1 /* 2 * au1550 psc spi controller driver 3 * may work also with au1200, au1210, au1250 4 * will not work on au1000, au1100 and au1500 (no full spi controller there) 5 * 6 * Copyright (c) 2006 ATRON electronic GmbH 7 * Author: Jan Nikitenko <jan.nikitenko@gmail.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 */ 23 24 #include <linux/init.h> 25 #include <linux/interrupt.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/device.h> 29 #include <linux/platform_device.h> 30 #include <linux/resource.h> 31 #include <linux/spi/spi.h> 32 #include <linux/spi/spi_bitbang.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/completion.h> 35 #include <asm/mach-au1x00/au1000.h> 36 #include <asm/mach-au1x00/au1xxx_psc.h> 37 #include <asm/mach-au1x00/au1xxx_dbdma.h> 38 39 #include <asm/mach-au1x00/au1550_spi.h> 40 41 static unsigned usedma = 1; 42 module_param(usedma, uint, 0644); 43 44 /* 45 #define AU1550_SPI_DEBUG_LOOPBACK 46 */ 47 48 49 #define AU1550_SPI_DBDMA_DESCRIPTORS 1 50 #define AU1550_SPI_DMA_RXTMP_MINSIZE 2048U 51 52 struct au1550_spi { 53 struct spi_bitbang bitbang; 54 55 volatile psc_spi_t __iomem *regs; 56 int irq; 57 unsigned freq_max; 58 unsigned freq_min; 59 60 unsigned len; 61 unsigned tx_count; 62 unsigned rx_count; 63 const u8 *tx; 64 u8 *rx; 65 66 void (*rx_word)(struct au1550_spi *hw); 67 void (*tx_word)(struct au1550_spi *hw); 68 int (*txrx_bufs)(struct spi_device *spi, struct spi_transfer *t); 69 irqreturn_t (*irq_callback)(struct au1550_spi *hw); 70 71 struct completion master_done; 72 73 unsigned usedma; 74 u32 dma_tx_id; 75 u32 dma_rx_id; 76 u32 dma_tx_ch; 77 u32 dma_rx_ch; 78 79 u8 *dma_rx_tmpbuf; 80 unsigned dma_rx_tmpbuf_size; 81 u32 dma_rx_tmpbuf_addr; 82 83 struct spi_master *master; 84 struct device *dev; 85 struct au1550_spi_info *pdata; 86 struct resource *ioarea; 87 }; 88 89 90 /* we use an 8-bit memory device for dma transfers to/from spi fifo */ 91 static dbdev_tab_t au1550_spi_mem_dbdev = 92 { 93 .dev_id = DBDMA_MEM_CHAN, 94 .dev_flags = DEV_FLAGS_ANYUSE|DEV_FLAGS_SYNC, 95 .dev_tsize = 0, 96 .dev_devwidth = 8, 97 .dev_physaddr = 0x00000000, 98 .dev_intlevel = 0, 99 .dev_intpolarity = 0 100 }; 101 102 static int ddma_memid; /* id to above mem dma device */ 103 104 static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw); 105 106 107 /* 108 * compute BRG and DIV bits to setup spi clock based on main input clock rate 109 * that was specified in platform data structure 110 * according to au1550 datasheet: 111 * psc_tempclk = psc_mainclk / (2 << DIV) 112 * spiclk = psc_tempclk / (2 * (BRG + 1)) 113 * BRG valid range is 4..63 114 * DIV valid range is 0..3 115 */ 116 static u32 au1550_spi_baudcfg(struct au1550_spi *hw, unsigned speed_hz) 117 { 118 u32 mainclk_hz = hw->pdata->mainclk_hz; 119 u32 div, brg; 120 121 for (div = 0; div < 4; div++) { 122 brg = mainclk_hz / speed_hz / (4 << div); 123 /* now we have BRG+1 in brg, so count with that */ 124 if (brg < (4 + 1)) { 125 brg = (4 + 1); /* speed_hz too big */ 126 break; /* set lowest brg (div is == 0) */ 127 } 128 if (brg <= (63 + 1)) 129 break; /* we have valid brg and div */ 130 } 131 if (div == 4) { 132 div = 3; /* speed_hz too small */ 133 brg = (63 + 1); /* set highest brg and div */ 134 } 135 brg--; 136 return PSC_SPICFG_SET_BAUD(brg) | PSC_SPICFG_SET_DIV(div); 137 } 138 139 static inline void au1550_spi_mask_ack_all(struct au1550_spi *hw) 140 { 141 hw->regs->psc_spimsk = 142 PSC_SPIMSK_MM | PSC_SPIMSK_RR | PSC_SPIMSK_RO 143 | PSC_SPIMSK_RU | PSC_SPIMSK_TR | PSC_SPIMSK_TO 144 | PSC_SPIMSK_TU | PSC_SPIMSK_SD | PSC_SPIMSK_MD; 145 au_sync(); 146 147 hw->regs->psc_spievent = 148 PSC_SPIEVNT_MM | PSC_SPIEVNT_RR | PSC_SPIEVNT_RO 149 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TR | PSC_SPIEVNT_TO 150 | PSC_SPIEVNT_TU | PSC_SPIEVNT_SD | PSC_SPIEVNT_MD; 151 au_sync(); 152 } 153 154 static void au1550_spi_reset_fifos(struct au1550_spi *hw) 155 { 156 u32 pcr; 157 158 hw->regs->psc_spipcr = PSC_SPIPCR_RC | PSC_SPIPCR_TC; 159 au_sync(); 160 do { 161 pcr = hw->regs->psc_spipcr; 162 au_sync(); 163 } while (pcr != 0); 164 } 165 166 /* 167 * dma transfers are used for the most common spi word size of 8-bits 168 * we cannot easily change already set up dma channels' width, so if we wanted 169 * dma support for more than 8-bit words (up to 24 bits), we would need to 170 * setup dma channels from scratch on each spi transfer, based on bits_per_word 171 * instead we have pre set up 8 bit dma channels supporting spi 4 to 8 bits 172 * transfers, and 9 to 24 bits spi transfers will be done in pio irq based mode 173 * callbacks to handle dma or pio are set up in au1550_spi_bits_handlers_set() 174 */ 175 static void au1550_spi_chipsel(struct spi_device *spi, int value) 176 { 177 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 178 unsigned cspol = spi->mode & SPI_CS_HIGH ? 1 : 0; 179 u32 cfg, stat; 180 181 switch (value) { 182 case BITBANG_CS_INACTIVE: 183 if (hw->pdata->deactivate_cs) 184 hw->pdata->deactivate_cs(hw->pdata, spi->chip_select, 185 cspol); 186 break; 187 188 case BITBANG_CS_ACTIVE: 189 au1550_spi_bits_handlers_set(hw, spi->bits_per_word); 190 191 cfg = hw->regs->psc_spicfg; 192 au_sync(); 193 hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE; 194 au_sync(); 195 196 if (spi->mode & SPI_CPOL) 197 cfg |= PSC_SPICFG_BI; 198 else 199 cfg &= ~PSC_SPICFG_BI; 200 if (spi->mode & SPI_CPHA) 201 cfg &= ~PSC_SPICFG_CDE; 202 else 203 cfg |= PSC_SPICFG_CDE; 204 205 if (spi->mode & SPI_LSB_FIRST) 206 cfg |= PSC_SPICFG_MLF; 207 else 208 cfg &= ~PSC_SPICFG_MLF; 209 210 if (hw->usedma && spi->bits_per_word <= 8) 211 cfg &= ~PSC_SPICFG_DD_DISABLE; 212 else 213 cfg |= PSC_SPICFG_DD_DISABLE; 214 cfg = PSC_SPICFG_CLR_LEN(cfg); 215 cfg |= PSC_SPICFG_SET_LEN(spi->bits_per_word); 216 217 cfg = PSC_SPICFG_CLR_BAUD(cfg); 218 cfg &= ~PSC_SPICFG_SET_DIV(3); 219 cfg |= au1550_spi_baudcfg(hw, spi->max_speed_hz); 220 221 hw->regs->psc_spicfg = cfg | PSC_SPICFG_DE_ENABLE; 222 au_sync(); 223 do { 224 stat = hw->regs->psc_spistat; 225 au_sync(); 226 } while ((stat & PSC_SPISTAT_DR) == 0); 227 228 if (hw->pdata->activate_cs) 229 hw->pdata->activate_cs(hw->pdata, spi->chip_select, 230 cspol); 231 break; 232 } 233 } 234 235 static int au1550_spi_setupxfer(struct spi_device *spi, struct spi_transfer *t) 236 { 237 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 238 unsigned bpw, hz; 239 u32 cfg, stat; 240 241 bpw = spi->bits_per_word; 242 hz = spi->max_speed_hz; 243 if (t) { 244 if (t->bits_per_word) 245 bpw = t->bits_per_word; 246 if (t->speed_hz) 247 hz = t->speed_hz; 248 } 249 250 if (bpw < 4 || bpw > 24) { 251 dev_err(&spi->dev, "setupxfer: invalid bits_per_word=%d\n", 252 bpw); 253 return -EINVAL; 254 } 255 if (hz > spi->max_speed_hz || hz > hw->freq_max || hz < hw->freq_min) { 256 dev_err(&spi->dev, "setupxfer: clock rate=%d out of range\n", 257 hz); 258 return -EINVAL; 259 } 260 261 au1550_spi_bits_handlers_set(hw, spi->bits_per_word); 262 263 cfg = hw->regs->psc_spicfg; 264 au_sync(); 265 hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE; 266 au_sync(); 267 268 if (hw->usedma && bpw <= 8) 269 cfg &= ~PSC_SPICFG_DD_DISABLE; 270 else 271 cfg |= PSC_SPICFG_DD_DISABLE; 272 cfg = PSC_SPICFG_CLR_LEN(cfg); 273 cfg |= PSC_SPICFG_SET_LEN(bpw); 274 275 cfg = PSC_SPICFG_CLR_BAUD(cfg); 276 cfg &= ~PSC_SPICFG_SET_DIV(3); 277 cfg |= au1550_spi_baudcfg(hw, hz); 278 279 hw->regs->psc_spicfg = cfg; 280 au_sync(); 281 282 if (cfg & PSC_SPICFG_DE_ENABLE) { 283 do { 284 stat = hw->regs->psc_spistat; 285 au_sync(); 286 } while ((stat & PSC_SPISTAT_DR) == 0); 287 } 288 289 au1550_spi_reset_fifos(hw); 290 au1550_spi_mask_ack_all(hw); 291 return 0; 292 } 293 294 static int au1550_spi_setup(struct spi_device *spi) 295 { 296 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 297 298 if (spi->bits_per_word < 4 || spi->bits_per_word > 24) { 299 dev_err(&spi->dev, "setup: invalid bits_per_word=%d\n", 300 spi->bits_per_word); 301 return -EINVAL; 302 } 303 304 if (spi->max_speed_hz == 0) 305 spi->max_speed_hz = hw->freq_max; 306 if (spi->max_speed_hz > hw->freq_max 307 || spi->max_speed_hz < hw->freq_min) 308 return -EINVAL; 309 /* 310 * NOTE: cannot change speed and other hw settings immediately, 311 * otherwise sharing of spi bus is not possible, 312 * so do not call setupxfer(spi, NULL) here 313 */ 314 return 0; 315 } 316 317 /* 318 * for dma spi transfers, we have to setup rx channel, otherwise there is 319 * no reliable way how to recognize that spi transfer is done 320 * dma complete callbacks are called before real spi transfer is finished 321 * and if only tx dma channel is set up (and rx fifo overflow event masked) 322 * spi master done event irq is not generated unless rx fifo is empty (emptied) 323 * so we need rx tmp buffer to use for rx dma if user does not provide one 324 */ 325 static int au1550_spi_dma_rxtmp_alloc(struct au1550_spi *hw, unsigned size) 326 { 327 hw->dma_rx_tmpbuf = kmalloc(size, GFP_KERNEL); 328 if (!hw->dma_rx_tmpbuf) 329 return -ENOMEM; 330 hw->dma_rx_tmpbuf_size = size; 331 hw->dma_rx_tmpbuf_addr = dma_map_single(hw->dev, hw->dma_rx_tmpbuf, 332 size, DMA_FROM_DEVICE); 333 if (dma_mapping_error(hw->dev, hw->dma_rx_tmpbuf_addr)) { 334 kfree(hw->dma_rx_tmpbuf); 335 hw->dma_rx_tmpbuf = 0; 336 hw->dma_rx_tmpbuf_size = 0; 337 return -EFAULT; 338 } 339 return 0; 340 } 341 342 static void au1550_spi_dma_rxtmp_free(struct au1550_spi *hw) 343 { 344 dma_unmap_single(hw->dev, hw->dma_rx_tmpbuf_addr, 345 hw->dma_rx_tmpbuf_size, DMA_FROM_DEVICE); 346 kfree(hw->dma_rx_tmpbuf); 347 hw->dma_rx_tmpbuf = 0; 348 hw->dma_rx_tmpbuf_size = 0; 349 } 350 351 static int au1550_spi_dma_txrxb(struct spi_device *spi, struct spi_transfer *t) 352 { 353 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 354 dma_addr_t dma_tx_addr; 355 dma_addr_t dma_rx_addr; 356 u32 res; 357 358 hw->len = t->len; 359 hw->tx_count = 0; 360 hw->rx_count = 0; 361 362 hw->tx = t->tx_buf; 363 hw->rx = t->rx_buf; 364 dma_tx_addr = t->tx_dma; 365 dma_rx_addr = t->rx_dma; 366 367 /* 368 * check if buffers are already dma mapped, map them otherwise: 369 * - first map the TX buffer, so cache data gets written to memory 370 * - then map the RX buffer, so that cache entries (with 371 * soon-to-be-stale data) get removed 372 * use rx buffer in place of tx if tx buffer was not provided 373 * use temp rx buffer (preallocated or realloc to fit) for rx dma 374 */ 375 if (t->tx_buf) { 376 if (t->tx_dma == 0) { /* if DMA_ADDR_INVALID, map it */ 377 dma_tx_addr = dma_map_single(hw->dev, 378 (void *)t->tx_buf, 379 t->len, DMA_TO_DEVICE); 380 if (dma_mapping_error(hw->dev, dma_tx_addr)) 381 dev_err(hw->dev, "tx dma map error\n"); 382 } 383 } 384 385 if (t->rx_buf) { 386 if (t->rx_dma == 0) { /* if DMA_ADDR_INVALID, map it */ 387 dma_rx_addr = dma_map_single(hw->dev, 388 (void *)t->rx_buf, 389 t->len, DMA_FROM_DEVICE); 390 if (dma_mapping_error(hw->dev, dma_rx_addr)) 391 dev_err(hw->dev, "rx dma map error\n"); 392 } 393 } else { 394 if (t->len > hw->dma_rx_tmpbuf_size) { 395 int ret; 396 397 au1550_spi_dma_rxtmp_free(hw); 398 ret = au1550_spi_dma_rxtmp_alloc(hw, max(t->len, 399 AU1550_SPI_DMA_RXTMP_MINSIZE)); 400 if (ret < 0) 401 return ret; 402 } 403 hw->rx = hw->dma_rx_tmpbuf; 404 dma_rx_addr = hw->dma_rx_tmpbuf_addr; 405 dma_sync_single_for_device(hw->dev, dma_rx_addr, 406 t->len, DMA_FROM_DEVICE); 407 } 408 409 if (!t->tx_buf) { 410 dma_sync_single_for_device(hw->dev, dma_rx_addr, 411 t->len, DMA_BIDIRECTIONAL); 412 hw->tx = hw->rx; 413 } 414 415 /* put buffers on the ring */ 416 res = au1xxx_dbdma_put_dest(hw->dma_rx_ch, virt_to_phys(hw->rx), 417 t->len, DDMA_FLAGS_IE); 418 if (!res) 419 dev_err(hw->dev, "rx dma put dest error\n"); 420 421 res = au1xxx_dbdma_put_source(hw->dma_tx_ch, virt_to_phys(hw->tx), 422 t->len, DDMA_FLAGS_IE); 423 if (!res) 424 dev_err(hw->dev, "tx dma put source error\n"); 425 426 au1xxx_dbdma_start(hw->dma_rx_ch); 427 au1xxx_dbdma_start(hw->dma_tx_ch); 428 429 /* by default enable nearly all events interrupt */ 430 hw->regs->psc_spimsk = PSC_SPIMSK_SD; 431 au_sync(); 432 433 /* start the transfer */ 434 hw->regs->psc_spipcr = PSC_SPIPCR_MS; 435 au_sync(); 436 437 wait_for_completion(&hw->master_done); 438 439 au1xxx_dbdma_stop(hw->dma_tx_ch); 440 au1xxx_dbdma_stop(hw->dma_rx_ch); 441 442 if (!t->rx_buf) { 443 /* using the temporal preallocated and premapped buffer */ 444 dma_sync_single_for_cpu(hw->dev, dma_rx_addr, t->len, 445 DMA_FROM_DEVICE); 446 } 447 /* unmap buffers if mapped above */ 448 if (t->rx_buf && t->rx_dma == 0 ) 449 dma_unmap_single(hw->dev, dma_rx_addr, t->len, 450 DMA_FROM_DEVICE); 451 if (t->tx_buf && t->tx_dma == 0 ) 452 dma_unmap_single(hw->dev, dma_tx_addr, t->len, 453 DMA_TO_DEVICE); 454 455 return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count; 456 } 457 458 static irqreturn_t au1550_spi_dma_irq_callback(struct au1550_spi *hw) 459 { 460 u32 stat, evnt; 461 462 stat = hw->regs->psc_spistat; 463 evnt = hw->regs->psc_spievent; 464 au_sync(); 465 if ((stat & PSC_SPISTAT_DI) == 0) { 466 dev_err(hw->dev, "Unexpected IRQ!\n"); 467 return IRQ_NONE; 468 } 469 470 if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO 471 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TO 472 | PSC_SPIEVNT_TU | PSC_SPIEVNT_SD)) 473 != 0) { 474 /* 475 * due to an spi error we consider transfer as done, 476 * so mask all events until before next transfer start 477 * and stop the possibly running dma immediatelly 478 */ 479 au1550_spi_mask_ack_all(hw); 480 au1xxx_dbdma_stop(hw->dma_rx_ch); 481 au1xxx_dbdma_stop(hw->dma_tx_ch); 482 483 /* get number of transferred bytes */ 484 hw->rx_count = hw->len - au1xxx_get_dma_residue(hw->dma_rx_ch); 485 hw->tx_count = hw->len - au1xxx_get_dma_residue(hw->dma_tx_ch); 486 487 au1xxx_dbdma_reset(hw->dma_rx_ch); 488 au1xxx_dbdma_reset(hw->dma_tx_ch); 489 au1550_spi_reset_fifos(hw); 490 491 if (evnt == PSC_SPIEVNT_RO) 492 dev_err(hw->dev, 493 "dma transfer: receive FIFO overflow!\n"); 494 else 495 dev_err(hw->dev, 496 "dma transfer: unexpected SPI error " 497 "(event=0x%x stat=0x%x)!\n", evnt, stat); 498 499 complete(&hw->master_done); 500 return IRQ_HANDLED; 501 } 502 503 if ((evnt & PSC_SPIEVNT_MD) != 0) { 504 /* transfer completed successfully */ 505 au1550_spi_mask_ack_all(hw); 506 hw->rx_count = hw->len; 507 hw->tx_count = hw->len; 508 complete(&hw->master_done); 509 } 510 return IRQ_HANDLED; 511 } 512 513 514 /* routines to handle different word sizes in pio mode */ 515 #define AU1550_SPI_RX_WORD(size, mask) \ 516 static void au1550_spi_rx_word_##size(struct au1550_spi *hw) \ 517 { \ 518 u32 fifoword = hw->regs->psc_spitxrx & (u32)(mask); \ 519 au_sync(); \ 520 if (hw->rx) { \ 521 *(u##size *)hw->rx = (u##size)fifoword; \ 522 hw->rx += (size) / 8; \ 523 } \ 524 hw->rx_count += (size) / 8; \ 525 } 526 527 #define AU1550_SPI_TX_WORD(size, mask) \ 528 static void au1550_spi_tx_word_##size(struct au1550_spi *hw) \ 529 { \ 530 u32 fifoword = 0; \ 531 if (hw->tx) { \ 532 fifoword = *(u##size *)hw->tx & (u32)(mask); \ 533 hw->tx += (size) / 8; \ 534 } \ 535 hw->tx_count += (size) / 8; \ 536 if (hw->tx_count >= hw->len) \ 537 fifoword |= PSC_SPITXRX_LC; \ 538 hw->regs->psc_spitxrx = fifoword; \ 539 au_sync(); \ 540 } 541 542 AU1550_SPI_RX_WORD(8,0xff) 543 AU1550_SPI_RX_WORD(16,0xffff) 544 AU1550_SPI_RX_WORD(32,0xffffff) 545 AU1550_SPI_TX_WORD(8,0xff) 546 AU1550_SPI_TX_WORD(16,0xffff) 547 AU1550_SPI_TX_WORD(32,0xffffff) 548 549 static int au1550_spi_pio_txrxb(struct spi_device *spi, struct spi_transfer *t) 550 { 551 u32 stat, mask; 552 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 553 554 hw->tx = t->tx_buf; 555 hw->rx = t->rx_buf; 556 hw->len = t->len; 557 hw->tx_count = 0; 558 hw->rx_count = 0; 559 560 /* by default enable nearly all events after filling tx fifo */ 561 mask = PSC_SPIMSK_SD; 562 563 /* fill the transmit FIFO */ 564 while (hw->tx_count < hw->len) { 565 566 hw->tx_word(hw); 567 568 if (hw->tx_count >= hw->len) { 569 /* mask tx fifo request interrupt as we are done */ 570 mask |= PSC_SPIMSK_TR; 571 } 572 573 stat = hw->regs->psc_spistat; 574 au_sync(); 575 if (stat & PSC_SPISTAT_TF) 576 break; 577 } 578 579 /* enable event interrupts */ 580 hw->regs->psc_spimsk = mask; 581 au_sync(); 582 583 /* start the transfer */ 584 hw->regs->psc_spipcr = PSC_SPIPCR_MS; 585 au_sync(); 586 587 wait_for_completion(&hw->master_done); 588 589 return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count; 590 } 591 592 static irqreturn_t au1550_spi_pio_irq_callback(struct au1550_spi *hw) 593 { 594 int busy; 595 u32 stat, evnt; 596 597 stat = hw->regs->psc_spistat; 598 evnt = hw->regs->psc_spievent; 599 au_sync(); 600 if ((stat & PSC_SPISTAT_DI) == 0) { 601 dev_err(hw->dev, "Unexpected IRQ!\n"); 602 return IRQ_NONE; 603 } 604 605 if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO 606 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TO 607 | PSC_SPIEVNT_SD)) 608 != 0) { 609 /* 610 * due to an error we consider transfer as done, 611 * so mask all events until before next transfer start 612 */ 613 au1550_spi_mask_ack_all(hw); 614 au1550_spi_reset_fifos(hw); 615 dev_err(hw->dev, 616 "pio transfer: unexpected SPI error " 617 "(event=0x%x stat=0x%x)!\n", evnt, stat); 618 complete(&hw->master_done); 619 return IRQ_HANDLED; 620 } 621 622 /* 623 * while there is something to read from rx fifo 624 * or there is a space to write to tx fifo: 625 */ 626 do { 627 busy = 0; 628 stat = hw->regs->psc_spistat; 629 au_sync(); 630 631 /* 632 * Take care to not let the Rx FIFO overflow. 633 * 634 * We only write a byte if we have read one at least. Initially, 635 * the write fifo is full, so we should read from the read fifo 636 * first. 637 * In case we miss a word from the read fifo, we should get a 638 * RO event and should back out. 639 */ 640 if (!(stat & PSC_SPISTAT_RE) && hw->rx_count < hw->len) { 641 hw->rx_word(hw); 642 busy = 1; 643 644 if (!(stat & PSC_SPISTAT_TF) && hw->tx_count < hw->len) 645 hw->tx_word(hw); 646 } 647 } while (busy); 648 649 hw->regs->psc_spievent = PSC_SPIEVNT_RR | PSC_SPIEVNT_TR; 650 au_sync(); 651 652 /* 653 * Restart the SPI transmission in case of a transmit underflow. 654 * This seems to work despite the notes in the Au1550 data book 655 * of Figure 8-4 with flowchart for SPI master operation: 656 * 657 * """Note 1: An XFR Error Interrupt occurs, unless masked, 658 * for any of the following events: Tx FIFO Underflow, 659 * Rx FIFO Overflow, or Multiple-master Error 660 * Note 2: In case of a Tx Underflow Error, all zeroes are 661 * transmitted.""" 662 * 663 * By simply restarting the spi transfer on Tx Underflow Error, 664 * we assume that spi transfer was paused instead of zeroes 665 * transmittion mentioned in the Note 2 of Au1550 data book. 666 */ 667 if (evnt & PSC_SPIEVNT_TU) { 668 hw->regs->psc_spievent = PSC_SPIEVNT_TU | PSC_SPIEVNT_MD; 669 au_sync(); 670 hw->regs->psc_spipcr = PSC_SPIPCR_MS; 671 au_sync(); 672 } 673 674 if (hw->rx_count >= hw->len) { 675 /* transfer completed successfully */ 676 au1550_spi_mask_ack_all(hw); 677 complete(&hw->master_done); 678 } 679 return IRQ_HANDLED; 680 } 681 682 static int au1550_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t) 683 { 684 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 685 return hw->txrx_bufs(spi, t); 686 } 687 688 static irqreturn_t au1550_spi_irq(int irq, void *dev) 689 { 690 struct au1550_spi *hw = dev; 691 return hw->irq_callback(hw); 692 } 693 694 static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw) 695 { 696 if (bpw <= 8) { 697 if (hw->usedma) { 698 hw->txrx_bufs = &au1550_spi_dma_txrxb; 699 hw->irq_callback = &au1550_spi_dma_irq_callback; 700 } else { 701 hw->rx_word = &au1550_spi_rx_word_8; 702 hw->tx_word = &au1550_spi_tx_word_8; 703 hw->txrx_bufs = &au1550_spi_pio_txrxb; 704 hw->irq_callback = &au1550_spi_pio_irq_callback; 705 } 706 } else if (bpw <= 16) { 707 hw->rx_word = &au1550_spi_rx_word_16; 708 hw->tx_word = &au1550_spi_tx_word_16; 709 hw->txrx_bufs = &au1550_spi_pio_txrxb; 710 hw->irq_callback = &au1550_spi_pio_irq_callback; 711 } else { 712 hw->rx_word = &au1550_spi_rx_word_32; 713 hw->tx_word = &au1550_spi_tx_word_32; 714 hw->txrx_bufs = &au1550_spi_pio_txrxb; 715 hw->irq_callback = &au1550_spi_pio_irq_callback; 716 } 717 } 718 719 static void __init au1550_spi_setup_psc_as_spi(struct au1550_spi *hw) 720 { 721 u32 stat, cfg; 722 723 /* set up the PSC for SPI mode */ 724 hw->regs->psc_ctrl = PSC_CTRL_DISABLE; 725 au_sync(); 726 hw->regs->psc_sel = PSC_SEL_PS_SPIMODE; 727 au_sync(); 728 729 hw->regs->psc_spicfg = 0; 730 au_sync(); 731 732 hw->regs->psc_ctrl = PSC_CTRL_ENABLE; 733 au_sync(); 734 735 do { 736 stat = hw->regs->psc_spistat; 737 au_sync(); 738 } while ((stat & PSC_SPISTAT_SR) == 0); 739 740 741 cfg = hw->usedma ? 0 : PSC_SPICFG_DD_DISABLE; 742 cfg |= PSC_SPICFG_SET_LEN(8); 743 cfg |= PSC_SPICFG_RT_FIFO8 | PSC_SPICFG_TT_FIFO8; 744 /* use minimal allowed brg and div values as initial setting: */ 745 cfg |= PSC_SPICFG_SET_BAUD(4) | PSC_SPICFG_SET_DIV(0); 746 747 #ifdef AU1550_SPI_DEBUG_LOOPBACK 748 cfg |= PSC_SPICFG_LB; 749 #endif 750 751 hw->regs->psc_spicfg = cfg; 752 au_sync(); 753 754 au1550_spi_mask_ack_all(hw); 755 756 hw->regs->psc_spicfg |= PSC_SPICFG_DE_ENABLE; 757 au_sync(); 758 759 do { 760 stat = hw->regs->psc_spistat; 761 au_sync(); 762 } while ((stat & PSC_SPISTAT_DR) == 0); 763 764 au1550_spi_reset_fifos(hw); 765 } 766 767 768 static int __init au1550_spi_probe(struct platform_device *pdev) 769 { 770 struct au1550_spi *hw; 771 struct spi_master *master; 772 struct resource *r; 773 int err = 0; 774 775 master = spi_alloc_master(&pdev->dev, sizeof(struct au1550_spi)); 776 if (master == NULL) { 777 dev_err(&pdev->dev, "No memory for spi_master\n"); 778 err = -ENOMEM; 779 goto err_nomem; 780 } 781 782 /* the spi->mode bits understood by this driver: */ 783 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST; 784 785 hw = spi_master_get_devdata(master); 786 787 hw->master = spi_master_get(master); 788 hw->pdata = pdev->dev.platform_data; 789 hw->dev = &pdev->dev; 790 791 if (hw->pdata == NULL) { 792 dev_err(&pdev->dev, "No platform data supplied\n"); 793 err = -ENOENT; 794 goto err_no_pdata; 795 } 796 797 r = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 798 if (!r) { 799 dev_err(&pdev->dev, "no IRQ\n"); 800 err = -ENODEV; 801 goto err_no_iores; 802 } 803 hw->irq = r->start; 804 805 hw->usedma = 0; 806 r = platform_get_resource(pdev, IORESOURCE_DMA, 0); 807 if (r) { 808 hw->dma_tx_id = r->start; 809 r = platform_get_resource(pdev, IORESOURCE_DMA, 1); 810 if (r) { 811 hw->dma_rx_id = r->start; 812 if (usedma && ddma_memid) { 813 if (pdev->dev.dma_mask == NULL) 814 dev_warn(&pdev->dev, "no dma mask\n"); 815 else 816 hw->usedma = 1; 817 } 818 } 819 } 820 821 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 822 if (!r) { 823 dev_err(&pdev->dev, "no mmio resource\n"); 824 err = -ENODEV; 825 goto err_no_iores; 826 } 827 828 hw->ioarea = request_mem_region(r->start, sizeof(psc_spi_t), 829 pdev->name); 830 if (!hw->ioarea) { 831 dev_err(&pdev->dev, "Cannot reserve iomem region\n"); 832 err = -ENXIO; 833 goto err_no_iores; 834 } 835 836 hw->regs = (psc_spi_t __iomem *)ioremap(r->start, sizeof(psc_spi_t)); 837 if (!hw->regs) { 838 dev_err(&pdev->dev, "cannot ioremap\n"); 839 err = -ENXIO; 840 goto err_ioremap; 841 } 842 843 platform_set_drvdata(pdev, hw); 844 845 init_completion(&hw->master_done); 846 847 hw->bitbang.master = hw->master; 848 hw->bitbang.setup_transfer = au1550_spi_setupxfer; 849 hw->bitbang.chipselect = au1550_spi_chipsel; 850 hw->bitbang.master->setup = au1550_spi_setup; 851 hw->bitbang.txrx_bufs = au1550_spi_txrx_bufs; 852 853 if (hw->usedma) { 854 hw->dma_tx_ch = au1xxx_dbdma_chan_alloc(ddma_memid, 855 hw->dma_tx_id, NULL, (void *)hw); 856 if (hw->dma_tx_ch == 0) { 857 dev_err(&pdev->dev, 858 "Cannot allocate tx dma channel\n"); 859 err = -ENXIO; 860 goto err_no_txdma; 861 } 862 au1xxx_dbdma_set_devwidth(hw->dma_tx_ch, 8); 863 if (au1xxx_dbdma_ring_alloc(hw->dma_tx_ch, 864 AU1550_SPI_DBDMA_DESCRIPTORS) == 0) { 865 dev_err(&pdev->dev, 866 "Cannot allocate tx dma descriptors\n"); 867 err = -ENXIO; 868 goto err_no_txdma_descr; 869 } 870 871 872 hw->dma_rx_ch = au1xxx_dbdma_chan_alloc(hw->dma_rx_id, 873 ddma_memid, NULL, (void *)hw); 874 if (hw->dma_rx_ch == 0) { 875 dev_err(&pdev->dev, 876 "Cannot allocate rx dma channel\n"); 877 err = -ENXIO; 878 goto err_no_rxdma; 879 } 880 au1xxx_dbdma_set_devwidth(hw->dma_rx_ch, 8); 881 if (au1xxx_dbdma_ring_alloc(hw->dma_rx_ch, 882 AU1550_SPI_DBDMA_DESCRIPTORS) == 0) { 883 dev_err(&pdev->dev, 884 "Cannot allocate rx dma descriptors\n"); 885 err = -ENXIO; 886 goto err_no_rxdma_descr; 887 } 888 889 err = au1550_spi_dma_rxtmp_alloc(hw, 890 AU1550_SPI_DMA_RXTMP_MINSIZE); 891 if (err < 0) { 892 dev_err(&pdev->dev, 893 "Cannot allocate initial rx dma tmp buffer\n"); 894 goto err_dma_rxtmp_alloc; 895 } 896 } 897 898 au1550_spi_bits_handlers_set(hw, 8); 899 900 err = request_irq(hw->irq, au1550_spi_irq, 0, pdev->name, hw); 901 if (err) { 902 dev_err(&pdev->dev, "Cannot claim IRQ\n"); 903 goto err_no_irq; 904 } 905 906 master->bus_num = pdev->id; 907 master->num_chipselect = hw->pdata->num_chipselect; 908 909 /* 910 * precompute valid range for spi freq - from au1550 datasheet: 911 * psc_tempclk = psc_mainclk / (2 << DIV) 912 * spiclk = psc_tempclk / (2 * (BRG + 1)) 913 * BRG valid range is 4..63 914 * DIV valid range is 0..3 915 * round the min and max frequencies to values that would still 916 * produce valid brg and div 917 */ 918 { 919 int min_div = (2 << 0) * (2 * (4 + 1)); 920 int max_div = (2 << 3) * (2 * (63 + 1)); 921 hw->freq_max = hw->pdata->mainclk_hz / min_div; 922 hw->freq_min = hw->pdata->mainclk_hz / (max_div + 1) + 1; 923 } 924 925 au1550_spi_setup_psc_as_spi(hw); 926 927 err = spi_bitbang_start(&hw->bitbang); 928 if (err) { 929 dev_err(&pdev->dev, "Failed to register SPI master\n"); 930 goto err_register; 931 } 932 933 dev_info(&pdev->dev, 934 "spi master registered: bus_num=%d num_chipselect=%d\n", 935 master->bus_num, master->num_chipselect); 936 937 return 0; 938 939 err_register: 940 free_irq(hw->irq, hw); 941 942 err_no_irq: 943 au1550_spi_dma_rxtmp_free(hw); 944 945 err_dma_rxtmp_alloc: 946 err_no_rxdma_descr: 947 if (hw->usedma) 948 au1xxx_dbdma_chan_free(hw->dma_rx_ch); 949 950 err_no_rxdma: 951 err_no_txdma_descr: 952 if (hw->usedma) 953 au1xxx_dbdma_chan_free(hw->dma_tx_ch); 954 955 err_no_txdma: 956 iounmap((void __iomem *)hw->regs); 957 958 err_ioremap: 959 release_resource(hw->ioarea); 960 kfree(hw->ioarea); 961 962 err_no_iores: 963 err_no_pdata: 964 spi_master_put(hw->master); 965 966 err_nomem: 967 return err; 968 } 969 970 static int __exit au1550_spi_remove(struct platform_device *pdev) 971 { 972 struct au1550_spi *hw = platform_get_drvdata(pdev); 973 974 dev_info(&pdev->dev, "spi master remove: bus_num=%d\n", 975 hw->master->bus_num); 976 977 spi_bitbang_stop(&hw->bitbang); 978 free_irq(hw->irq, hw); 979 iounmap((void __iomem *)hw->regs); 980 release_resource(hw->ioarea); 981 kfree(hw->ioarea); 982 983 if (hw->usedma) { 984 au1550_spi_dma_rxtmp_free(hw); 985 au1xxx_dbdma_chan_free(hw->dma_rx_ch); 986 au1xxx_dbdma_chan_free(hw->dma_tx_ch); 987 } 988 989 platform_set_drvdata(pdev, NULL); 990 991 spi_master_put(hw->master); 992 return 0; 993 } 994 995 /* work with hotplug and coldplug */ 996 MODULE_ALIAS("platform:au1550-spi"); 997 998 static struct platform_driver au1550_spi_drv = { 999 .remove = __exit_p(au1550_spi_remove), 1000 .driver = { 1001 .name = "au1550-spi", 1002 .owner = THIS_MODULE, 1003 }, 1004 }; 1005 1006 static int __init au1550_spi_init(void) 1007 { 1008 /* 1009 * create memory device with 8 bits dev_devwidth 1010 * needed for proper byte ordering to spi fifo 1011 */ 1012 if (usedma) { 1013 ddma_memid = au1xxx_ddma_add_device(&au1550_spi_mem_dbdev); 1014 if (!ddma_memid) 1015 printk(KERN_ERR "au1550-spi: cannot add memory" 1016 "dbdma device\n"); 1017 } 1018 return platform_driver_probe(&au1550_spi_drv, au1550_spi_probe); 1019 } 1020 module_init(au1550_spi_init); 1021 1022 static void __exit au1550_spi_exit(void) 1023 { 1024 if (usedma && ddma_memid) 1025 au1xxx_ddma_del_device(ddma_memid); 1026 platform_driver_unregister(&au1550_spi_drv); 1027 } 1028 module_exit(au1550_spi_exit); 1029 1030 MODULE_DESCRIPTION("Au1550 PSC SPI Driver"); 1031 MODULE_AUTHOR("Jan Nikitenko <jan.nikitenko@gmail.com>"); 1032 MODULE_LICENSE("GPL"); 1033