_engine *spi_engine,
386 				     struct spi_message *msg)
387 {
388 	void __iomem *addr = spi_engine->base + SPI_ENGINE_REG_SDO_DATA_FIFO;
389 	struct spi_engine_message_state *st = msg->state;
390 	unsigned int n, m, i;
391 
392 	n = readl_relaxed(spi_engine->base + SPI_ENGINE_REG_SDO_FIFO_ROOM);
393 	while (n && st->tx_length) {
394 		if (st->tx_xfer->bits_per_word <= 8) {
395 			const u8 *buf = st->tx_buf;
396 
397 			m = min(n, st->tx_length);
398 			for (i = 0; i < m; i++)
399 				writel_relaxed(buf[i], addr);
400 			st->tx_buf += m;
401 			st->tx_length -= m;
402 		} else if (st->tx_xfer->bits_per_word <= 16) {
403 			const u16 *buf = (const u16 *)st->tx_buf;
404 
405 			m = min(n, st->tx_length / 2);
406 			for (i = 0; i < m; i++)
407 				writel_relaxed(buf[i], addr);
408 			st->tx_buf += m * 2;
409 			st->tx_length -= m * 2;
410 		} else {
411 			const u32 *buf = (const u32 *)st->tx_buf;
412 
413 			m = min(n, st->tx_length / 4);
414 			for (i = 0; i < m; i++)
415 				writel_relaxed(buf[i], addr);
416 			st->tx_buf += m * 4;
417 			st->tx_length -= m * 4;
418 		}
419 		n -= m;
420 		if (st->tx_length == 0)
421 			spi_engine_tx_next(msg);
422 	}
423 
424 	return st->tx_length != 0;
425 }
426 
427 static bool spi_engine_read_rx_fifo(struct spi_engine *spi_engine,
428 				    struct spi_message *msg)
429 {
430 	void __iomem *addr = spi_engine->base + SPI_ENGINE_REG_SDI_DATA_FIFO;
431 	struct spi_engine_message_state *st = msg->state;
432 	unsigned int n, m, i;
433 
434 	n = readl_relaxed(spi_engine->base + SPI_ENGINE_REG_SDI_FIFO_LEVEL);
435 	while (n && st->rx_length) {
436 		if (st->rx_xfer->bits_per_word <= 8) {
437 			u8 *buf = st->rx_buf;
438 
439 			m = min(n, st->rx_length);
440 			for (i = 0; i < m; i++)
441 				buf[i] = readl_relaxed(addr);
442 			st->rx_buf += m;
443 			st->rx_length -= m;
444 		} else if (st->rx_xfer->bits_per_word <= 16) {
445 			u16 *buf = (u16 *)st->rx_buf;
446 
447 			m = min(n, st->rx_length / 2);
448 			for (i = 0; i < m; i++)
449 				buf[i] = readl_relaxed(addr);
450 			st->rx_buf += m * 2;
451 			st->rx_length -= m * 2;
452 		} else {
453 			u32 *buf = (u32 *)st->rx_buf;
454 
455 			m = min(n, st->rx_length / 4);
456 			for (i = 0; i < m; i++)
457 				buf[i] = readl_relaxed(addr);
458 			st->rx_buf += m * 4;
459 			st->rx_length -= m * 4;
460 		}
461 		n -= m;
462 		if (st->rx_length == 0)
463 			spi_engine_rx_next(msg);
464 	}
465 
466 	return st->rx_length != 0;
467 }
468 
469 static irqreturn_t spi_engine_irq(int irq, void *devid)
470 {
471 	struct spi_controller *host = devid;
472 	struct spi_message *msg = host->cur_msg;
473 	struct spi_engine *spi_engine = spi_controller_get_devdata(host);
474 	unsigned int disable_int = 0;
475 	unsigned int pending;
476 	int completed_id = -1;
477 
478 	pending = readl_relaxed(spi_engine->base + SPI_ENGINE_REG_INT_PENDING);
479 
480 	if (pending & SPI_ENGINE_INT_SYNC) {
481 		writel_relaxed(SPI_ENGINE_INT_SYNC,
482 			spi_engine->base + SPI_ENGINE_REG_INT_PENDING);
483 		completed_id = readl_relaxed(
484 			spi_engine->base + SPI_ENGINE_REG_SYNC_ID);
485 	}
486 
487 	spin_lock(&spi_engine->lock);
488 
489 	if (pending & SPI_ENGINE_INT_CMD_ALMOST_EMPTY) {
490 		if (!spi_engine_write_cmd_fifo(spi_engine, msg))
491 			disable_int |= SPI_ENGINE_INT_CMD_ALMOST_EMPTY;
492 	}
493 
494 	if (pending & SPI_ENGINE_INT_SDO_ALMOST_EMPTY) {
495 		if (!spi_engine_write_tx_fifo(spi_engine, msg))
496 			disable_int |= SPI_ENGINE_INT_SDO_ALMOST_EMPTY;
497 	}
498 
499 	if (pending & (SPI_ENGINE_INT_SDI_ALMOST_FULL | SPI_ENGINE_INT_SYNC)) {
500 		if (!spi_engine_read_rx_fifo(spi_engine, msg))
501 			disable_int |= SPI_ENGINE_INT_SDI_ALMOST_FULL;
502 	}
503 
504 	if (pending & SPI_ENGINE_INT_SYNC && msg) {
505 		if (completed_id == AXI_SPI_ENGINE_CUR_MSG_SYNC_ID) {
506 			msg->status = 0;
507 			msg->actual_length = msg->frame_length;
508 			complete(&spi_engine->msg_complete);
509 			disable_int |= SPI_ENGINE_INT_SYNC;
510 		}
511 	}
512 
513 	if (disable_int) {
514 		spi_engine->int_enable &= ~disable_int;
515 		writel_relaxed(spi_engine->int_enable,
516 			spi_engine->base + SPI_ENGINE_REG_INT_ENABLE);
517 	}
518 
519 	spin_unlock(&spi_engine->lock);
520 
521 	return IRQ_HANDLED;
522 }
523 
524 static int spi_engine_optimize_message(struct spi_message *msg)
525 {
526 	struct spi_engine_program p_dry, *p;
527 
528 	spi_engine_precompile_message(msg);
529 
530 	p_dry.length = 0;
531 	spi_engine_compile_message(msg, true, &p_dry);
532 
533 	p = kzalloc(struct_size(p, instructions, p_dry.length + 1), GFP_KERNEL);
534 	if (!p)
535 		return -ENOMEM;
536 
537 	spi_engine_compile_message(msg, false, p);
538 
539 	spi_engine_program_add_cmd(p, false, SPI_ENGINE_CMD_SYNC(
540 						AXI_SPI_ENGINE_CUR_MSG_SYNC_ID));
541 
542 	msg->opt_state = p;
543 
544 	return 0;
545 }
546 
547 static int spi_engine_unoptimize_message(struct spi_message *msg)
548 {
549 	kfree(msg->opt_state);
550 
551 	return 0;
552 }
553 
554 static int spi_engine_setup(struct spi_device *device)
555 {
556 	struct spi_controller *host = device->controller;
557 	struct spi_engine *spi_engine = spi_controller_get_devdata(host);
558 
559 	if (device->mode & SPI_CS_HIGH)
560 		spi_engine->cs_inv |= BIT(spi_get_chipselect(device, 0));
561 	else
562 		spi_engine->cs_inv &= ~BIT(spi_get_chipselect(device, 0));
563 
564 	writel_relaxed(SPI_ENGINE_CMD_CS_INV(spi_engine->cs_inv),
565 		       spi_engine->base + SPI_ENGINE_REG_CMD_FIFO);
566 
567 	/*
568 	 * In addition to setting the flags, we have to do a CS assert command
569 	 * to make the new setting actually take effect.
570 	 */
571 	writel_relaxed(SPI_ENGINE_CMD_ASSERT(0, 0xff),
572 		       spi_engine->base + SPI_ENGINE_REG_CMD_FIFO);
573 
574 	return 0;
575 }
576 
577 static int spi_engine_transfer_one_message(struct spi_controller *host,
578 	struct spi_message *msg)
579 {
580 	struct spi_engine *spi_engine = spi_controller_get_devdata(host);
581 	struct spi_engine_message_state *st = &spi_engine->msg_state;
582 	struct spi_engine_program *p = msg->opt_state;
583 	unsigned int int_enable = 0;
584 	unsigned long flags;
585 
586 	/* reinitialize message state for this transfer */
587 	memset(st, 0, sizeof(*st));
588 	st->cmd_buf = p->instructions;
589 	st->cmd_length = p->length;
590 	msg->state = st;
591 
592 	reinit_completion(&spi_engine->msg_complete);
593 
594 	if (trace_spi_transfer_start_enabled()) {
595 		struct spi_transfer *xfer;
596 
597 		list_for_each_entry(xfer, &msg->transfers, transfer_list)
598 			trace_spi_transfer_start(msg, xfer);
599 	}
600 
601 	spin_lock_irqsave(&spi_engine->lock, flags);
602 
603 	if (spi_engine_write_cmd_fifo(spi_engine, msg))
604 		int_enable |= SPI_ENGINE_INT_CMD_ALMOST_EMPTY;
605 
606 	spi_engine_tx_next(msg);
607 	if (spi_engine_write_tx_fifo(spi_engine, msg))
608 		int_enable |= SPI_ENGINE_INT_SDO_ALMOST_EMPTY;
609 
610 	spi_engine_rx_next(msg);
611 	if (st->rx_length != 0)
612 		int_enable |= SPI_ENGINE_INT_SDI_ALMOST_FULL;
613 
614 	int_enable |= SPI_ENGINE_INT_SYNC;
615 
616 	writel_relaxed(int_enable,
617 		spi_engine->base + SPI_ENGINE_REG_INT_ENABLE);
618 	spi_engine->int_enable = int_enable;
619 	spin_unlock_irqrestore(&spi_engine->lock, flags);
620 
621 	if (!wait_for_completion_timeout(&spi_engine->msg_complete,
622 					 msecs_to_jiffies(5000))) {
623 		dev_err(&host->dev,
624 			"Timeout occurred while waiting for transfer to complete. Hardware is probably broken.\n");
625 		msg->status = -ETIMEDOUT;
626 	}
627 
628 	if (trace_spi_transfer_stop_enabled()) {
629 		struct spi_transfer *xfer;
630 
631 		list_for_each_entry(xfer, &msg->transfers, transfer_list)
632 			trace_spi_transfer_stop(msg, xfer);
633 	}
634 
635 	spi_finalize_current_message(host);
636 
637 	return msg->status;
638 }
639 
640 static void spi_engine_release_hw(void *p)
641 {
642 	struct spi_engine *spi_engine = p;
643 
644 	writel_relaxed(0xff, spi_engine->base + SPI_ENGINE_REG_INT_PENDING);
645 	writel_relaxed(0x00, spi_engine->base + SPI_ENGINE_REG_INT_ENABLE);
646 	writel_relaxed(0x01, spi_engine->base + SPI_ENGINE_REG_RESET);
647 }
648 
649 static int spi_engine_probe(struct platform_device *pdev)
650 {
651 	struct spi_engine *spi_engine;
652 	struct spi_controller *host;
653 	unsigned int version;
654 	int irq;
655 	int ret;
656 
657 	irq = platform_get_irq(pdev, 0);
658 	if (irq < 0)
659 		return irq;
660 
661 	host = devm_spi_alloc_host(&pdev->dev, sizeof(*spi_engine));
662 	if (!host)
663 		return -ENOMEM;
664 
665 	spi_engine = spi_controller_get_devdata(host);
666 
667 	spin_lock_init(&spi_engine->lock);
668 	init_completion(&spi_engine->msg_complete);
669 
670 	spi_engine->clk = devm_clk_get_enabled(&pdev->dev, "s_axi_aclk");
671 	if (IS_ERR(spi_engine->clk))
672 		return PTR_ERR(spi_engine->clk);
673 
674 	spi_engine->ref_clk = devm_clk_get_enabled(&pdev->dev, "spi_clk");
675 	if (IS_ERR(spi_engine->ref_clk))
676 		return PTR_ERR(spi_engine->ref_clk);
677 
678 	spi_engine->base = devm_platform_ioremap_resource(pdev, 0);
679 	if (IS_ERR(spi_engine->base))
680 		return PTR_ERR(spi_engine->base);
681 
682 	version = readl(spi_engine->base + ADI_AXI_REG_VERSION);
683 	if (ADI_AXI_PCORE_VER_MAJOR(version) != 1) {
684 		dev_err(&pdev->dev, "Unsupported peripheral version %u.%u.%u\n",
685 			ADI_AXI_PCORE_VER_MAJOR(version),
686 			ADI_AXI_PCORE_VER_MINOR(version),
687 			ADI_AXI_PCORE_VER_PATCH(version));
688 		return -ENODEV;
689 	}
690 
691 	writel_relaxed(0x00, spi_engine->base + SPI_ENGINE_REG_RESET);
692 	writel_relaxed(0xff, spi_engine->base + SPI_ENGINE_REG_INT_PENDING);
693 	writel_relaxed(0x00, spi_engine->base + SPI_ENGINE_REG_INT_ENABLE);
694 
695 	ret = devm_add_action_or_reset(&pdev->dev, spi_engine_release_hw,
696 				       spi_engine);
697 	if (ret)
698 		return ret;
699 
700 	ret = devm_request_irq(&pdev->dev, irq, spi_engine_irq, 0, pdev->name,
701 			       host);
702 	if (ret)
703 		return ret;
704 
705 	host->dev.of_node = pdev->dev.of_node;
706 	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_3WIRE;
707 	host->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
708 	host->max_speed_hz = clk_get_rate(spi_engine->ref_clk) / 2;
709 	host->transfer_one_message = spi_engine_transfer_one_message;
710 	host->optimize_message = spi_engine_optimize_message;
711 	host->unoptimize_message = spi_engine_unoptimize_message;
712 	host->num_chipselect = 8;
713 
714 	/* Some features depend of the IP core version. */
715 	if (ADI_AXI_PCORE_VER_MAJOR(version) >= 1) {
716 		if (ADI_AXI_PCORE_VER_MINOR(version) >= 2) {
717 			host->mode_bits |= SPI_CS_HIGH;
718 			host->setup = spi_engine_setup;
719 		}
720 		if (ADI_AXI_PCORE_VER_MINOR(version) >= 3)
721 			host->mode_bits |= SPI_MOSI_IDLE_LOW | SPI_MOSI_IDLE_HIGH;
722 	}
723 
724 	if (host->max_speed_hz == 0)
725 		return dev_err_probe(&pdev->dev, -EINVAL, "spi_clk rate is 0");
726 
727 	return devm_spi_register_controller(&pdev->dev, host);
728 }
729 
730 static const struct of_device_id spi_engine_match_table[] = {
731 	{ .compatible = "adi,axi-spi-engine-1.00.a" },
732 	{ },
733 };
734 MODULE_DEVICE_TABLE(of, spi_engine_match_table);
735 
736 static struct platform_driver spi_engine_driver = {
737 	.probe = spi_engine_probe,
738 	.driver = {
739 		.name = "spi-engine",
740 		.of_match_table = spi_engine_match_table,
741 	},
742 };
743 module_platform_driver(spi_engine_driver);
744 
745 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
746 MODULE_DESCRIPTION("Analog Devices SPI engine peripheral driver");
747 MODULE_LICENSE("GPL");
748