1 /* 2 * Driver for Atmel AT32 and AT91 SPI Controllers 3 * 4 * Copyright (C) 2006 Atmel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/clk.h> 13 #include <linux/module.h> 14 #include <linux/platform_device.h> 15 #include <linux/delay.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/dmaengine.h> 18 #include <linux/err.h> 19 #include <linux/interrupt.h> 20 #include <linux/spi/spi.h> 21 #include <linux/slab.h> 22 #include <linux/platform_data/dma-atmel.h> 23 #include <linux/of.h> 24 25 #include <linux/io.h> 26 #include <linux/gpio.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/pm_runtime.h> 29 30 /* SPI register offsets */ 31 #define SPI_CR 0x0000 32 #define SPI_MR 0x0004 33 #define SPI_RDR 0x0008 34 #define SPI_TDR 0x000c 35 #define SPI_SR 0x0010 36 #define SPI_IER 0x0014 37 #define SPI_IDR 0x0018 38 #define SPI_IMR 0x001c 39 #define SPI_CSR0 0x0030 40 #define SPI_CSR1 0x0034 41 #define SPI_CSR2 0x0038 42 #define SPI_CSR3 0x003c 43 #define SPI_FMR 0x0040 44 #define SPI_FLR 0x0044 45 #define SPI_VERSION 0x00fc 46 #define SPI_RPR 0x0100 47 #define SPI_RCR 0x0104 48 #define SPI_TPR 0x0108 49 #define SPI_TCR 0x010c 50 #define SPI_RNPR 0x0110 51 #define SPI_RNCR 0x0114 52 #define SPI_TNPR 0x0118 53 #define SPI_TNCR 0x011c 54 #define SPI_PTCR 0x0120 55 #define SPI_PTSR 0x0124 56 57 /* Bitfields in CR */ 58 #define SPI_SPIEN_OFFSET 0 59 #define SPI_SPIEN_SIZE 1 60 #define SPI_SPIDIS_OFFSET 1 61 #define SPI_SPIDIS_SIZE 1 62 #define SPI_SWRST_OFFSET 7 63 #define SPI_SWRST_SIZE 1 64 #define SPI_LASTXFER_OFFSET 24 65 #define SPI_LASTXFER_SIZE 1 66 #define SPI_TXFCLR_OFFSET 16 67 #define SPI_TXFCLR_SIZE 1 68 #define SPI_RXFCLR_OFFSET 17 69 #define SPI_RXFCLR_SIZE 1 70 #define SPI_FIFOEN_OFFSET 30 71 #define SPI_FIFOEN_SIZE 1 72 #define SPI_FIFODIS_OFFSET 31 73 #define SPI_FIFODIS_SIZE 1 74 75 /* Bitfields in MR */ 76 #define SPI_MSTR_OFFSET 0 77 #define SPI_MSTR_SIZE 1 78 #define SPI_PS_OFFSET 1 79 #define SPI_PS_SIZE 1 80 #define SPI_PCSDEC_OFFSET 2 81 #define SPI_PCSDEC_SIZE 1 82 #define SPI_FDIV_OFFSET 3 83 #define SPI_FDIV_SIZE 1 84 #define SPI_MODFDIS_OFFSET 4 85 #define SPI_MODFDIS_SIZE 1 86 #define SPI_WDRBT_OFFSET 5 87 #define SPI_WDRBT_SIZE 1 88 #define SPI_LLB_OFFSET 7 89 #define SPI_LLB_SIZE 1 90 #define SPI_PCS_OFFSET 16 91 #define SPI_PCS_SIZE 4 92 #define SPI_DLYBCS_OFFSET 24 93 #define SPI_DLYBCS_SIZE 8 94 95 /* Bitfields in RDR */ 96 #define SPI_RD_OFFSET 0 97 #define SPI_RD_SIZE 16 98 99 /* Bitfields in TDR */ 100 #define SPI_TD_OFFSET 0 101 #define SPI_TD_SIZE 16 102 103 /* Bitfields in SR */ 104 #define SPI_RDRF_OFFSET 0 105 #define SPI_RDRF_SIZE 1 106 #define SPI_TDRE_OFFSET 1 107 #define SPI_TDRE_SIZE 1 108 #define SPI_MODF_OFFSET 2 109 #define SPI_MODF_SIZE 1 110 #define SPI_OVRES_OFFSET 3 111 #define SPI_OVRES_SIZE 1 112 #define SPI_ENDRX_OFFSET 4 113 #define SPI_ENDRX_SIZE 1 114 #define SPI_ENDTX_OFFSET 5 115 #define SPI_ENDTX_SIZE 1 116 #define SPI_RXBUFF_OFFSET 6 117 #define SPI_RXBUFF_SIZE 1 118 #define SPI_TXBUFE_OFFSET 7 119 #define SPI_TXBUFE_SIZE 1 120 #define SPI_NSSR_OFFSET 8 121 #define SPI_NSSR_SIZE 1 122 #define SPI_TXEMPTY_OFFSET 9 123 #define SPI_TXEMPTY_SIZE 1 124 #define SPI_SPIENS_OFFSET 16 125 #define SPI_SPIENS_SIZE 1 126 #define SPI_TXFEF_OFFSET 24 127 #define SPI_TXFEF_SIZE 1 128 #define SPI_TXFFF_OFFSET 25 129 #define SPI_TXFFF_SIZE 1 130 #define SPI_TXFTHF_OFFSET 26 131 #define SPI_TXFTHF_SIZE 1 132 #define SPI_RXFEF_OFFSET 27 133 #define SPI_RXFEF_SIZE 1 134 #define SPI_RXFFF_OFFSET 28 135 #define SPI_RXFFF_SIZE 1 136 #define SPI_RXFTHF_OFFSET 29 137 #define SPI_RXFTHF_SIZE 1 138 #define SPI_TXFPTEF_OFFSET 30 139 #define SPI_TXFPTEF_SIZE 1 140 #define SPI_RXFPTEF_OFFSET 31 141 #define SPI_RXFPTEF_SIZE 1 142 143 /* Bitfields in CSR0 */ 144 #define SPI_CPOL_OFFSET 0 145 #define SPI_CPOL_SIZE 1 146 #define SPI_NCPHA_OFFSET 1 147 #define SPI_NCPHA_SIZE 1 148 #define SPI_CSAAT_OFFSET 3 149 #define SPI_CSAAT_SIZE 1 150 #define SPI_BITS_OFFSET 4 151 #define SPI_BITS_SIZE 4 152 #define SPI_SCBR_OFFSET 8 153 #define SPI_SCBR_SIZE 8 154 #define SPI_DLYBS_OFFSET 16 155 #define SPI_DLYBS_SIZE 8 156 #define SPI_DLYBCT_OFFSET 24 157 #define SPI_DLYBCT_SIZE 8 158 159 /* Bitfields in RCR */ 160 #define SPI_RXCTR_OFFSET 0 161 #define SPI_RXCTR_SIZE 16 162 163 /* Bitfields in TCR */ 164 #define SPI_TXCTR_OFFSET 0 165 #define SPI_TXCTR_SIZE 16 166 167 /* Bitfields in RNCR */ 168 #define SPI_RXNCR_OFFSET 0 169 #define SPI_RXNCR_SIZE 16 170 171 /* Bitfields in TNCR */ 172 #define SPI_TXNCR_OFFSET 0 173 #define SPI_TXNCR_SIZE 16 174 175 /* Bitfields in PTCR */ 176 #define SPI_RXTEN_OFFSET 0 177 #define SPI_RXTEN_SIZE 1 178 #define SPI_RXTDIS_OFFSET 1 179 #define SPI_RXTDIS_SIZE 1 180 #define SPI_TXTEN_OFFSET 8 181 #define SPI_TXTEN_SIZE 1 182 #define SPI_TXTDIS_OFFSET 9 183 #define SPI_TXTDIS_SIZE 1 184 185 /* Bitfields in FMR */ 186 #define SPI_TXRDYM_OFFSET 0 187 #define SPI_TXRDYM_SIZE 2 188 #define SPI_RXRDYM_OFFSET 4 189 #define SPI_RXRDYM_SIZE 2 190 #define SPI_TXFTHRES_OFFSET 16 191 #define SPI_TXFTHRES_SIZE 6 192 #define SPI_RXFTHRES_OFFSET 24 193 #define SPI_RXFTHRES_SIZE 6 194 195 /* Bitfields in FLR */ 196 #define SPI_TXFL_OFFSET 0 197 #define SPI_TXFL_SIZE 6 198 #define SPI_RXFL_OFFSET 16 199 #define SPI_RXFL_SIZE 6 200 201 /* Constants for BITS */ 202 #define SPI_BITS_8_BPT 0 203 #define SPI_BITS_9_BPT 1 204 #define SPI_BITS_10_BPT 2 205 #define SPI_BITS_11_BPT 3 206 #define SPI_BITS_12_BPT 4 207 #define SPI_BITS_13_BPT 5 208 #define SPI_BITS_14_BPT 6 209 #define SPI_BITS_15_BPT 7 210 #define SPI_BITS_16_BPT 8 211 #define SPI_ONE_DATA 0 212 #define SPI_TWO_DATA 1 213 #define SPI_FOUR_DATA 2 214 215 /* Bit manipulation macros */ 216 #define SPI_BIT(name) \ 217 (1 << SPI_##name##_OFFSET) 218 #define SPI_BF(name, value) \ 219 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) 220 #define SPI_BFEXT(name, value) \ 221 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) 222 #define SPI_BFINS(name, value, old) \ 223 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ 224 | SPI_BF(name, value)) 225 226 /* Register access macros */ 227 #ifdef CONFIG_AVR32 228 #define spi_readl(port, reg) \ 229 __raw_readl((port)->regs + SPI_##reg) 230 #define spi_writel(port, reg, value) \ 231 __raw_writel((value), (port)->regs + SPI_##reg) 232 233 #define spi_readw(port, reg) \ 234 __raw_readw((port)->regs + SPI_##reg) 235 #define spi_writew(port, reg, value) \ 236 __raw_writew((value), (port)->regs + SPI_##reg) 237 238 #define spi_readb(port, reg) \ 239 __raw_readb((port)->regs + SPI_##reg) 240 #define spi_writeb(port, reg, value) \ 241 __raw_writeb((value), (port)->regs + SPI_##reg) 242 #else 243 #define spi_readl(port, reg) \ 244 readl_relaxed((port)->regs + SPI_##reg) 245 #define spi_writel(port, reg, value) \ 246 writel_relaxed((value), (port)->regs + SPI_##reg) 247 248 #define spi_readw(port, reg) \ 249 readw_relaxed((port)->regs + SPI_##reg) 250 #define spi_writew(port, reg, value) \ 251 writew_relaxed((value), (port)->regs + SPI_##reg) 252 253 #define spi_readb(port, reg) \ 254 readb_relaxed((port)->regs + SPI_##reg) 255 #define spi_writeb(port, reg, value) \ 256 writeb_relaxed((value), (port)->regs + SPI_##reg) 257 #endif 258 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 259 * cache operations; better heuristics consider wordsize and bitrate. 260 */ 261 #define DMA_MIN_BYTES 16 262 263 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) 264 265 #define AUTOSUSPEND_TIMEOUT 2000 266 267 struct atmel_spi_dma { 268 struct dma_chan *chan_rx; 269 struct dma_chan *chan_tx; 270 struct scatterlist sgrx; 271 struct scatterlist sgtx; 272 struct dma_async_tx_descriptor *data_desc_rx; 273 struct dma_async_tx_descriptor *data_desc_tx; 274 275 struct at_dma_slave dma_slave; 276 }; 277 278 struct atmel_spi_caps { 279 bool is_spi2; 280 bool has_wdrbt; 281 bool has_dma_support; 282 }; 283 284 /* 285 * The core SPI transfer engine just talks to a register bank to set up 286 * DMA transfers; transfer queue progress is driven by IRQs. The clock 287 * framework provides the base clock, subdivided for each spi_device. 288 */ 289 struct atmel_spi { 290 spinlock_t lock; 291 unsigned long flags; 292 293 phys_addr_t phybase; 294 void __iomem *regs; 295 int irq; 296 struct clk *clk; 297 struct platform_device *pdev; 298 299 struct spi_transfer *current_transfer; 300 int current_remaining_bytes; 301 int done_status; 302 303 struct completion xfer_completion; 304 305 /* scratch buffer */ 306 void *buffer; 307 dma_addr_t buffer_dma; 308 309 struct atmel_spi_caps caps; 310 311 bool use_dma; 312 bool use_pdc; 313 bool use_cs_gpios; 314 /* dmaengine data */ 315 struct atmel_spi_dma dma; 316 317 bool keep_cs; 318 bool cs_active; 319 320 u32 fifo_size; 321 }; 322 323 /* Controller-specific per-slave state */ 324 struct atmel_spi_device { 325 unsigned int npcs_pin; 326 u32 csr; 327 }; 328 329 #define BUFFER_SIZE PAGE_SIZE 330 #define INVALID_DMA_ADDRESS 0xffffffff 331 332 /* 333 * Version 2 of the SPI controller has 334 * - CR.LASTXFER 335 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) 336 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) 337 * - SPI_CSRx.CSAAT 338 * - SPI_CSRx.SBCR allows faster clocking 339 */ 340 static bool atmel_spi_is_v2(struct atmel_spi *as) 341 { 342 return as->caps.is_spi2; 343 } 344 345 /* 346 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby 347 * they assume that spi slave device state will not change on deselect, so 348 * that automagic deselection is OK. ("NPCSx rises if no data is to be 349 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer 350 * controllers have CSAAT and friends. 351 * 352 * Since the CSAAT functionality is a bit weird on newer controllers as 353 * well, we use GPIO to control nCSx pins on all controllers, updating 354 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us 355 * support active-high chipselects despite the controller's belief that 356 * only active-low devices/systems exists. 357 * 358 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work 359 * right when driven with GPIO. ("Mode Fault does not allow more than one 360 * Master on Chip Select 0.") No workaround exists for that ... so for 361 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, 362 * and (c) will trigger that first erratum in some cases. 363 */ 364 365 static void cs_activate(struct atmel_spi *as, struct spi_device *spi) 366 { 367 struct atmel_spi_device *asd = spi->controller_state; 368 unsigned active = spi->mode & SPI_CS_HIGH; 369 u32 mr; 370 371 if (atmel_spi_is_v2(as)) { 372 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr); 373 /* For the low SPI version, there is a issue that PDC transfer 374 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS 375 */ 376 spi_writel(as, CSR0, asd->csr); 377 if (as->caps.has_wdrbt) { 378 spi_writel(as, MR, 379 SPI_BF(PCS, ~(0x01 << spi->chip_select)) 380 | SPI_BIT(WDRBT) 381 | SPI_BIT(MODFDIS) 382 | SPI_BIT(MSTR)); 383 } else { 384 spi_writel(as, MR, 385 SPI_BF(PCS, ~(0x01 << spi->chip_select)) 386 | SPI_BIT(MODFDIS) 387 | SPI_BIT(MSTR)); 388 } 389 390 mr = spi_readl(as, MR); 391 if (as->use_cs_gpios) 392 gpio_set_value(asd->npcs_pin, active); 393 } else { 394 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; 395 int i; 396 u32 csr; 397 398 /* Make sure clock polarity is correct */ 399 for (i = 0; i < spi->master->num_chipselect; i++) { 400 csr = spi_readl(as, CSR0 + 4 * i); 401 if ((csr ^ cpol) & SPI_BIT(CPOL)) 402 spi_writel(as, CSR0 + 4 * i, 403 csr ^ SPI_BIT(CPOL)); 404 } 405 406 mr = spi_readl(as, MR); 407 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr); 408 if (as->use_cs_gpios && spi->chip_select != 0) 409 gpio_set_value(asd->npcs_pin, active); 410 spi_writel(as, MR, mr); 411 } 412 413 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n", 414 asd->npcs_pin, active ? " (high)" : "", 415 mr); 416 } 417 418 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) 419 { 420 struct atmel_spi_device *asd = spi->controller_state; 421 unsigned active = spi->mode & SPI_CS_HIGH; 422 u32 mr; 423 424 /* only deactivate *this* device; sometimes transfers to 425 * another device may be active when this routine is called. 426 */ 427 mr = spi_readl(as, MR); 428 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) { 429 mr = SPI_BFINS(PCS, 0xf, mr); 430 spi_writel(as, MR, mr); 431 } 432 433 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n", 434 asd->npcs_pin, active ? " (low)" : "", 435 mr); 436 437 if (!as->use_cs_gpios) 438 spi_writel(as, CR, SPI_BIT(LASTXFER)); 439 else if (atmel_spi_is_v2(as) || spi->chip_select != 0) 440 gpio_set_value(asd->npcs_pin, !active); 441 } 442 443 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock) 444 { 445 spin_lock_irqsave(&as->lock, as->flags); 446 } 447 448 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock) 449 { 450 spin_unlock_irqrestore(&as->lock, as->flags); 451 } 452 453 static inline bool atmel_spi_use_dma(struct atmel_spi *as, 454 struct spi_transfer *xfer) 455 { 456 return as->use_dma && xfer->len >= DMA_MIN_BYTES; 457 } 458 459 static int atmel_spi_dma_slave_config(struct atmel_spi *as, 460 struct dma_slave_config *slave_config, 461 u8 bits_per_word) 462 { 463 int err = 0; 464 465 if (bits_per_word > 8) { 466 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 467 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 468 } else { 469 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 470 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 471 } 472 473 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR; 474 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR; 475 slave_config->src_maxburst = 1; 476 slave_config->dst_maxburst = 1; 477 slave_config->device_fc = false; 478 479 /* 480 * This driver uses fixed peripheral select mode (PS bit set to '0' in 481 * the Mode Register). 482 * So according to the datasheet, when FIFOs are available (and 483 * enabled), the Transmit FIFO operates in Multiple Data Mode. 484 * In this mode, up to 2 data, not 4, can be written into the Transmit 485 * Data Register in a single access. 486 * However, the first data has to be written into the lowest 16 bits and 487 * the second data into the highest 16 bits of the Transmit 488 * Data Register. For 8bit data (the most frequent case), it would 489 * require to rework tx_buf so each data would actualy fit 16 bits. 490 * So we'd rather write only one data at the time. Hence the transmit 491 * path works the same whether FIFOs are available (and enabled) or not. 492 */ 493 slave_config->direction = DMA_MEM_TO_DEV; 494 if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) { 495 dev_err(&as->pdev->dev, 496 "failed to configure tx dma channel\n"); 497 err = -EINVAL; 498 } 499 500 /* 501 * This driver configures the spi controller for master mode (MSTR bit 502 * set to '1' in the Mode Register). 503 * So according to the datasheet, when FIFOs are available (and 504 * enabled), the Receive FIFO operates in Single Data Mode. 505 * So the receive path works the same whether FIFOs are available (and 506 * enabled) or not. 507 */ 508 slave_config->direction = DMA_DEV_TO_MEM; 509 if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) { 510 dev_err(&as->pdev->dev, 511 "failed to configure rx dma channel\n"); 512 err = -EINVAL; 513 } 514 515 return err; 516 } 517 518 static int atmel_spi_configure_dma(struct atmel_spi *as) 519 { 520 struct dma_slave_config slave_config; 521 struct device *dev = &as->pdev->dev; 522 int err; 523 524 dma_cap_mask_t mask; 525 dma_cap_zero(mask); 526 dma_cap_set(DMA_SLAVE, mask); 527 528 as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx"); 529 if (IS_ERR(as->dma.chan_tx)) { 530 err = PTR_ERR(as->dma.chan_tx); 531 if (err == -EPROBE_DEFER) { 532 dev_warn(dev, "no DMA channel available at the moment\n"); 533 return err; 534 } 535 dev_err(dev, 536 "DMA TX channel not available, SPI unable to use DMA\n"); 537 err = -EBUSY; 538 goto error; 539 } 540 541 /* 542 * No reason to check EPROBE_DEFER here since we have already requested 543 * tx channel. If it fails here, it's for another reason. 544 */ 545 as->dma.chan_rx = dma_request_slave_channel(dev, "rx"); 546 547 if (!as->dma.chan_rx) { 548 dev_err(dev, 549 "DMA RX channel not available, SPI unable to use DMA\n"); 550 err = -EBUSY; 551 goto error; 552 } 553 554 err = atmel_spi_dma_slave_config(as, &slave_config, 8); 555 if (err) 556 goto error; 557 558 dev_info(&as->pdev->dev, 559 "Using %s (tx) and %s (rx) for DMA transfers\n", 560 dma_chan_name(as->dma.chan_tx), 561 dma_chan_name(as->dma.chan_rx)); 562 return 0; 563 error: 564 if (as->dma.chan_rx) 565 dma_release_channel(as->dma.chan_rx); 566 if (!IS_ERR(as->dma.chan_tx)) 567 dma_release_channel(as->dma.chan_tx); 568 return err; 569 } 570 571 static void atmel_spi_stop_dma(struct atmel_spi *as) 572 { 573 if (as->dma.chan_rx) 574 dmaengine_terminate_all(as->dma.chan_rx); 575 if (as->dma.chan_tx) 576 dmaengine_terminate_all(as->dma.chan_tx); 577 } 578 579 static void atmel_spi_release_dma(struct atmel_spi *as) 580 { 581 if (as->dma.chan_rx) 582 dma_release_channel(as->dma.chan_rx); 583 if (as->dma.chan_tx) 584 dma_release_channel(as->dma.chan_tx); 585 } 586 587 /* This function is called by the DMA driver from tasklet context */ 588 static void dma_callback(void *data) 589 { 590 struct spi_master *master = data; 591 struct atmel_spi *as = spi_master_get_devdata(master); 592 593 complete(&as->xfer_completion); 594 } 595 596 /* 597 * Next transfer using PIO without FIFO. 598 */ 599 static void atmel_spi_next_xfer_single(struct spi_master *master, 600 struct spi_transfer *xfer) 601 { 602 struct atmel_spi *as = spi_master_get_devdata(master); 603 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 604 605 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n"); 606 607 /* Make sure data is not remaining in RDR */ 608 spi_readl(as, RDR); 609 while (spi_readl(as, SR) & SPI_BIT(RDRF)) { 610 spi_readl(as, RDR); 611 cpu_relax(); 612 } 613 614 if (xfer->tx_buf) { 615 if (xfer->bits_per_word > 8) 616 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos)); 617 else 618 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos)); 619 } else { 620 spi_writel(as, TDR, 0); 621 } 622 623 dev_dbg(master->dev.parent, 624 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n", 625 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 626 xfer->bits_per_word); 627 628 /* Enable relevant interrupts */ 629 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES)); 630 } 631 632 /* 633 * Next transfer using PIO with FIFO. 634 */ 635 static void atmel_spi_next_xfer_fifo(struct spi_master *master, 636 struct spi_transfer *xfer) 637 { 638 struct atmel_spi *as = spi_master_get_devdata(master); 639 u32 current_remaining_data, num_data; 640 u32 offset = xfer->len - as->current_remaining_bytes; 641 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset); 642 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset); 643 u16 td0, td1; 644 u32 fifomr; 645 646 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n"); 647 648 /* Compute the number of data to transfer in the current iteration */ 649 current_remaining_data = ((xfer->bits_per_word > 8) ? 650 ((u32)as->current_remaining_bytes >> 1) : 651 (u32)as->current_remaining_bytes); 652 num_data = min(current_remaining_data, as->fifo_size); 653 654 /* Flush RX and TX FIFOs */ 655 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR)); 656 while (spi_readl(as, FLR)) 657 cpu_relax(); 658 659 /* Set RX FIFO Threshold to the number of data to transfer */ 660 fifomr = spi_readl(as, FMR); 661 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr)); 662 663 /* Clear FIFO flags in the Status Register, especially RXFTHF */ 664 (void)spi_readl(as, SR); 665 666 /* Fill TX FIFO */ 667 while (num_data >= 2) { 668 if (xfer->tx_buf) { 669 if (xfer->bits_per_word > 8) { 670 td0 = *words++; 671 td1 = *words++; 672 } else { 673 td0 = *bytes++; 674 td1 = *bytes++; 675 } 676 } else { 677 td0 = 0; 678 td1 = 0; 679 } 680 681 spi_writel(as, TDR, (td1 << 16) | td0); 682 num_data -= 2; 683 } 684 685 if (num_data) { 686 if (xfer->tx_buf) { 687 if (xfer->bits_per_word > 8) 688 td0 = *words++; 689 else 690 td0 = *bytes++; 691 } else { 692 td0 = 0; 693 } 694 695 spi_writew(as, TDR, td0); 696 num_data--; 697 } 698 699 dev_dbg(master->dev.parent, 700 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n", 701 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 702 xfer->bits_per_word); 703 704 /* 705 * Enable RX FIFO Threshold Flag interrupt to be notified about 706 * transfer completion. 707 */ 708 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES)); 709 } 710 711 /* 712 * Next transfer using PIO. 713 */ 714 static void atmel_spi_next_xfer_pio(struct spi_master *master, 715 struct spi_transfer *xfer) 716 { 717 struct atmel_spi *as = spi_master_get_devdata(master); 718 719 if (as->fifo_size) 720 atmel_spi_next_xfer_fifo(master, xfer); 721 else 722 atmel_spi_next_xfer_single(master, xfer); 723 } 724 725 /* 726 * Submit next transfer for DMA. 727 */ 728 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master, 729 struct spi_transfer *xfer, 730 u32 *plen) 731 { 732 struct atmel_spi *as = spi_master_get_devdata(master); 733 struct dma_chan *rxchan = as->dma.chan_rx; 734 struct dma_chan *txchan = as->dma.chan_tx; 735 struct dma_async_tx_descriptor *rxdesc; 736 struct dma_async_tx_descriptor *txdesc; 737 struct dma_slave_config slave_config; 738 dma_cookie_t cookie; 739 u32 len = *plen; 740 741 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n"); 742 743 /* Check that the channels are available */ 744 if (!rxchan || !txchan) 745 return -ENODEV; 746 747 /* release lock for DMA operations */ 748 atmel_spi_unlock(as); 749 750 /* prepare the RX dma transfer */ 751 sg_init_table(&as->dma.sgrx, 1); 752 if (xfer->rx_buf) { 753 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen; 754 } else { 755 as->dma.sgrx.dma_address = as->buffer_dma; 756 if (len > BUFFER_SIZE) 757 len = BUFFER_SIZE; 758 } 759 760 /* prepare the TX dma transfer */ 761 sg_init_table(&as->dma.sgtx, 1); 762 if (xfer->tx_buf) { 763 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen; 764 } else { 765 as->dma.sgtx.dma_address = as->buffer_dma; 766 if (len > BUFFER_SIZE) 767 len = BUFFER_SIZE; 768 memset(as->buffer, 0, len); 769 } 770 771 sg_dma_len(&as->dma.sgtx) = len; 772 sg_dma_len(&as->dma.sgrx) = len; 773 774 *plen = len; 775 776 if (atmel_spi_dma_slave_config(as, &slave_config, 8)) 777 goto err_exit; 778 779 /* Send both scatterlists */ 780 rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1, 781 DMA_FROM_DEVICE, 782 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 783 if (!rxdesc) 784 goto err_dma; 785 786 txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1, 787 DMA_TO_DEVICE, 788 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 789 if (!txdesc) 790 goto err_dma; 791 792 dev_dbg(master->dev.parent, 793 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 794 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma, 795 xfer->rx_buf, (unsigned long long)xfer->rx_dma); 796 797 /* Enable relevant interrupts */ 798 spi_writel(as, IER, SPI_BIT(OVRES)); 799 800 /* Put the callback on the RX transfer only, that should finish last */ 801 rxdesc->callback = dma_callback; 802 rxdesc->callback_param = master; 803 804 /* Submit and fire RX and TX with TX last so we're ready to read! */ 805 cookie = rxdesc->tx_submit(rxdesc); 806 if (dma_submit_error(cookie)) 807 goto err_dma; 808 cookie = txdesc->tx_submit(txdesc); 809 if (dma_submit_error(cookie)) 810 goto err_dma; 811 rxchan->device->device_issue_pending(rxchan); 812 txchan->device->device_issue_pending(txchan); 813 814 /* take back lock */ 815 atmel_spi_lock(as); 816 return 0; 817 818 err_dma: 819 spi_writel(as, IDR, SPI_BIT(OVRES)); 820 atmel_spi_stop_dma(as); 821 err_exit: 822 atmel_spi_lock(as); 823 return -ENOMEM; 824 } 825 826 static void atmel_spi_next_xfer_data(struct spi_master *master, 827 struct spi_transfer *xfer, 828 dma_addr_t *tx_dma, 829 dma_addr_t *rx_dma, 830 u32 *plen) 831 { 832 struct atmel_spi *as = spi_master_get_devdata(master); 833 u32 len = *plen; 834 835 /* use scratch buffer only when rx or tx data is unspecified */ 836 if (xfer->rx_buf) 837 *rx_dma = xfer->rx_dma + xfer->len - *plen; 838 else { 839 *rx_dma = as->buffer_dma; 840 if (len > BUFFER_SIZE) 841 len = BUFFER_SIZE; 842 } 843 844 if (xfer->tx_buf) 845 *tx_dma = xfer->tx_dma + xfer->len - *plen; 846 else { 847 *tx_dma = as->buffer_dma; 848 if (len > BUFFER_SIZE) 849 len = BUFFER_SIZE; 850 memset(as->buffer, 0, len); 851 dma_sync_single_for_device(&as->pdev->dev, 852 as->buffer_dma, len, DMA_TO_DEVICE); 853 } 854 855 *plen = len; 856 } 857 858 static int atmel_spi_set_xfer_speed(struct atmel_spi *as, 859 struct spi_device *spi, 860 struct spi_transfer *xfer) 861 { 862 u32 scbr, csr; 863 unsigned long bus_hz; 864 865 /* v1 chips start out at half the peripheral bus speed. */ 866 bus_hz = clk_get_rate(as->clk); 867 if (!atmel_spi_is_v2(as)) 868 bus_hz /= 2; 869 870 /* 871 * Calculate the lowest divider that satisfies the 872 * constraint, assuming div32/fdiv/mbz == 0. 873 */ 874 if (xfer->speed_hz) 875 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz); 876 else 877 /* 878 * This can happend if max_speed is null. 879 * In this case, we set the lowest possible speed 880 */ 881 scbr = 0xff; 882 883 /* 884 * If the resulting divider doesn't fit into the 885 * register bitfield, we can't satisfy the constraint. 886 */ 887 if (scbr >= (1 << SPI_SCBR_SIZE)) { 888 dev_err(&spi->dev, 889 "setup: %d Hz too slow, scbr %u; min %ld Hz\n", 890 xfer->speed_hz, scbr, bus_hz/255); 891 return -EINVAL; 892 } 893 if (scbr == 0) { 894 dev_err(&spi->dev, 895 "setup: %d Hz too high, scbr %u; max %ld Hz\n", 896 xfer->speed_hz, scbr, bus_hz); 897 return -EINVAL; 898 } 899 csr = spi_readl(as, CSR0 + 4 * spi->chip_select); 900 csr = SPI_BFINS(SCBR, scbr, csr); 901 spi_writel(as, CSR0 + 4 * spi->chip_select, csr); 902 903 return 0; 904 } 905 906 /* 907 * Submit next transfer for PDC. 908 * lock is held, spi irq is blocked 909 */ 910 static void atmel_spi_pdc_next_xfer(struct spi_master *master, 911 struct spi_message *msg, 912 struct spi_transfer *xfer) 913 { 914 struct atmel_spi *as = spi_master_get_devdata(master); 915 u32 len; 916 dma_addr_t tx_dma, rx_dma; 917 918 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 919 920 len = as->current_remaining_bytes; 921 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 922 as->current_remaining_bytes -= len; 923 924 spi_writel(as, RPR, rx_dma); 925 spi_writel(as, TPR, tx_dma); 926 927 if (msg->spi->bits_per_word > 8) 928 len >>= 1; 929 spi_writel(as, RCR, len); 930 spi_writel(as, TCR, len); 931 932 dev_dbg(&msg->spi->dev, 933 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 934 xfer, xfer->len, xfer->tx_buf, 935 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 936 (unsigned long long)xfer->rx_dma); 937 938 if (as->current_remaining_bytes) { 939 len = as->current_remaining_bytes; 940 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 941 as->current_remaining_bytes -= len; 942 943 spi_writel(as, RNPR, rx_dma); 944 spi_writel(as, TNPR, tx_dma); 945 946 if (msg->spi->bits_per_word > 8) 947 len >>= 1; 948 spi_writel(as, RNCR, len); 949 spi_writel(as, TNCR, len); 950 951 dev_dbg(&msg->spi->dev, 952 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 953 xfer, xfer->len, xfer->tx_buf, 954 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 955 (unsigned long long)xfer->rx_dma); 956 } 957 958 /* REVISIT: We're waiting for RXBUFF before we start the next 959 * transfer because we need to handle some difficult timing 960 * issues otherwise. If we wait for TXBUFE in one transfer and 961 * then starts waiting for RXBUFF in the next, it's difficult 962 * to tell the difference between the RXBUFF interrupt we're 963 * actually waiting for and the RXBUFF interrupt of the 964 * previous transfer. 965 * 966 * It should be doable, though. Just not now... 967 */ 968 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES)); 969 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); 970 } 971 972 /* 973 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: 974 * - The buffer is either valid for CPU access, else NULL 975 * - If the buffer is valid, so is its DMA address 976 * 977 * This driver manages the dma address unless message->is_dma_mapped. 978 */ 979 static int 980 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) 981 { 982 struct device *dev = &as->pdev->dev; 983 984 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; 985 if (xfer->tx_buf) { 986 /* tx_buf is a const void* where we need a void * for the dma 987 * mapping */ 988 void *nonconst_tx = (void *)xfer->tx_buf; 989 990 xfer->tx_dma = dma_map_single(dev, 991 nonconst_tx, xfer->len, 992 DMA_TO_DEVICE); 993 if (dma_mapping_error(dev, xfer->tx_dma)) 994 return -ENOMEM; 995 } 996 if (xfer->rx_buf) { 997 xfer->rx_dma = dma_map_single(dev, 998 xfer->rx_buf, xfer->len, 999 DMA_FROM_DEVICE); 1000 if (dma_mapping_error(dev, xfer->rx_dma)) { 1001 if (xfer->tx_buf) 1002 dma_unmap_single(dev, 1003 xfer->tx_dma, xfer->len, 1004 DMA_TO_DEVICE); 1005 return -ENOMEM; 1006 } 1007 } 1008 return 0; 1009 } 1010 1011 static void atmel_spi_dma_unmap_xfer(struct spi_master *master, 1012 struct spi_transfer *xfer) 1013 { 1014 if (xfer->tx_dma != INVALID_DMA_ADDRESS) 1015 dma_unmap_single(master->dev.parent, xfer->tx_dma, 1016 xfer->len, DMA_TO_DEVICE); 1017 if (xfer->rx_dma != INVALID_DMA_ADDRESS) 1018 dma_unmap_single(master->dev.parent, xfer->rx_dma, 1019 xfer->len, DMA_FROM_DEVICE); 1020 } 1021 1022 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as) 1023 { 1024 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1025 } 1026 1027 static void 1028 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer) 1029 { 1030 u8 *rxp; 1031 u16 *rxp16; 1032 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 1033 1034 if (xfer->rx_buf) { 1035 if (xfer->bits_per_word > 8) { 1036 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos); 1037 *rxp16 = spi_readl(as, RDR); 1038 } else { 1039 rxp = ((u8 *)xfer->rx_buf) + xfer_pos; 1040 *rxp = spi_readl(as, RDR); 1041 } 1042 } else { 1043 spi_readl(as, RDR); 1044 } 1045 if (xfer->bits_per_word > 8) { 1046 if (as->current_remaining_bytes > 2) 1047 as->current_remaining_bytes -= 2; 1048 else 1049 as->current_remaining_bytes = 0; 1050 } else { 1051 as->current_remaining_bytes--; 1052 } 1053 } 1054 1055 static void 1056 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer) 1057 { 1058 u32 fifolr = spi_readl(as, FLR); 1059 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr); 1060 u32 offset = xfer->len - as->current_remaining_bytes; 1061 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset); 1062 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset); 1063 u16 rd; /* RD field is the lowest 16 bits of RDR */ 1064 1065 /* Update the number of remaining bytes to transfer */ 1066 num_bytes = ((xfer->bits_per_word > 8) ? 1067 (num_data << 1) : 1068 num_data); 1069 1070 if (as->current_remaining_bytes > num_bytes) 1071 as->current_remaining_bytes -= num_bytes; 1072 else 1073 as->current_remaining_bytes = 0; 1074 1075 /* Handle odd number of bytes when data are more than 8bit width */ 1076 if (xfer->bits_per_word > 8) 1077 as->current_remaining_bytes &= ~0x1; 1078 1079 /* Read data */ 1080 while (num_data) { 1081 rd = spi_readl(as, RDR); 1082 if (xfer->rx_buf) { 1083 if (xfer->bits_per_word > 8) 1084 *words++ = rd; 1085 else 1086 *bytes++ = rd; 1087 } 1088 num_data--; 1089 } 1090 } 1091 1092 /* Called from IRQ 1093 * 1094 * Must update "current_remaining_bytes" to keep track of data 1095 * to transfer. 1096 */ 1097 static void 1098 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer) 1099 { 1100 if (as->fifo_size) 1101 atmel_spi_pump_fifo_data(as, xfer); 1102 else 1103 atmel_spi_pump_single_data(as, xfer); 1104 } 1105 1106 /* Interrupt 1107 * 1108 * No need for locking in this Interrupt handler: done_status is the 1109 * only information modified. 1110 */ 1111 static irqreturn_t 1112 atmel_spi_pio_interrupt(int irq, void *dev_id) 1113 { 1114 struct spi_master *master = dev_id; 1115 struct atmel_spi *as = spi_master_get_devdata(master); 1116 u32 status, pending, imr; 1117 struct spi_transfer *xfer; 1118 int ret = IRQ_NONE; 1119 1120 imr = spi_readl(as, IMR); 1121 status = spi_readl(as, SR); 1122 pending = status & imr; 1123 1124 if (pending & SPI_BIT(OVRES)) { 1125 ret = IRQ_HANDLED; 1126 spi_writel(as, IDR, SPI_BIT(OVRES)); 1127 dev_warn(master->dev.parent, "overrun\n"); 1128 1129 /* 1130 * When we get an overrun, we disregard the current 1131 * transfer. Data will not be copied back from any 1132 * bounce buffer and msg->actual_len will not be 1133 * updated with the last xfer. 1134 * 1135 * We will also not process any remaning transfers in 1136 * the message. 1137 */ 1138 as->done_status = -EIO; 1139 smp_wmb(); 1140 1141 /* Clear any overrun happening while cleaning up */ 1142 spi_readl(as, SR); 1143 1144 complete(&as->xfer_completion); 1145 1146 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) { 1147 atmel_spi_lock(as); 1148 1149 if (as->current_remaining_bytes) { 1150 ret = IRQ_HANDLED; 1151 xfer = as->current_transfer; 1152 atmel_spi_pump_pio_data(as, xfer); 1153 if (!as->current_remaining_bytes) 1154 spi_writel(as, IDR, pending); 1155 1156 complete(&as->xfer_completion); 1157 } 1158 1159 atmel_spi_unlock(as); 1160 } else { 1161 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending); 1162 ret = IRQ_HANDLED; 1163 spi_writel(as, IDR, pending); 1164 } 1165 1166 return ret; 1167 } 1168 1169 static irqreturn_t 1170 atmel_spi_pdc_interrupt(int irq, void *dev_id) 1171 { 1172 struct spi_master *master = dev_id; 1173 struct atmel_spi *as = spi_master_get_devdata(master); 1174 u32 status, pending, imr; 1175 int ret = IRQ_NONE; 1176 1177 imr = spi_readl(as, IMR); 1178 status = spi_readl(as, SR); 1179 pending = status & imr; 1180 1181 if (pending & SPI_BIT(OVRES)) { 1182 1183 ret = IRQ_HANDLED; 1184 1185 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) 1186 | SPI_BIT(OVRES))); 1187 1188 /* Clear any overrun happening while cleaning up */ 1189 spi_readl(as, SR); 1190 1191 as->done_status = -EIO; 1192 1193 complete(&as->xfer_completion); 1194 1195 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { 1196 ret = IRQ_HANDLED; 1197 1198 spi_writel(as, IDR, pending); 1199 1200 complete(&as->xfer_completion); 1201 } 1202 1203 return ret; 1204 } 1205 1206 static int atmel_spi_setup(struct spi_device *spi) 1207 { 1208 struct atmel_spi *as; 1209 struct atmel_spi_device *asd; 1210 u32 csr; 1211 unsigned int bits = spi->bits_per_word; 1212 unsigned int npcs_pin; 1213 int ret; 1214 1215 as = spi_master_get_devdata(spi->master); 1216 1217 /* see notes above re chipselect */ 1218 if (!atmel_spi_is_v2(as) 1219 && spi->chip_select == 0 1220 && (spi->mode & SPI_CS_HIGH)) { 1221 dev_dbg(&spi->dev, "setup: can't be active-high\n"); 1222 return -EINVAL; 1223 } 1224 1225 csr = SPI_BF(BITS, bits - 8); 1226 if (spi->mode & SPI_CPOL) 1227 csr |= SPI_BIT(CPOL); 1228 if (!(spi->mode & SPI_CPHA)) 1229 csr |= SPI_BIT(NCPHA); 1230 if (!as->use_cs_gpios) 1231 csr |= SPI_BIT(CSAAT); 1232 1233 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs. 1234 * 1235 * DLYBCT would add delays between words, slowing down transfers. 1236 * It could potentially be useful to cope with DMA bottlenecks, but 1237 * in those cases it's probably best to just use a lower bitrate. 1238 */ 1239 csr |= SPI_BF(DLYBS, 0); 1240 csr |= SPI_BF(DLYBCT, 0); 1241 1242 /* chipselect must have been muxed as GPIO (e.g. in board setup) */ 1243 npcs_pin = (unsigned long)spi->controller_data; 1244 1245 if (!as->use_cs_gpios) 1246 npcs_pin = spi->chip_select; 1247 else if (gpio_is_valid(spi->cs_gpio)) 1248 npcs_pin = spi->cs_gpio; 1249 1250 asd = spi->controller_state; 1251 if (!asd) { 1252 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); 1253 if (!asd) 1254 return -ENOMEM; 1255 1256 if (as->use_cs_gpios) { 1257 ret = gpio_request(npcs_pin, dev_name(&spi->dev)); 1258 if (ret) { 1259 kfree(asd); 1260 return ret; 1261 } 1262 1263 gpio_direction_output(npcs_pin, 1264 !(spi->mode & SPI_CS_HIGH)); 1265 } 1266 1267 asd->npcs_pin = npcs_pin; 1268 spi->controller_state = asd; 1269 } 1270 1271 asd->csr = csr; 1272 1273 dev_dbg(&spi->dev, 1274 "setup: bpw %u mode 0x%x -> csr%d %08x\n", 1275 bits, spi->mode, spi->chip_select, csr); 1276 1277 if (!atmel_spi_is_v2(as)) 1278 spi_writel(as, CSR0 + 4 * spi->chip_select, csr); 1279 1280 return 0; 1281 } 1282 1283 static int atmel_spi_one_transfer(struct spi_master *master, 1284 struct spi_message *msg, 1285 struct spi_transfer *xfer) 1286 { 1287 struct atmel_spi *as; 1288 struct spi_device *spi = msg->spi; 1289 u8 bits; 1290 u32 len; 1291 struct atmel_spi_device *asd; 1292 int timeout; 1293 int ret; 1294 unsigned long dma_timeout; 1295 1296 as = spi_master_get_devdata(master); 1297 1298 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1299 dev_dbg(&spi->dev, "missing rx or tx buf\n"); 1300 return -EINVAL; 1301 } 1302 1303 if (xfer->bits_per_word) { 1304 asd = spi->controller_state; 1305 bits = (asd->csr >> 4) & 0xf; 1306 if (bits != xfer->bits_per_word - 8) { 1307 dev_dbg(&spi->dev, 1308 "you can't yet change bits_per_word in transfers\n"); 1309 return -ENOPROTOOPT; 1310 } 1311 } 1312 1313 /* 1314 * DMA map early, for performance (empties dcache ASAP) and 1315 * better fault reporting. 1316 */ 1317 if ((!msg->is_dma_mapped) 1318 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) { 1319 if (atmel_spi_dma_map_xfer(as, xfer) < 0) 1320 return -ENOMEM; 1321 } 1322 1323 atmel_spi_set_xfer_speed(as, msg->spi, xfer); 1324 1325 as->done_status = 0; 1326 as->current_transfer = xfer; 1327 as->current_remaining_bytes = xfer->len; 1328 while (as->current_remaining_bytes) { 1329 reinit_completion(&as->xfer_completion); 1330 1331 if (as->use_pdc) { 1332 atmel_spi_pdc_next_xfer(master, msg, xfer); 1333 } else if (atmel_spi_use_dma(as, xfer)) { 1334 len = as->current_remaining_bytes; 1335 ret = atmel_spi_next_xfer_dma_submit(master, 1336 xfer, &len); 1337 if (ret) { 1338 dev_err(&spi->dev, 1339 "unable to use DMA, fallback to PIO\n"); 1340 atmel_spi_next_xfer_pio(master, xfer); 1341 } else { 1342 as->current_remaining_bytes -= len; 1343 if (as->current_remaining_bytes < 0) 1344 as->current_remaining_bytes = 0; 1345 } 1346 } else { 1347 atmel_spi_next_xfer_pio(master, xfer); 1348 } 1349 1350 /* interrupts are disabled, so free the lock for schedule */ 1351 atmel_spi_unlock(as); 1352 dma_timeout = wait_for_completion_timeout(&as->xfer_completion, 1353 SPI_DMA_TIMEOUT); 1354 atmel_spi_lock(as); 1355 if (WARN_ON(dma_timeout == 0)) { 1356 dev_err(&spi->dev, "spi transfer timeout\n"); 1357 as->done_status = -EIO; 1358 } 1359 1360 if (as->done_status) 1361 break; 1362 } 1363 1364 if (as->done_status) { 1365 if (as->use_pdc) { 1366 dev_warn(master->dev.parent, 1367 "overrun (%u/%u remaining)\n", 1368 spi_readl(as, TCR), spi_readl(as, RCR)); 1369 1370 /* 1371 * Clean up DMA registers and make sure the data 1372 * registers are empty. 1373 */ 1374 spi_writel(as, RNCR, 0); 1375 spi_writel(as, TNCR, 0); 1376 spi_writel(as, RCR, 0); 1377 spi_writel(as, TCR, 0); 1378 for (timeout = 1000; timeout; timeout--) 1379 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) 1380 break; 1381 if (!timeout) 1382 dev_warn(master->dev.parent, 1383 "timeout waiting for TXEMPTY"); 1384 while (spi_readl(as, SR) & SPI_BIT(RDRF)) 1385 spi_readl(as, RDR); 1386 1387 /* Clear any overrun happening while cleaning up */ 1388 spi_readl(as, SR); 1389 1390 } else if (atmel_spi_use_dma(as, xfer)) { 1391 atmel_spi_stop_dma(as); 1392 } 1393 1394 if (!msg->is_dma_mapped 1395 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) 1396 atmel_spi_dma_unmap_xfer(master, xfer); 1397 1398 return 0; 1399 1400 } else { 1401 /* only update length if no error */ 1402 msg->actual_length += xfer->len; 1403 } 1404 1405 if (!msg->is_dma_mapped 1406 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) 1407 atmel_spi_dma_unmap_xfer(master, xfer); 1408 1409 if (xfer->delay_usecs) 1410 udelay(xfer->delay_usecs); 1411 1412 if (xfer->cs_change) { 1413 if (list_is_last(&xfer->transfer_list, 1414 &msg->transfers)) { 1415 as->keep_cs = true; 1416 } else { 1417 as->cs_active = !as->cs_active; 1418 if (as->cs_active) 1419 cs_activate(as, msg->spi); 1420 else 1421 cs_deactivate(as, msg->spi); 1422 } 1423 } 1424 1425 return 0; 1426 } 1427 1428 static int atmel_spi_transfer_one_message(struct spi_master *master, 1429 struct spi_message *msg) 1430 { 1431 struct atmel_spi *as; 1432 struct spi_transfer *xfer; 1433 struct spi_device *spi = msg->spi; 1434 int ret = 0; 1435 1436 as = spi_master_get_devdata(master); 1437 1438 dev_dbg(&spi->dev, "new message %p submitted for %s\n", 1439 msg, dev_name(&spi->dev)); 1440 1441 atmel_spi_lock(as); 1442 cs_activate(as, spi); 1443 1444 as->cs_active = true; 1445 as->keep_cs = false; 1446 1447 msg->status = 0; 1448 msg->actual_length = 0; 1449 1450 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1451 ret = atmel_spi_one_transfer(master, msg, xfer); 1452 if (ret) 1453 goto msg_done; 1454 } 1455 1456 if (as->use_pdc) 1457 atmel_spi_disable_pdc_transfer(as); 1458 1459 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1460 dev_dbg(&spi->dev, 1461 " xfer %p: len %u tx %p/%pad rx %p/%pad\n", 1462 xfer, xfer->len, 1463 xfer->tx_buf, &xfer->tx_dma, 1464 xfer->rx_buf, &xfer->rx_dma); 1465 } 1466 1467 msg_done: 1468 if (!as->keep_cs) 1469 cs_deactivate(as, msg->spi); 1470 1471 atmel_spi_unlock(as); 1472 1473 msg->status = as->done_status; 1474 spi_finalize_current_message(spi->master); 1475 1476 return ret; 1477 } 1478 1479 static void atmel_spi_cleanup(struct spi_device *spi) 1480 { 1481 struct atmel_spi_device *asd = spi->controller_state; 1482 unsigned gpio = (unsigned long) spi->controller_data; 1483 1484 if (!asd) 1485 return; 1486 1487 spi->controller_state = NULL; 1488 gpio_free(gpio); 1489 kfree(asd); 1490 } 1491 1492 static inline unsigned int atmel_get_version(struct atmel_spi *as) 1493 { 1494 return spi_readl(as, VERSION) & 0x00000fff; 1495 } 1496 1497 static void atmel_get_caps(struct atmel_spi *as) 1498 { 1499 unsigned int version; 1500 1501 version = atmel_get_version(as); 1502 dev_info(&as->pdev->dev, "version: 0x%x\n", version); 1503 1504 as->caps.is_spi2 = version > 0x121; 1505 as->caps.has_wdrbt = version >= 0x210; 1506 as->caps.has_dma_support = version >= 0x212; 1507 } 1508 1509 /*-------------------------------------------------------------------------*/ 1510 1511 static int atmel_spi_probe(struct platform_device *pdev) 1512 { 1513 struct resource *regs; 1514 int irq; 1515 struct clk *clk; 1516 int ret; 1517 struct spi_master *master; 1518 struct atmel_spi *as; 1519 1520 /* Select default pin state */ 1521 pinctrl_pm_select_default_state(&pdev->dev); 1522 1523 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1524 if (!regs) 1525 return -ENXIO; 1526 1527 irq = platform_get_irq(pdev, 0); 1528 if (irq < 0) 1529 return irq; 1530 1531 clk = devm_clk_get(&pdev->dev, "spi_clk"); 1532 if (IS_ERR(clk)) 1533 return PTR_ERR(clk); 1534 1535 /* setup spi core then atmel-specific driver state */ 1536 ret = -ENOMEM; 1537 master = spi_alloc_master(&pdev->dev, sizeof(*as)); 1538 if (!master) 1539 goto out_free; 1540 1541 /* the spi->mode bits understood by this driver: */ 1542 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1543 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16); 1544 master->dev.of_node = pdev->dev.of_node; 1545 master->bus_num = pdev->id; 1546 master->num_chipselect = master->dev.of_node ? 0 : 4; 1547 master->setup = atmel_spi_setup; 1548 master->transfer_one_message = atmel_spi_transfer_one_message; 1549 master->cleanup = atmel_spi_cleanup; 1550 master->auto_runtime_pm = true; 1551 platform_set_drvdata(pdev, master); 1552 1553 as = spi_master_get_devdata(master); 1554 1555 /* 1556 * Scratch buffer is used for throwaway rx and tx data. 1557 * It's coherent to minimize dcache pollution. 1558 */ 1559 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE, 1560 &as->buffer_dma, GFP_KERNEL); 1561 if (!as->buffer) 1562 goto out_free; 1563 1564 spin_lock_init(&as->lock); 1565 1566 as->pdev = pdev; 1567 as->regs = devm_ioremap_resource(&pdev->dev, regs); 1568 if (IS_ERR(as->regs)) { 1569 ret = PTR_ERR(as->regs); 1570 goto out_free_buffer; 1571 } 1572 as->phybase = regs->start; 1573 as->irq = irq; 1574 as->clk = clk; 1575 1576 init_completion(&as->xfer_completion); 1577 1578 atmel_get_caps(as); 1579 1580 as->use_cs_gpios = true; 1581 if (atmel_spi_is_v2(as) && 1582 !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) { 1583 as->use_cs_gpios = false; 1584 master->num_chipselect = 4; 1585 } 1586 1587 as->use_dma = false; 1588 as->use_pdc = false; 1589 if (as->caps.has_dma_support) { 1590 ret = atmel_spi_configure_dma(as); 1591 if (ret == 0) 1592 as->use_dma = true; 1593 else if (ret == -EPROBE_DEFER) 1594 return ret; 1595 } else { 1596 as->use_pdc = true; 1597 } 1598 1599 if (as->caps.has_dma_support && !as->use_dma) 1600 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n"); 1601 1602 if (as->use_pdc) { 1603 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt, 1604 0, dev_name(&pdev->dev), master); 1605 } else { 1606 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt, 1607 0, dev_name(&pdev->dev), master); 1608 } 1609 if (ret) 1610 goto out_unmap_regs; 1611 1612 /* Initialize the hardware */ 1613 ret = clk_prepare_enable(clk); 1614 if (ret) 1615 goto out_free_irq; 1616 spi_writel(as, CR, SPI_BIT(SWRST)); 1617 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1618 if (as->caps.has_wdrbt) { 1619 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS) 1620 | SPI_BIT(MSTR)); 1621 } else { 1622 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); 1623 } 1624 1625 if (as->use_pdc) 1626 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1627 spi_writel(as, CR, SPI_BIT(SPIEN)); 1628 1629 as->fifo_size = 0; 1630 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size", 1631 &as->fifo_size)) { 1632 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size); 1633 spi_writel(as, CR, SPI_BIT(FIFOEN)); 1634 } 1635 1636 /* go! */ 1637 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n", 1638 (unsigned long)regs->start, irq); 1639 1640 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT); 1641 pm_runtime_use_autosuspend(&pdev->dev); 1642 pm_runtime_set_active(&pdev->dev); 1643 pm_runtime_enable(&pdev->dev); 1644 1645 ret = devm_spi_register_master(&pdev->dev, master); 1646 if (ret) 1647 goto out_free_dma; 1648 1649 return 0; 1650 1651 out_free_dma: 1652 pm_runtime_disable(&pdev->dev); 1653 pm_runtime_set_suspended(&pdev->dev); 1654 1655 if (as->use_dma) 1656 atmel_spi_release_dma(as); 1657 1658 spi_writel(as, CR, SPI_BIT(SWRST)); 1659 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1660 clk_disable_unprepare(clk); 1661 out_free_irq: 1662 out_unmap_regs: 1663 out_free_buffer: 1664 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, 1665 as->buffer_dma); 1666 out_free: 1667 spi_master_put(master); 1668 return ret; 1669 } 1670 1671 static int atmel_spi_remove(struct platform_device *pdev) 1672 { 1673 struct spi_master *master = platform_get_drvdata(pdev); 1674 struct atmel_spi *as = spi_master_get_devdata(master); 1675 1676 pm_runtime_get_sync(&pdev->dev); 1677 1678 /* reset the hardware and block queue progress */ 1679 spin_lock_irq(&as->lock); 1680 if (as->use_dma) { 1681 atmel_spi_stop_dma(as); 1682 atmel_spi_release_dma(as); 1683 } 1684 1685 spi_writel(as, CR, SPI_BIT(SWRST)); 1686 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1687 spi_readl(as, SR); 1688 spin_unlock_irq(&as->lock); 1689 1690 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, 1691 as->buffer_dma); 1692 1693 clk_disable_unprepare(as->clk); 1694 1695 pm_runtime_put_noidle(&pdev->dev); 1696 pm_runtime_disable(&pdev->dev); 1697 1698 return 0; 1699 } 1700 1701 #ifdef CONFIG_PM 1702 static int atmel_spi_runtime_suspend(struct device *dev) 1703 { 1704 struct spi_master *master = dev_get_drvdata(dev); 1705 struct atmel_spi *as = spi_master_get_devdata(master); 1706 1707 clk_disable_unprepare(as->clk); 1708 pinctrl_pm_select_sleep_state(dev); 1709 1710 return 0; 1711 } 1712 1713 static int atmel_spi_runtime_resume(struct device *dev) 1714 { 1715 struct spi_master *master = dev_get_drvdata(dev); 1716 struct atmel_spi *as = spi_master_get_devdata(master); 1717 1718 pinctrl_pm_select_default_state(dev); 1719 1720 return clk_prepare_enable(as->clk); 1721 } 1722 1723 static int atmel_spi_suspend(struct device *dev) 1724 { 1725 struct spi_master *master = dev_get_drvdata(dev); 1726 int ret; 1727 1728 /* Stop the queue running */ 1729 ret = spi_master_suspend(master); 1730 if (ret) { 1731 dev_warn(dev, "cannot suspend master\n"); 1732 return ret; 1733 } 1734 1735 if (!pm_runtime_suspended(dev)) 1736 atmel_spi_runtime_suspend(dev); 1737 1738 return 0; 1739 } 1740 1741 static int atmel_spi_resume(struct device *dev) 1742 { 1743 struct spi_master *master = dev_get_drvdata(dev); 1744 int ret; 1745 1746 if (!pm_runtime_suspended(dev)) { 1747 ret = atmel_spi_runtime_resume(dev); 1748 if (ret) 1749 return ret; 1750 } 1751 1752 /* Start the queue running */ 1753 ret = spi_master_resume(master); 1754 if (ret) 1755 dev_err(dev, "problem starting queue (%d)\n", ret); 1756 1757 return ret; 1758 } 1759 1760 static const struct dev_pm_ops atmel_spi_pm_ops = { 1761 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume) 1762 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend, 1763 atmel_spi_runtime_resume, NULL) 1764 }; 1765 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops) 1766 #else 1767 #define ATMEL_SPI_PM_OPS NULL 1768 #endif 1769 1770 #if defined(CONFIG_OF) 1771 static const struct of_device_id atmel_spi_dt_ids[] = { 1772 { .compatible = "atmel,at91rm9200-spi" }, 1773 { /* sentinel */ } 1774 }; 1775 1776 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids); 1777 #endif 1778 1779 static struct platform_driver atmel_spi_driver = { 1780 .driver = { 1781 .name = "atmel_spi", 1782 .pm = ATMEL_SPI_PM_OPS, 1783 .of_match_table = of_match_ptr(atmel_spi_dt_ids), 1784 }, 1785 .probe = atmel_spi_probe, 1786 .remove = atmel_spi_remove, 1787 }; 1788 module_platform_driver(atmel_spi_driver); 1789 1790 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); 1791 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 1792 MODULE_LICENSE("GPL"); 1793 MODULE_ALIAS("platform:atmel_spi"); 1794