xref: /linux/drivers/spi/spi-atmel.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/platform_data/dma-atmel.h>
20 #include <linux/of.h>
21 
22 #include <linux/io.h>
23 #include <linux/gpio/consumer.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <trace/events/spi.h>
27 
28 /* SPI register offsets */
29 #define SPI_CR					0x0000
30 #define SPI_MR					0x0004
31 #define SPI_RDR					0x0008
32 #define SPI_TDR					0x000c
33 #define SPI_SR					0x0010
34 #define SPI_IER					0x0014
35 #define SPI_IDR					0x0018
36 #define SPI_IMR					0x001c
37 #define SPI_CSR0				0x0030
38 #define SPI_CSR1				0x0034
39 #define SPI_CSR2				0x0038
40 #define SPI_CSR3				0x003c
41 #define SPI_FMR					0x0040
42 #define SPI_FLR					0x0044
43 #define SPI_VERSION				0x00fc
44 #define SPI_RPR					0x0100
45 #define SPI_RCR					0x0104
46 #define SPI_TPR					0x0108
47 #define SPI_TCR					0x010c
48 #define SPI_RNPR				0x0110
49 #define SPI_RNCR				0x0114
50 #define SPI_TNPR				0x0118
51 #define SPI_TNCR				0x011c
52 #define SPI_PTCR				0x0120
53 #define SPI_PTSR				0x0124
54 
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET			0
57 #define SPI_SPIEN_SIZE				1
58 #define SPI_SPIDIS_OFFSET			1
59 #define SPI_SPIDIS_SIZE				1
60 #define SPI_SWRST_OFFSET			7
61 #define SPI_SWRST_SIZE				1
62 #define SPI_LASTXFER_OFFSET			24
63 #define SPI_LASTXFER_SIZE			1
64 #define SPI_TXFCLR_OFFSET			16
65 #define SPI_TXFCLR_SIZE				1
66 #define SPI_RXFCLR_OFFSET			17
67 #define SPI_RXFCLR_SIZE				1
68 #define SPI_FIFOEN_OFFSET			30
69 #define SPI_FIFOEN_SIZE				1
70 #define SPI_FIFODIS_OFFSET			31
71 #define SPI_FIFODIS_SIZE			1
72 
73 /* Bitfields in MR */
74 #define SPI_MSTR_OFFSET				0
75 #define SPI_MSTR_SIZE				1
76 #define SPI_PS_OFFSET				1
77 #define SPI_PS_SIZE				1
78 #define SPI_PCSDEC_OFFSET			2
79 #define SPI_PCSDEC_SIZE				1
80 #define SPI_FDIV_OFFSET				3
81 #define SPI_FDIV_SIZE				1
82 #define SPI_MODFDIS_OFFSET			4
83 #define SPI_MODFDIS_SIZE			1
84 #define SPI_WDRBT_OFFSET			5
85 #define SPI_WDRBT_SIZE				1
86 #define SPI_LLB_OFFSET				7
87 #define SPI_LLB_SIZE				1
88 #define SPI_PCS_OFFSET				16
89 #define SPI_PCS_SIZE				4
90 #define SPI_DLYBCS_OFFSET			24
91 #define SPI_DLYBCS_SIZE				8
92 
93 /* Bitfields in RDR */
94 #define SPI_RD_OFFSET				0
95 #define SPI_RD_SIZE				16
96 
97 /* Bitfields in TDR */
98 #define SPI_TD_OFFSET				0
99 #define SPI_TD_SIZE				16
100 
101 /* Bitfields in SR */
102 #define SPI_RDRF_OFFSET				0
103 #define SPI_RDRF_SIZE				1
104 #define SPI_TDRE_OFFSET				1
105 #define SPI_TDRE_SIZE				1
106 #define SPI_MODF_OFFSET				2
107 #define SPI_MODF_SIZE				1
108 #define SPI_OVRES_OFFSET			3
109 #define SPI_OVRES_SIZE				1
110 #define SPI_ENDRX_OFFSET			4
111 #define SPI_ENDRX_SIZE				1
112 #define SPI_ENDTX_OFFSET			5
113 #define SPI_ENDTX_SIZE				1
114 #define SPI_RXBUFF_OFFSET			6
115 #define SPI_RXBUFF_SIZE				1
116 #define SPI_TXBUFE_OFFSET			7
117 #define SPI_TXBUFE_SIZE				1
118 #define SPI_NSSR_OFFSET				8
119 #define SPI_NSSR_SIZE				1
120 #define SPI_TXEMPTY_OFFSET			9
121 #define SPI_TXEMPTY_SIZE			1
122 #define SPI_SPIENS_OFFSET			16
123 #define SPI_SPIENS_SIZE				1
124 #define SPI_TXFEF_OFFSET			24
125 #define SPI_TXFEF_SIZE				1
126 #define SPI_TXFFF_OFFSET			25
127 #define SPI_TXFFF_SIZE				1
128 #define SPI_TXFTHF_OFFSET			26
129 #define SPI_TXFTHF_SIZE				1
130 #define SPI_RXFEF_OFFSET			27
131 #define SPI_RXFEF_SIZE				1
132 #define SPI_RXFFF_OFFSET			28
133 #define SPI_RXFFF_SIZE				1
134 #define SPI_RXFTHF_OFFSET			29
135 #define SPI_RXFTHF_SIZE				1
136 #define SPI_TXFPTEF_OFFSET			30
137 #define SPI_TXFPTEF_SIZE			1
138 #define SPI_RXFPTEF_OFFSET			31
139 #define SPI_RXFPTEF_SIZE			1
140 
141 /* Bitfields in CSR0 */
142 #define SPI_CPOL_OFFSET				0
143 #define SPI_CPOL_SIZE				1
144 #define SPI_NCPHA_OFFSET			1
145 #define SPI_NCPHA_SIZE				1
146 #define SPI_CSAAT_OFFSET			3
147 #define SPI_CSAAT_SIZE				1
148 #define SPI_BITS_OFFSET				4
149 #define SPI_BITS_SIZE				4
150 #define SPI_SCBR_OFFSET				8
151 #define SPI_SCBR_SIZE				8
152 #define SPI_DLYBS_OFFSET			16
153 #define SPI_DLYBS_SIZE				8
154 #define SPI_DLYBCT_OFFSET			24
155 #define SPI_DLYBCT_SIZE				8
156 
157 /* Bitfields in RCR */
158 #define SPI_RXCTR_OFFSET			0
159 #define SPI_RXCTR_SIZE				16
160 
161 /* Bitfields in TCR */
162 #define SPI_TXCTR_OFFSET			0
163 #define SPI_TXCTR_SIZE				16
164 
165 /* Bitfields in RNCR */
166 #define SPI_RXNCR_OFFSET			0
167 #define SPI_RXNCR_SIZE				16
168 
169 /* Bitfields in TNCR */
170 #define SPI_TXNCR_OFFSET			0
171 #define SPI_TXNCR_SIZE				16
172 
173 /* Bitfields in PTCR */
174 #define SPI_RXTEN_OFFSET			0
175 #define SPI_RXTEN_SIZE				1
176 #define SPI_RXTDIS_OFFSET			1
177 #define SPI_RXTDIS_SIZE				1
178 #define SPI_TXTEN_OFFSET			8
179 #define SPI_TXTEN_SIZE				1
180 #define SPI_TXTDIS_OFFSET			9
181 #define SPI_TXTDIS_SIZE				1
182 
183 /* Bitfields in FMR */
184 #define SPI_TXRDYM_OFFSET			0
185 #define SPI_TXRDYM_SIZE				2
186 #define SPI_RXRDYM_OFFSET			4
187 #define SPI_RXRDYM_SIZE				2
188 #define SPI_TXFTHRES_OFFSET			16
189 #define SPI_TXFTHRES_SIZE			6
190 #define SPI_RXFTHRES_OFFSET			24
191 #define SPI_RXFTHRES_SIZE			6
192 
193 /* Bitfields in FLR */
194 #define SPI_TXFL_OFFSET				0
195 #define SPI_TXFL_SIZE				6
196 #define SPI_RXFL_OFFSET				16
197 #define SPI_RXFL_SIZE				6
198 
199 /* Constants for BITS */
200 #define SPI_BITS_8_BPT				0
201 #define SPI_BITS_9_BPT				1
202 #define SPI_BITS_10_BPT				2
203 #define SPI_BITS_11_BPT				3
204 #define SPI_BITS_12_BPT				4
205 #define SPI_BITS_13_BPT				5
206 #define SPI_BITS_14_BPT				6
207 #define SPI_BITS_15_BPT				7
208 #define SPI_BITS_16_BPT				8
209 #define SPI_ONE_DATA				0
210 #define SPI_TWO_DATA				1
211 #define SPI_FOUR_DATA				2
212 
213 /* Bit manipulation macros */
214 #define SPI_BIT(name) \
215 	(1 << SPI_##name##_OFFSET)
216 #define SPI_BF(name, value) \
217 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218 #define SPI_BFEXT(name, value) \
219 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220 #define SPI_BFINS(name, value, old) \
221 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222 	  | SPI_BF(name, value))
223 
224 /* Register access macros */
225 #define spi_readl(port, reg) \
226 	readl_relaxed((port)->regs + SPI_##reg)
227 #define spi_writel(port, reg, value) \
228 	writel_relaxed((value), (port)->regs + SPI_##reg)
229 #define spi_writew(port, reg, value) \
230 	writew_relaxed((value), (port)->regs + SPI_##reg)
231 
232 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
233  * cache operations; better heuristics consider wordsize and bitrate.
234  */
235 #define DMA_MIN_BYTES	16
236 
237 #define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
238 
239 #define AUTOSUSPEND_TIMEOUT	2000
240 
241 struct atmel_spi_caps {
242 	bool	is_spi2;
243 	bool	has_wdrbt;
244 	bool	has_dma_support;
245 	bool	has_pdc_support;
246 };
247 
248 /*
249  * The core SPI transfer engine just talks to a register bank to set up
250  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
251  * framework provides the base clock, subdivided for each spi_device.
252  */
253 struct atmel_spi {
254 	spinlock_t		lock;
255 	unsigned long		flags;
256 
257 	phys_addr_t		phybase;
258 	void __iomem		*regs;
259 	int			irq;
260 	struct clk		*clk;
261 	struct platform_device	*pdev;
262 	unsigned long		spi_clk;
263 
264 	struct spi_transfer	*current_transfer;
265 	int			current_remaining_bytes;
266 	int			done_status;
267 	dma_addr_t		dma_addr_rx_bbuf;
268 	dma_addr_t		dma_addr_tx_bbuf;
269 	void			*addr_rx_bbuf;
270 	void			*addr_tx_bbuf;
271 
272 	struct completion	xfer_completion;
273 
274 	struct atmel_spi_caps	caps;
275 
276 	bool			use_dma;
277 	bool			use_pdc;
278 
279 	bool			keep_cs;
280 
281 	u32			fifo_size;
282 	u8			native_cs_free;
283 	u8			native_cs_for_gpio;
284 };
285 
286 /* Controller-specific per-slave state */
287 struct atmel_spi_device {
288 	u32			csr;
289 };
290 
291 #define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
292 #define INVALID_DMA_ADDRESS	0xffffffff
293 
294 /*
295  * Version 2 of the SPI controller has
296  *  - CR.LASTXFER
297  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
298  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
299  *  - SPI_CSRx.CSAAT
300  *  - SPI_CSRx.SBCR allows faster clocking
301  */
302 static bool atmel_spi_is_v2(struct atmel_spi *as)
303 {
304 	return as->caps.is_spi2;
305 }
306 
307 /*
308  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
309  * they assume that spi slave device state will not change on deselect, so
310  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
311  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
312  * controllers have CSAAT and friends.
313  *
314  * Even controller newer than ar91rm9200, using GPIOs can make sens as
315  * it lets us support active-high chipselects despite the controller's
316  * belief that only active-low devices/systems exists.
317  *
318  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
319  * right when driven with GPIO.  ("Mode Fault does not allow more than one
320  * Master on Chip Select 0.")  No workaround exists for that ... so for
321  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
322  * and (c) will trigger that first erratum in some cases.
323  */
324 
325 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
326 {
327 	struct atmel_spi_device *asd = spi->controller_state;
328 	int chip_select;
329 	u32 mr;
330 
331 	if (spi->cs_gpiod)
332 		chip_select = as->native_cs_for_gpio;
333 	else
334 		chip_select = spi->chip_select;
335 
336 	if (atmel_spi_is_v2(as)) {
337 		spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
338 		/* For the low SPI version, there is a issue that PDC transfer
339 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
340 		 */
341 		spi_writel(as, CSR0, asd->csr);
342 		if (as->caps.has_wdrbt) {
343 			spi_writel(as, MR,
344 					SPI_BF(PCS, ~(0x01 << chip_select))
345 					| SPI_BIT(WDRBT)
346 					| SPI_BIT(MODFDIS)
347 					| SPI_BIT(MSTR));
348 		} else {
349 			spi_writel(as, MR,
350 					SPI_BF(PCS, ~(0x01 << chip_select))
351 					| SPI_BIT(MODFDIS)
352 					| SPI_BIT(MSTR));
353 		}
354 
355 		mr = spi_readl(as, MR);
356 		if (spi->cs_gpiod)
357 			gpiod_set_value(spi->cs_gpiod, 1);
358 	} else {
359 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
360 		int i;
361 		u32 csr;
362 
363 		/* Make sure clock polarity is correct */
364 		for (i = 0; i < spi->master->num_chipselect; i++) {
365 			csr = spi_readl(as, CSR0 + 4 * i);
366 			if ((csr ^ cpol) & SPI_BIT(CPOL))
367 				spi_writel(as, CSR0 + 4 * i,
368 						csr ^ SPI_BIT(CPOL));
369 		}
370 
371 		mr = spi_readl(as, MR);
372 		mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
373 		if (spi->cs_gpiod)
374 			gpiod_set_value(spi->cs_gpiod, 1);
375 		spi_writel(as, MR, mr);
376 	}
377 
378 	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
379 }
380 
381 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
382 {
383 	int chip_select;
384 	u32 mr;
385 
386 	if (spi->cs_gpiod)
387 		chip_select = as->native_cs_for_gpio;
388 	else
389 		chip_select = spi->chip_select;
390 
391 	/* only deactivate *this* device; sometimes transfers to
392 	 * another device may be active when this routine is called.
393 	 */
394 	mr = spi_readl(as, MR);
395 	if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
396 		mr = SPI_BFINS(PCS, 0xf, mr);
397 		spi_writel(as, MR, mr);
398 	}
399 
400 	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
401 
402 	if (!spi->cs_gpiod)
403 		spi_writel(as, CR, SPI_BIT(LASTXFER));
404 	else
405 		gpiod_set_value(spi->cs_gpiod, 0);
406 }
407 
408 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
409 {
410 	spin_lock_irqsave(&as->lock, as->flags);
411 }
412 
413 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
414 {
415 	spin_unlock_irqrestore(&as->lock, as->flags);
416 }
417 
418 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
419 {
420 	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
421 }
422 
423 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
424 				struct spi_transfer *xfer)
425 {
426 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
427 }
428 
429 static bool atmel_spi_can_dma(struct spi_master *master,
430 			      struct spi_device *spi,
431 			      struct spi_transfer *xfer)
432 {
433 	struct atmel_spi *as = spi_master_get_devdata(master);
434 
435 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
436 		return atmel_spi_use_dma(as, xfer) &&
437 			!atmel_spi_is_vmalloc_xfer(xfer);
438 	else
439 		return atmel_spi_use_dma(as, xfer);
440 
441 }
442 
443 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
444 				struct dma_slave_config *slave_config,
445 				u8 bits_per_word)
446 {
447 	struct spi_master *master = platform_get_drvdata(as->pdev);
448 	int err = 0;
449 
450 	if (bits_per_word > 8) {
451 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
452 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
453 	} else {
454 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
455 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
456 	}
457 
458 	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
459 	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
460 	slave_config->src_maxburst = 1;
461 	slave_config->dst_maxburst = 1;
462 	slave_config->device_fc = false;
463 
464 	/*
465 	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
466 	 * the Mode Register).
467 	 * So according to the datasheet, when FIFOs are available (and
468 	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
469 	 * In this mode, up to 2 data, not 4, can be written into the Transmit
470 	 * Data Register in a single access.
471 	 * However, the first data has to be written into the lowest 16 bits and
472 	 * the second data into the highest 16 bits of the Transmit
473 	 * Data Register. For 8bit data (the most frequent case), it would
474 	 * require to rework tx_buf so each data would actualy fit 16 bits.
475 	 * So we'd rather write only one data at the time. Hence the transmit
476 	 * path works the same whether FIFOs are available (and enabled) or not.
477 	 */
478 	slave_config->direction = DMA_MEM_TO_DEV;
479 	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
480 		dev_err(&as->pdev->dev,
481 			"failed to configure tx dma channel\n");
482 		err = -EINVAL;
483 	}
484 
485 	/*
486 	 * This driver configures the spi controller for master mode (MSTR bit
487 	 * set to '1' in the Mode Register).
488 	 * So according to the datasheet, when FIFOs are available (and
489 	 * enabled), the Receive FIFO operates in Single Data Mode.
490 	 * So the receive path works the same whether FIFOs are available (and
491 	 * enabled) or not.
492 	 */
493 	slave_config->direction = DMA_DEV_TO_MEM;
494 	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
495 		dev_err(&as->pdev->dev,
496 			"failed to configure rx dma channel\n");
497 		err = -EINVAL;
498 	}
499 
500 	return err;
501 }
502 
503 static int atmel_spi_configure_dma(struct spi_master *master,
504 				   struct atmel_spi *as)
505 {
506 	struct dma_slave_config	slave_config;
507 	struct device *dev = &as->pdev->dev;
508 	int err;
509 
510 	dma_cap_mask_t mask;
511 	dma_cap_zero(mask);
512 	dma_cap_set(DMA_SLAVE, mask);
513 
514 	master->dma_tx = dma_request_chan(dev, "tx");
515 	if (IS_ERR(master->dma_tx)) {
516 		err = PTR_ERR(master->dma_tx);
517 		if (err == -EPROBE_DEFER) {
518 			dev_warn(dev, "no DMA channel available at the moment\n");
519 			goto error_clear;
520 		}
521 		dev_err(dev,
522 			"DMA TX channel not available, SPI unable to use DMA\n");
523 		err = -EBUSY;
524 		goto error_clear;
525 	}
526 
527 	/*
528 	 * No reason to check EPROBE_DEFER here since we have already requested
529 	 * tx channel. If it fails here, it's for another reason.
530 	 */
531 	master->dma_rx = dma_request_slave_channel(dev, "rx");
532 
533 	if (!master->dma_rx) {
534 		dev_err(dev,
535 			"DMA RX channel not available, SPI unable to use DMA\n");
536 		err = -EBUSY;
537 		goto error;
538 	}
539 
540 	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
541 	if (err)
542 		goto error;
543 
544 	dev_info(&as->pdev->dev,
545 			"Using %s (tx) and %s (rx) for DMA transfers\n",
546 			dma_chan_name(master->dma_tx),
547 			dma_chan_name(master->dma_rx));
548 
549 	return 0;
550 error:
551 	if (master->dma_rx)
552 		dma_release_channel(master->dma_rx);
553 	if (!IS_ERR(master->dma_tx))
554 		dma_release_channel(master->dma_tx);
555 error_clear:
556 	master->dma_tx = master->dma_rx = NULL;
557 	return err;
558 }
559 
560 static void atmel_spi_stop_dma(struct spi_master *master)
561 {
562 	if (master->dma_rx)
563 		dmaengine_terminate_all(master->dma_rx);
564 	if (master->dma_tx)
565 		dmaengine_terminate_all(master->dma_tx);
566 }
567 
568 static void atmel_spi_release_dma(struct spi_master *master)
569 {
570 	if (master->dma_rx) {
571 		dma_release_channel(master->dma_rx);
572 		master->dma_rx = NULL;
573 	}
574 	if (master->dma_tx) {
575 		dma_release_channel(master->dma_tx);
576 		master->dma_tx = NULL;
577 	}
578 }
579 
580 /* This function is called by the DMA driver from tasklet context */
581 static void dma_callback(void *data)
582 {
583 	struct spi_master	*master = data;
584 	struct atmel_spi	*as = spi_master_get_devdata(master);
585 
586 	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
587 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
588 		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
589 		       as->current_transfer->len);
590 	}
591 	complete(&as->xfer_completion);
592 }
593 
594 /*
595  * Next transfer using PIO without FIFO.
596  */
597 static void atmel_spi_next_xfer_single(struct spi_master *master,
598 				       struct spi_transfer *xfer)
599 {
600 	struct atmel_spi	*as = spi_master_get_devdata(master);
601 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
602 
603 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
604 
605 	/* Make sure data is not remaining in RDR */
606 	spi_readl(as, RDR);
607 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
608 		spi_readl(as, RDR);
609 		cpu_relax();
610 	}
611 
612 	if (xfer->bits_per_word > 8)
613 		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
614 	else
615 		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
616 
617 	dev_dbg(master->dev.parent,
618 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
619 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
620 		xfer->bits_per_word);
621 
622 	/* Enable relevant interrupts */
623 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
624 }
625 
626 /*
627  * Next transfer using PIO with FIFO.
628  */
629 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
630 				     struct spi_transfer *xfer)
631 {
632 	struct atmel_spi *as = spi_master_get_devdata(master);
633 	u32 current_remaining_data, num_data;
634 	u32 offset = xfer->len - as->current_remaining_bytes;
635 	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
636 	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
637 	u16 td0, td1;
638 	u32 fifomr;
639 
640 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
641 
642 	/* Compute the number of data to transfer in the current iteration */
643 	current_remaining_data = ((xfer->bits_per_word > 8) ?
644 				  ((u32)as->current_remaining_bytes >> 1) :
645 				  (u32)as->current_remaining_bytes);
646 	num_data = min(current_remaining_data, as->fifo_size);
647 
648 	/* Flush RX and TX FIFOs */
649 	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
650 	while (spi_readl(as, FLR))
651 		cpu_relax();
652 
653 	/* Set RX FIFO Threshold to the number of data to transfer */
654 	fifomr = spi_readl(as, FMR);
655 	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
656 
657 	/* Clear FIFO flags in the Status Register, especially RXFTHF */
658 	(void)spi_readl(as, SR);
659 
660 	/* Fill TX FIFO */
661 	while (num_data >= 2) {
662 		if (xfer->bits_per_word > 8) {
663 			td0 = *words++;
664 			td1 = *words++;
665 		} else {
666 			td0 = *bytes++;
667 			td1 = *bytes++;
668 		}
669 
670 		spi_writel(as, TDR, (td1 << 16) | td0);
671 		num_data -= 2;
672 	}
673 
674 	if (num_data) {
675 		if (xfer->bits_per_word > 8)
676 			td0 = *words++;
677 		else
678 			td0 = *bytes++;
679 
680 		spi_writew(as, TDR, td0);
681 		num_data--;
682 	}
683 
684 	dev_dbg(master->dev.parent,
685 		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
686 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
687 		xfer->bits_per_word);
688 
689 	/*
690 	 * Enable RX FIFO Threshold Flag interrupt to be notified about
691 	 * transfer completion.
692 	 */
693 	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
694 }
695 
696 /*
697  * Next transfer using PIO.
698  */
699 static void atmel_spi_next_xfer_pio(struct spi_master *master,
700 				    struct spi_transfer *xfer)
701 {
702 	struct atmel_spi *as = spi_master_get_devdata(master);
703 
704 	if (as->fifo_size)
705 		atmel_spi_next_xfer_fifo(master, xfer);
706 	else
707 		atmel_spi_next_xfer_single(master, xfer);
708 }
709 
710 /*
711  * Submit next transfer for DMA.
712  */
713 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
714 				struct spi_transfer *xfer,
715 				u32 *plen)
716 {
717 	struct atmel_spi	*as = spi_master_get_devdata(master);
718 	struct dma_chan		*rxchan = master->dma_rx;
719 	struct dma_chan		*txchan = master->dma_tx;
720 	struct dma_async_tx_descriptor *rxdesc;
721 	struct dma_async_tx_descriptor *txdesc;
722 	struct dma_slave_config	slave_config;
723 	dma_cookie_t		cookie;
724 
725 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
726 
727 	/* Check that the channels are available */
728 	if (!rxchan || !txchan)
729 		return -ENODEV;
730 
731 	/* release lock for DMA operations */
732 	atmel_spi_unlock(as);
733 
734 	*plen = xfer->len;
735 
736 	if (atmel_spi_dma_slave_config(as, &slave_config,
737 				       xfer->bits_per_word))
738 		goto err_exit;
739 
740 	/* Send both scatterlists */
741 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
742 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
743 		rxdesc = dmaengine_prep_slave_single(rxchan,
744 						     as->dma_addr_rx_bbuf,
745 						     xfer->len,
746 						     DMA_DEV_TO_MEM,
747 						     DMA_PREP_INTERRUPT |
748 						     DMA_CTRL_ACK);
749 	} else {
750 		rxdesc = dmaengine_prep_slave_sg(rxchan,
751 						 xfer->rx_sg.sgl,
752 						 xfer->rx_sg.nents,
753 						 DMA_DEV_TO_MEM,
754 						 DMA_PREP_INTERRUPT |
755 						 DMA_CTRL_ACK);
756 	}
757 	if (!rxdesc)
758 		goto err_dma;
759 
760 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
761 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
762 		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
763 		txdesc = dmaengine_prep_slave_single(txchan,
764 						     as->dma_addr_tx_bbuf,
765 						     xfer->len, DMA_MEM_TO_DEV,
766 						     DMA_PREP_INTERRUPT |
767 						     DMA_CTRL_ACK);
768 	} else {
769 		txdesc = dmaengine_prep_slave_sg(txchan,
770 						 xfer->tx_sg.sgl,
771 						 xfer->tx_sg.nents,
772 						 DMA_MEM_TO_DEV,
773 						 DMA_PREP_INTERRUPT |
774 						 DMA_CTRL_ACK);
775 	}
776 	if (!txdesc)
777 		goto err_dma;
778 
779 	dev_dbg(master->dev.parent,
780 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
781 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
782 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
783 
784 	/* Enable relevant interrupts */
785 	spi_writel(as, IER, SPI_BIT(OVRES));
786 
787 	/* Put the callback on the RX transfer only, that should finish last */
788 	rxdesc->callback = dma_callback;
789 	rxdesc->callback_param = master;
790 
791 	/* Submit and fire RX and TX with TX last so we're ready to read! */
792 	cookie = rxdesc->tx_submit(rxdesc);
793 	if (dma_submit_error(cookie))
794 		goto err_dma;
795 	cookie = txdesc->tx_submit(txdesc);
796 	if (dma_submit_error(cookie))
797 		goto err_dma;
798 	rxchan->device->device_issue_pending(rxchan);
799 	txchan->device->device_issue_pending(txchan);
800 
801 	/* take back lock */
802 	atmel_spi_lock(as);
803 	return 0;
804 
805 err_dma:
806 	spi_writel(as, IDR, SPI_BIT(OVRES));
807 	atmel_spi_stop_dma(master);
808 err_exit:
809 	atmel_spi_lock(as);
810 	return -ENOMEM;
811 }
812 
813 static void atmel_spi_next_xfer_data(struct spi_master *master,
814 				struct spi_transfer *xfer,
815 				dma_addr_t *tx_dma,
816 				dma_addr_t *rx_dma,
817 				u32 *plen)
818 {
819 	*rx_dma = xfer->rx_dma + xfer->len - *plen;
820 	*tx_dma = xfer->tx_dma + xfer->len - *plen;
821 	if (*plen > master->max_dma_len)
822 		*plen = master->max_dma_len;
823 }
824 
825 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
826 				    struct spi_device *spi,
827 				    struct spi_transfer *xfer)
828 {
829 	u32			scbr, csr;
830 	unsigned long		bus_hz;
831 	int chip_select;
832 
833 	if (spi->cs_gpiod)
834 		chip_select = as->native_cs_for_gpio;
835 	else
836 		chip_select = spi->chip_select;
837 
838 	/* v1 chips start out at half the peripheral bus speed. */
839 	bus_hz = as->spi_clk;
840 	if (!atmel_spi_is_v2(as))
841 		bus_hz /= 2;
842 
843 	/*
844 	 * Calculate the lowest divider that satisfies the
845 	 * constraint, assuming div32/fdiv/mbz == 0.
846 	 */
847 	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
848 
849 	/*
850 	 * If the resulting divider doesn't fit into the
851 	 * register bitfield, we can't satisfy the constraint.
852 	 */
853 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
854 		dev_err(&spi->dev,
855 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
856 			xfer->speed_hz, scbr, bus_hz/255);
857 		return -EINVAL;
858 	}
859 	if (scbr == 0) {
860 		dev_err(&spi->dev,
861 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
862 			xfer->speed_hz, scbr, bus_hz);
863 		return -EINVAL;
864 	}
865 	csr = spi_readl(as, CSR0 + 4 * chip_select);
866 	csr = SPI_BFINS(SCBR, scbr, csr);
867 	spi_writel(as, CSR0 + 4 * chip_select, csr);
868 
869 	return 0;
870 }
871 
872 /*
873  * Submit next transfer for PDC.
874  * lock is held, spi irq is blocked
875  */
876 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
877 					struct spi_message *msg,
878 					struct spi_transfer *xfer)
879 {
880 	struct atmel_spi	*as = spi_master_get_devdata(master);
881 	u32			len;
882 	dma_addr_t		tx_dma, rx_dma;
883 
884 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
885 
886 	len = as->current_remaining_bytes;
887 	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
888 	as->current_remaining_bytes -= len;
889 
890 	spi_writel(as, RPR, rx_dma);
891 	spi_writel(as, TPR, tx_dma);
892 
893 	if (msg->spi->bits_per_word > 8)
894 		len >>= 1;
895 	spi_writel(as, RCR, len);
896 	spi_writel(as, TCR, len);
897 
898 	dev_dbg(&msg->spi->dev,
899 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
900 		xfer, xfer->len, xfer->tx_buf,
901 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
902 		(unsigned long long)xfer->rx_dma);
903 
904 	if (as->current_remaining_bytes) {
905 		len = as->current_remaining_bytes;
906 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
907 		as->current_remaining_bytes -= len;
908 
909 		spi_writel(as, RNPR, rx_dma);
910 		spi_writel(as, TNPR, tx_dma);
911 
912 		if (msg->spi->bits_per_word > 8)
913 			len >>= 1;
914 		spi_writel(as, RNCR, len);
915 		spi_writel(as, TNCR, len);
916 
917 		dev_dbg(&msg->spi->dev,
918 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
919 			xfer, xfer->len, xfer->tx_buf,
920 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
921 			(unsigned long long)xfer->rx_dma);
922 	}
923 
924 	/* REVISIT: We're waiting for RXBUFF before we start the next
925 	 * transfer because we need to handle some difficult timing
926 	 * issues otherwise. If we wait for TXBUFE in one transfer and
927 	 * then starts waiting for RXBUFF in the next, it's difficult
928 	 * to tell the difference between the RXBUFF interrupt we're
929 	 * actually waiting for and the RXBUFF interrupt of the
930 	 * previous transfer.
931 	 *
932 	 * It should be doable, though. Just not now...
933 	 */
934 	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
935 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
936 }
937 
938 /*
939  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
940  *  - The buffer is either valid for CPU access, else NULL
941  *  - If the buffer is valid, so is its DMA address
942  *
943  * This driver manages the dma address unless message->is_dma_mapped.
944  */
945 static int
946 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
947 {
948 	struct device	*dev = &as->pdev->dev;
949 
950 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
951 	if (xfer->tx_buf) {
952 		/* tx_buf is a const void* where we need a void * for the dma
953 		 * mapping */
954 		void *nonconst_tx = (void *)xfer->tx_buf;
955 
956 		xfer->tx_dma = dma_map_single(dev,
957 				nonconst_tx, xfer->len,
958 				DMA_TO_DEVICE);
959 		if (dma_mapping_error(dev, xfer->tx_dma))
960 			return -ENOMEM;
961 	}
962 	if (xfer->rx_buf) {
963 		xfer->rx_dma = dma_map_single(dev,
964 				xfer->rx_buf, xfer->len,
965 				DMA_FROM_DEVICE);
966 		if (dma_mapping_error(dev, xfer->rx_dma)) {
967 			if (xfer->tx_buf)
968 				dma_unmap_single(dev,
969 						xfer->tx_dma, xfer->len,
970 						DMA_TO_DEVICE);
971 			return -ENOMEM;
972 		}
973 	}
974 	return 0;
975 }
976 
977 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
978 				     struct spi_transfer *xfer)
979 {
980 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
981 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
982 				 xfer->len, DMA_TO_DEVICE);
983 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
984 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
985 				 xfer->len, DMA_FROM_DEVICE);
986 }
987 
988 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
989 {
990 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
991 }
992 
993 static void
994 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
995 {
996 	u8		*rxp;
997 	u16		*rxp16;
998 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
999 
1000 	if (xfer->bits_per_word > 8) {
1001 		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1002 		*rxp16 = spi_readl(as, RDR);
1003 	} else {
1004 		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1005 		*rxp = spi_readl(as, RDR);
1006 	}
1007 	if (xfer->bits_per_word > 8) {
1008 		if (as->current_remaining_bytes > 2)
1009 			as->current_remaining_bytes -= 2;
1010 		else
1011 			as->current_remaining_bytes = 0;
1012 	} else {
1013 		as->current_remaining_bytes--;
1014 	}
1015 }
1016 
1017 static void
1018 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1019 {
1020 	u32 fifolr = spi_readl(as, FLR);
1021 	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1022 	u32 offset = xfer->len - as->current_remaining_bytes;
1023 	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1024 	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1025 	u16 rd; /* RD field is the lowest 16 bits of RDR */
1026 
1027 	/* Update the number of remaining bytes to transfer */
1028 	num_bytes = ((xfer->bits_per_word > 8) ?
1029 		     (num_data << 1) :
1030 		     num_data);
1031 
1032 	if (as->current_remaining_bytes > num_bytes)
1033 		as->current_remaining_bytes -= num_bytes;
1034 	else
1035 		as->current_remaining_bytes = 0;
1036 
1037 	/* Handle odd number of bytes when data are more than 8bit width */
1038 	if (xfer->bits_per_word > 8)
1039 		as->current_remaining_bytes &= ~0x1;
1040 
1041 	/* Read data */
1042 	while (num_data) {
1043 		rd = spi_readl(as, RDR);
1044 		if (xfer->bits_per_word > 8)
1045 			*words++ = rd;
1046 		else
1047 			*bytes++ = rd;
1048 		num_data--;
1049 	}
1050 }
1051 
1052 /* Called from IRQ
1053  *
1054  * Must update "current_remaining_bytes" to keep track of data
1055  * to transfer.
1056  */
1057 static void
1058 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1059 {
1060 	if (as->fifo_size)
1061 		atmel_spi_pump_fifo_data(as, xfer);
1062 	else
1063 		atmel_spi_pump_single_data(as, xfer);
1064 }
1065 
1066 /* Interrupt
1067  *
1068  * No need for locking in this Interrupt handler: done_status is the
1069  * only information modified.
1070  */
1071 static irqreturn_t
1072 atmel_spi_pio_interrupt(int irq, void *dev_id)
1073 {
1074 	struct spi_master	*master = dev_id;
1075 	struct atmel_spi	*as = spi_master_get_devdata(master);
1076 	u32			status, pending, imr;
1077 	struct spi_transfer	*xfer;
1078 	int			ret = IRQ_NONE;
1079 
1080 	imr = spi_readl(as, IMR);
1081 	status = spi_readl(as, SR);
1082 	pending = status & imr;
1083 
1084 	if (pending & SPI_BIT(OVRES)) {
1085 		ret = IRQ_HANDLED;
1086 		spi_writel(as, IDR, SPI_BIT(OVRES));
1087 		dev_warn(master->dev.parent, "overrun\n");
1088 
1089 		/*
1090 		 * When we get an overrun, we disregard the current
1091 		 * transfer. Data will not be copied back from any
1092 		 * bounce buffer and msg->actual_len will not be
1093 		 * updated with the last xfer.
1094 		 *
1095 		 * We will also not process any remaning transfers in
1096 		 * the message.
1097 		 */
1098 		as->done_status = -EIO;
1099 		smp_wmb();
1100 
1101 		/* Clear any overrun happening while cleaning up */
1102 		spi_readl(as, SR);
1103 
1104 		complete(&as->xfer_completion);
1105 
1106 	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1107 		atmel_spi_lock(as);
1108 
1109 		if (as->current_remaining_bytes) {
1110 			ret = IRQ_HANDLED;
1111 			xfer = as->current_transfer;
1112 			atmel_spi_pump_pio_data(as, xfer);
1113 			if (!as->current_remaining_bytes)
1114 				spi_writel(as, IDR, pending);
1115 
1116 			complete(&as->xfer_completion);
1117 		}
1118 
1119 		atmel_spi_unlock(as);
1120 	} else {
1121 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1122 		ret = IRQ_HANDLED;
1123 		spi_writel(as, IDR, pending);
1124 	}
1125 
1126 	return ret;
1127 }
1128 
1129 static irqreturn_t
1130 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1131 {
1132 	struct spi_master	*master = dev_id;
1133 	struct atmel_spi	*as = spi_master_get_devdata(master);
1134 	u32			status, pending, imr;
1135 	int			ret = IRQ_NONE;
1136 
1137 	imr = spi_readl(as, IMR);
1138 	status = spi_readl(as, SR);
1139 	pending = status & imr;
1140 
1141 	if (pending & SPI_BIT(OVRES)) {
1142 
1143 		ret = IRQ_HANDLED;
1144 
1145 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1146 				     | SPI_BIT(OVRES)));
1147 
1148 		/* Clear any overrun happening while cleaning up */
1149 		spi_readl(as, SR);
1150 
1151 		as->done_status = -EIO;
1152 
1153 		complete(&as->xfer_completion);
1154 
1155 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1156 		ret = IRQ_HANDLED;
1157 
1158 		spi_writel(as, IDR, pending);
1159 
1160 		complete(&as->xfer_completion);
1161 	}
1162 
1163 	return ret;
1164 }
1165 
1166 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1167 {
1168 	struct spi_delay *delay = &spi->word_delay;
1169 	u32 value = delay->value;
1170 
1171 	switch (delay->unit) {
1172 	case SPI_DELAY_UNIT_NSECS:
1173 		value /= 1000;
1174 		break;
1175 	case SPI_DELAY_UNIT_USECS:
1176 		break;
1177 	default:
1178 		return -EINVAL;
1179 	}
1180 
1181 	return (as->spi_clk / 1000000 * value) >> 5;
1182 }
1183 
1184 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1185 {
1186 	int i;
1187 	struct spi_master *master = platform_get_drvdata(as->pdev);
1188 
1189 	if (!as->native_cs_free)
1190 		return; /* already initialized */
1191 
1192 	if (!master->cs_gpiods)
1193 		return; /* No CS GPIO */
1194 
1195 	/*
1196 	 * On the first version of the controller (AT91RM9200), CS0
1197 	 * can't be used associated with GPIO
1198 	 */
1199 	if (atmel_spi_is_v2(as))
1200 		i = 0;
1201 	else
1202 		i = 1;
1203 
1204 	for (; i < 4; i++)
1205 		if (master->cs_gpiods[i])
1206 			as->native_cs_free |= BIT(i);
1207 
1208 	if (as->native_cs_free)
1209 		as->native_cs_for_gpio = ffs(as->native_cs_free);
1210 }
1211 
1212 static int atmel_spi_setup(struct spi_device *spi)
1213 {
1214 	struct atmel_spi	*as;
1215 	struct atmel_spi_device	*asd;
1216 	u32			csr;
1217 	unsigned int		bits = spi->bits_per_word;
1218 	int chip_select;
1219 	int			word_delay_csr;
1220 
1221 	as = spi_master_get_devdata(spi->master);
1222 
1223 	/* see notes above re chipselect */
1224 	if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1225 		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1226 		return -EINVAL;
1227 	}
1228 
1229 	/* Setup() is called during spi_register_controller(aka
1230 	 * spi_register_master) but after all membmers of the cs_gpiod
1231 	 * array have been filled, so we can looked for which native
1232 	 * CS will be free for using with GPIO
1233 	 */
1234 	initialize_native_cs_for_gpio(as);
1235 
1236 	if (spi->cs_gpiod && as->native_cs_free) {
1237 		dev_err(&spi->dev,
1238 			"No native CS available to support this GPIO CS\n");
1239 		return -EBUSY;
1240 	}
1241 
1242 	if (spi->cs_gpiod)
1243 		chip_select = as->native_cs_for_gpio;
1244 	else
1245 		chip_select = spi->chip_select;
1246 
1247 	csr = SPI_BF(BITS, bits - 8);
1248 	if (spi->mode & SPI_CPOL)
1249 		csr |= SPI_BIT(CPOL);
1250 	if (!(spi->mode & SPI_CPHA))
1251 		csr |= SPI_BIT(NCPHA);
1252 
1253 	if (!spi->cs_gpiod)
1254 		csr |= SPI_BIT(CSAAT);
1255 	csr |= SPI_BF(DLYBS, 0);
1256 
1257 	word_delay_csr = atmel_word_delay_csr(spi, as);
1258 	if (word_delay_csr < 0)
1259 		return word_delay_csr;
1260 
1261 	/* DLYBCT adds delays between words.  This is useful for slow devices
1262 	 * that need a bit of time to setup the next transfer.
1263 	 */
1264 	csr |= SPI_BF(DLYBCT, word_delay_csr);
1265 
1266 	asd = spi->controller_state;
1267 	if (!asd) {
1268 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1269 		if (!asd)
1270 			return -ENOMEM;
1271 
1272 		spi->controller_state = asd;
1273 	}
1274 
1275 	asd->csr = csr;
1276 
1277 	dev_dbg(&spi->dev,
1278 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1279 		bits, spi->mode, spi->chip_select, csr);
1280 
1281 	if (!atmel_spi_is_v2(as))
1282 		spi_writel(as, CSR0 + 4 * chip_select, csr);
1283 
1284 	return 0;
1285 }
1286 
1287 static int atmel_spi_one_transfer(struct spi_master *master,
1288 					struct spi_message *msg,
1289 					struct spi_transfer *xfer)
1290 {
1291 	struct atmel_spi	*as;
1292 	struct spi_device	*spi = msg->spi;
1293 	u8			bits;
1294 	u32			len;
1295 	struct atmel_spi_device	*asd;
1296 	int			timeout;
1297 	int			ret;
1298 	unsigned long		dma_timeout;
1299 
1300 	as = spi_master_get_devdata(master);
1301 
1302 	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1303 		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1304 		return -EINVAL;
1305 	}
1306 
1307 	asd = spi->controller_state;
1308 	bits = (asd->csr >> 4) & 0xf;
1309 	if (bits != xfer->bits_per_word - 8) {
1310 		dev_dbg(&spi->dev,
1311 			"you can't yet change bits_per_word in transfers\n");
1312 		return -ENOPROTOOPT;
1313 	}
1314 
1315 	/*
1316 	 * DMA map early, for performance (empties dcache ASAP) and
1317 	 * better fault reporting.
1318 	 */
1319 	if ((!msg->is_dma_mapped)
1320 		&& as->use_pdc) {
1321 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1322 			return -ENOMEM;
1323 	}
1324 
1325 	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1326 
1327 	as->done_status = 0;
1328 	as->current_transfer = xfer;
1329 	as->current_remaining_bytes = xfer->len;
1330 	while (as->current_remaining_bytes) {
1331 		reinit_completion(&as->xfer_completion);
1332 
1333 		if (as->use_pdc) {
1334 			atmel_spi_pdc_next_xfer(master, msg, xfer);
1335 		} else if (atmel_spi_use_dma(as, xfer)) {
1336 			len = as->current_remaining_bytes;
1337 			ret = atmel_spi_next_xfer_dma_submit(master,
1338 								xfer, &len);
1339 			if (ret) {
1340 				dev_err(&spi->dev,
1341 					"unable to use DMA, fallback to PIO\n");
1342 				atmel_spi_next_xfer_pio(master, xfer);
1343 			} else {
1344 				as->current_remaining_bytes -= len;
1345 				if (as->current_remaining_bytes < 0)
1346 					as->current_remaining_bytes = 0;
1347 			}
1348 		} else {
1349 			atmel_spi_next_xfer_pio(master, xfer);
1350 		}
1351 
1352 		/* interrupts are disabled, so free the lock for schedule */
1353 		atmel_spi_unlock(as);
1354 		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1355 							  SPI_DMA_TIMEOUT);
1356 		atmel_spi_lock(as);
1357 		if (WARN_ON(dma_timeout == 0)) {
1358 			dev_err(&spi->dev, "spi transfer timeout\n");
1359 			as->done_status = -EIO;
1360 		}
1361 
1362 		if (as->done_status)
1363 			break;
1364 	}
1365 
1366 	if (as->done_status) {
1367 		if (as->use_pdc) {
1368 			dev_warn(master->dev.parent,
1369 				"overrun (%u/%u remaining)\n",
1370 				spi_readl(as, TCR), spi_readl(as, RCR));
1371 
1372 			/*
1373 			 * Clean up DMA registers and make sure the data
1374 			 * registers are empty.
1375 			 */
1376 			spi_writel(as, RNCR, 0);
1377 			spi_writel(as, TNCR, 0);
1378 			spi_writel(as, RCR, 0);
1379 			spi_writel(as, TCR, 0);
1380 			for (timeout = 1000; timeout; timeout--)
1381 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1382 					break;
1383 			if (!timeout)
1384 				dev_warn(master->dev.parent,
1385 					 "timeout waiting for TXEMPTY");
1386 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1387 				spi_readl(as, RDR);
1388 
1389 			/* Clear any overrun happening while cleaning up */
1390 			spi_readl(as, SR);
1391 
1392 		} else if (atmel_spi_use_dma(as, xfer)) {
1393 			atmel_spi_stop_dma(master);
1394 		}
1395 
1396 		if (!msg->is_dma_mapped
1397 			&& as->use_pdc)
1398 			atmel_spi_dma_unmap_xfer(master, xfer);
1399 
1400 		return 0;
1401 
1402 	} else {
1403 		/* only update length if no error */
1404 		msg->actual_length += xfer->len;
1405 	}
1406 
1407 	if (!msg->is_dma_mapped
1408 		&& as->use_pdc)
1409 		atmel_spi_dma_unmap_xfer(master, xfer);
1410 
1411 	spi_transfer_delay_exec(xfer);
1412 
1413 	if (xfer->cs_change) {
1414 		if (list_is_last(&xfer->transfer_list,
1415 				 &msg->transfers)) {
1416 			as->keep_cs = true;
1417 		} else {
1418 			cs_deactivate(as, msg->spi);
1419 			udelay(10);
1420 			cs_activate(as, msg->spi);
1421 		}
1422 	}
1423 
1424 	return 0;
1425 }
1426 
1427 static int atmel_spi_transfer_one_message(struct spi_master *master,
1428 						struct spi_message *msg)
1429 {
1430 	struct atmel_spi *as;
1431 	struct spi_transfer *xfer;
1432 	struct spi_device *spi = msg->spi;
1433 	int ret = 0;
1434 
1435 	as = spi_master_get_devdata(master);
1436 
1437 	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1438 					msg, dev_name(&spi->dev));
1439 
1440 	atmel_spi_lock(as);
1441 	cs_activate(as, spi);
1442 
1443 	as->keep_cs = false;
1444 
1445 	msg->status = 0;
1446 	msg->actual_length = 0;
1447 
1448 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1449 		trace_spi_transfer_start(msg, xfer);
1450 
1451 		ret = atmel_spi_one_transfer(master, msg, xfer);
1452 		if (ret)
1453 			goto msg_done;
1454 
1455 		trace_spi_transfer_stop(msg, xfer);
1456 	}
1457 
1458 	if (as->use_pdc)
1459 		atmel_spi_disable_pdc_transfer(as);
1460 
1461 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1462 		dev_dbg(&spi->dev,
1463 			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1464 			xfer, xfer->len,
1465 			xfer->tx_buf, &xfer->tx_dma,
1466 			xfer->rx_buf, &xfer->rx_dma);
1467 	}
1468 
1469 msg_done:
1470 	if (!as->keep_cs)
1471 		cs_deactivate(as, msg->spi);
1472 
1473 	atmel_spi_unlock(as);
1474 
1475 	msg->status = as->done_status;
1476 	spi_finalize_current_message(spi->master);
1477 
1478 	return ret;
1479 }
1480 
1481 static void atmel_spi_cleanup(struct spi_device *spi)
1482 {
1483 	struct atmel_spi_device	*asd = spi->controller_state;
1484 
1485 	if (!asd)
1486 		return;
1487 
1488 	spi->controller_state = NULL;
1489 	kfree(asd);
1490 }
1491 
1492 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1493 {
1494 	return spi_readl(as, VERSION) & 0x00000fff;
1495 }
1496 
1497 static void atmel_get_caps(struct atmel_spi *as)
1498 {
1499 	unsigned int version;
1500 
1501 	version = atmel_get_version(as);
1502 
1503 	as->caps.is_spi2 = version > 0x121;
1504 	as->caps.has_wdrbt = version >= 0x210;
1505 	as->caps.has_dma_support = version >= 0x212;
1506 	as->caps.has_pdc_support = version < 0x212;
1507 }
1508 
1509 static void atmel_spi_init(struct atmel_spi *as)
1510 {
1511 	spi_writel(as, CR, SPI_BIT(SWRST));
1512 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1513 
1514 	/* It is recommended to enable FIFOs first thing after reset */
1515 	if (as->fifo_size)
1516 		spi_writel(as, CR, SPI_BIT(FIFOEN));
1517 
1518 	if (as->caps.has_wdrbt) {
1519 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1520 				| SPI_BIT(MSTR));
1521 	} else {
1522 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1523 	}
1524 
1525 	if (as->use_pdc)
1526 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1527 	spi_writel(as, CR, SPI_BIT(SPIEN));
1528 }
1529 
1530 static int atmel_spi_probe(struct platform_device *pdev)
1531 {
1532 	struct resource		*regs;
1533 	int			irq;
1534 	struct clk		*clk;
1535 	int			ret;
1536 	struct spi_master	*master;
1537 	struct atmel_spi	*as;
1538 
1539 	/* Select default pin state */
1540 	pinctrl_pm_select_default_state(&pdev->dev);
1541 
1542 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1543 	if (!regs)
1544 		return -ENXIO;
1545 
1546 	irq = platform_get_irq(pdev, 0);
1547 	if (irq < 0)
1548 		return irq;
1549 
1550 	clk = devm_clk_get(&pdev->dev, "spi_clk");
1551 	if (IS_ERR(clk))
1552 		return PTR_ERR(clk);
1553 
1554 	/* setup spi core then atmel-specific driver state */
1555 	ret = -ENOMEM;
1556 	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1557 	if (!master)
1558 		goto out_free;
1559 
1560 	/* the spi->mode bits understood by this driver: */
1561 	master->use_gpio_descriptors = true;
1562 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1563 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1564 	master->dev.of_node = pdev->dev.of_node;
1565 	master->bus_num = pdev->id;
1566 	master->num_chipselect = 4;
1567 	master->setup = atmel_spi_setup;
1568 	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1569 	master->transfer_one_message = atmel_spi_transfer_one_message;
1570 	master->cleanup = atmel_spi_cleanup;
1571 	master->auto_runtime_pm = true;
1572 	master->max_dma_len = SPI_MAX_DMA_XFER;
1573 	master->can_dma = atmel_spi_can_dma;
1574 	platform_set_drvdata(pdev, master);
1575 
1576 	as = spi_master_get_devdata(master);
1577 
1578 	spin_lock_init(&as->lock);
1579 
1580 	as->pdev = pdev;
1581 	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1582 	if (IS_ERR(as->regs)) {
1583 		ret = PTR_ERR(as->regs);
1584 		goto out_unmap_regs;
1585 	}
1586 	as->phybase = regs->start;
1587 	as->irq = irq;
1588 	as->clk = clk;
1589 
1590 	init_completion(&as->xfer_completion);
1591 
1592 	atmel_get_caps(as);
1593 
1594 	as->use_dma = false;
1595 	as->use_pdc = false;
1596 	if (as->caps.has_dma_support) {
1597 		ret = atmel_spi_configure_dma(master, as);
1598 		if (ret == 0) {
1599 			as->use_dma = true;
1600 		} else if (ret == -EPROBE_DEFER) {
1601 			return ret;
1602 		}
1603 	} else if (as->caps.has_pdc_support) {
1604 		as->use_pdc = true;
1605 	}
1606 
1607 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1608 		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1609 						      SPI_MAX_DMA_XFER,
1610 						      &as->dma_addr_rx_bbuf,
1611 						      GFP_KERNEL | GFP_DMA);
1612 		if (!as->addr_rx_bbuf) {
1613 			as->use_dma = false;
1614 		} else {
1615 			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1616 					SPI_MAX_DMA_XFER,
1617 					&as->dma_addr_tx_bbuf,
1618 					GFP_KERNEL | GFP_DMA);
1619 			if (!as->addr_tx_bbuf) {
1620 				as->use_dma = false;
1621 				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1622 						  as->addr_rx_bbuf,
1623 						  as->dma_addr_rx_bbuf);
1624 			}
1625 		}
1626 		if (!as->use_dma)
1627 			dev_info(master->dev.parent,
1628 				 "  can not allocate dma coherent memory\n");
1629 	}
1630 
1631 	if (as->caps.has_dma_support && !as->use_dma)
1632 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1633 
1634 	if (as->use_pdc) {
1635 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1636 					0, dev_name(&pdev->dev), master);
1637 	} else {
1638 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1639 					0, dev_name(&pdev->dev), master);
1640 	}
1641 	if (ret)
1642 		goto out_unmap_regs;
1643 
1644 	/* Initialize the hardware */
1645 	ret = clk_prepare_enable(clk);
1646 	if (ret)
1647 		goto out_free_irq;
1648 
1649 	as->spi_clk = clk_get_rate(clk);
1650 
1651 	as->fifo_size = 0;
1652 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1653 				  &as->fifo_size)) {
1654 		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1655 	}
1656 
1657 	atmel_spi_init(as);
1658 
1659 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1660 	pm_runtime_use_autosuspend(&pdev->dev);
1661 	pm_runtime_set_active(&pdev->dev);
1662 	pm_runtime_enable(&pdev->dev);
1663 
1664 	ret = devm_spi_register_master(&pdev->dev, master);
1665 	if (ret)
1666 		goto out_free_dma;
1667 
1668 	/* go! */
1669 	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1670 			atmel_get_version(as), (unsigned long)regs->start,
1671 			irq);
1672 
1673 	return 0;
1674 
1675 out_free_dma:
1676 	pm_runtime_disable(&pdev->dev);
1677 	pm_runtime_set_suspended(&pdev->dev);
1678 
1679 	if (as->use_dma)
1680 		atmel_spi_release_dma(master);
1681 
1682 	spi_writel(as, CR, SPI_BIT(SWRST));
1683 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1684 	clk_disable_unprepare(clk);
1685 out_free_irq:
1686 out_unmap_regs:
1687 out_free:
1688 	spi_master_put(master);
1689 	return ret;
1690 }
1691 
1692 static int atmel_spi_remove(struct platform_device *pdev)
1693 {
1694 	struct spi_master	*master = platform_get_drvdata(pdev);
1695 	struct atmel_spi	*as = spi_master_get_devdata(master);
1696 
1697 	pm_runtime_get_sync(&pdev->dev);
1698 
1699 	/* reset the hardware and block queue progress */
1700 	if (as->use_dma) {
1701 		atmel_spi_stop_dma(master);
1702 		atmel_spi_release_dma(master);
1703 		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1704 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1705 					  as->addr_tx_bbuf,
1706 					  as->dma_addr_tx_bbuf);
1707 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1708 					  as->addr_rx_bbuf,
1709 					  as->dma_addr_rx_bbuf);
1710 		}
1711 	}
1712 
1713 	spin_lock_irq(&as->lock);
1714 	spi_writel(as, CR, SPI_BIT(SWRST));
1715 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1716 	spi_readl(as, SR);
1717 	spin_unlock_irq(&as->lock);
1718 
1719 	clk_disable_unprepare(as->clk);
1720 
1721 	pm_runtime_put_noidle(&pdev->dev);
1722 	pm_runtime_disable(&pdev->dev);
1723 
1724 	return 0;
1725 }
1726 
1727 #ifdef CONFIG_PM
1728 static int atmel_spi_runtime_suspend(struct device *dev)
1729 {
1730 	struct spi_master *master = dev_get_drvdata(dev);
1731 	struct atmel_spi *as = spi_master_get_devdata(master);
1732 
1733 	clk_disable_unprepare(as->clk);
1734 	pinctrl_pm_select_sleep_state(dev);
1735 
1736 	return 0;
1737 }
1738 
1739 static int atmel_spi_runtime_resume(struct device *dev)
1740 {
1741 	struct spi_master *master = dev_get_drvdata(dev);
1742 	struct atmel_spi *as = spi_master_get_devdata(master);
1743 
1744 	pinctrl_pm_select_default_state(dev);
1745 
1746 	return clk_prepare_enable(as->clk);
1747 }
1748 
1749 #ifdef CONFIG_PM_SLEEP
1750 static int atmel_spi_suspend(struct device *dev)
1751 {
1752 	struct spi_master *master = dev_get_drvdata(dev);
1753 	int ret;
1754 
1755 	/* Stop the queue running */
1756 	ret = spi_master_suspend(master);
1757 	if (ret)
1758 		return ret;
1759 
1760 	if (!pm_runtime_suspended(dev))
1761 		atmel_spi_runtime_suspend(dev);
1762 
1763 	return 0;
1764 }
1765 
1766 static int atmel_spi_resume(struct device *dev)
1767 {
1768 	struct spi_master *master = dev_get_drvdata(dev);
1769 	struct atmel_spi *as = spi_master_get_devdata(master);
1770 	int ret;
1771 
1772 	ret = clk_prepare_enable(as->clk);
1773 	if (ret)
1774 		return ret;
1775 
1776 	atmel_spi_init(as);
1777 
1778 	clk_disable_unprepare(as->clk);
1779 
1780 	if (!pm_runtime_suspended(dev)) {
1781 		ret = atmel_spi_runtime_resume(dev);
1782 		if (ret)
1783 			return ret;
1784 	}
1785 
1786 	/* Start the queue running */
1787 	return spi_master_resume(master);
1788 }
1789 #endif
1790 
1791 static const struct dev_pm_ops atmel_spi_pm_ops = {
1792 	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1793 	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1794 			   atmel_spi_runtime_resume, NULL)
1795 };
1796 #define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1797 #else
1798 #define ATMEL_SPI_PM_OPS	NULL
1799 #endif
1800 
1801 static const struct of_device_id atmel_spi_dt_ids[] = {
1802 	{ .compatible = "atmel,at91rm9200-spi" },
1803 	{ /* sentinel */ }
1804 };
1805 
1806 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1807 
1808 static struct platform_driver atmel_spi_driver = {
1809 	.driver		= {
1810 		.name	= "atmel_spi",
1811 		.pm	= ATMEL_SPI_PM_OPS,
1812 		.of_match_table	= atmel_spi_dt_ids,
1813 	},
1814 	.probe		= atmel_spi_probe,
1815 	.remove		= atmel_spi_remove,
1816 };
1817 module_platform_driver(atmel_spi_driver);
1818 
1819 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1820 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1821 MODULE_LICENSE("GPL");
1822 MODULE_ALIAS("platform:atmel_spi");
1823