xref: /linux/drivers/spi/spi-atmel.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/dma-atmel.h>
23 #include <linux/of.h>
24 
25 #include <linux/io.h>
26 #include <linux/gpio.h>
27 #include <linux/of_gpio.h>
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pm_runtime.h>
30 
31 /* SPI register offsets */
32 #define SPI_CR					0x0000
33 #define SPI_MR					0x0004
34 #define SPI_RDR					0x0008
35 #define SPI_TDR					0x000c
36 #define SPI_SR					0x0010
37 #define SPI_IER					0x0014
38 #define SPI_IDR					0x0018
39 #define SPI_IMR					0x001c
40 #define SPI_CSR0				0x0030
41 #define SPI_CSR1				0x0034
42 #define SPI_CSR2				0x0038
43 #define SPI_CSR3				0x003c
44 #define SPI_FMR					0x0040
45 #define SPI_FLR					0x0044
46 #define SPI_VERSION				0x00fc
47 #define SPI_RPR					0x0100
48 #define SPI_RCR					0x0104
49 #define SPI_TPR					0x0108
50 #define SPI_TCR					0x010c
51 #define SPI_RNPR				0x0110
52 #define SPI_RNCR				0x0114
53 #define SPI_TNPR				0x0118
54 #define SPI_TNCR				0x011c
55 #define SPI_PTCR				0x0120
56 #define SPI_PTSR				0x0124
57 
58 /* Bitfields in CR */
59 #define SPI_SPIEN_OFFSET			0
60 #define SPI_SPIEN_SIZE				1
61 #define SPI_SPIDIS_OFFSET			1
62 #define SPI_SPIDIS_SIZE				1
63 #define SPI_SWRST_OFFSET			7
64 #define SPI_SWRST_SIZE				1
65 #define SPI_LASTXFER_OFFSET			24
66 #define SPI_LASTXFER_SIZE			1
67 #define SPI_TXFCLR_OFFSET			16
68 #define SPI_TXFCLR_SIZE				1
69 #define SPI_RXFCLR_OFFSET			17
70 #define SPI_RXFCLR_SIZE				1
71 #define SPI_FIFOEN_OFFSET			30
72 #define SPI_FIFOEN_SIZE				1
73 #define SPI_FIFODIS_OFFSET			31
74 #define SPI_FIFODIS_SIZE			1
75 
76 /* Bitfields in MR */
77 #define SPI_MSTR_OFFSET				0
78 #define SPI_MSTR_SIZE				1
79 #define SPI_PS_OFFSET				1
80 #define SPI_PS_SIZE				1
81 #define SPI_PCSDEC_OFFSET			2
82 #define SPI_PCSDEC_SIZE				1
83 #define SPI_FDIV_OFFSET				3
84 #define SPI_FDIV_SIZE				1
85 #define SPI_MODFDIS_OFFSET			4
86 #define SPI_MODFDIS_SIZE			1
87 #define SPI_WDRBT_OFFSET			5
88 #define SPI_WDRBT_SIZE				1
89 #define SPI_LLB_OFFSET				7
90 #define SPI_LLB_SIZE				1
91 #define SPI_PCS_OFFSET				16
92 #define SPI_PCS_SIZE				4
93 #define SPI_DLYBCS_OFFSET			24
94 #define SPI_DLYBCS_SIZE				8
95 
96 /* Bitfields in RDR */
97 #define SPI_RD_OFFSET				0
98 #define SPI_RD_SIZE				16
99 
100 /* Bitfields in TDR */
101 #define SPI_TD_OFFSET				0
102 #define SPI_TD_SIZE				16
103 
104 /* Bitfields in SR */
105 #define SPI_RDRF_OFFSET				0
106 #define SPI_RDRF_SIZE				1
107 #define SPI_TDRE_OFFSET				1
108 #define SPI_TDRE_SIZE				1
109 #define SPI_MODF_OFFSET				2
110 #define SPI_MODF_SIZE				1
111 #define SPI_OVRES_OFFSET			3
112 #define SPI_OVRES_SIZE				1
113 #define SPI_ENDRX_OFFSET			4
114 #define SPI_ENDRX_SIZE				1
115 #define SPI_ENDTX_OFFSET			5
116 #define SPI_ENDTX_SIZE				1
117 #define SPI_RXBUFF_OFFSET			6
118 #define SPI_RXBUFF_SIZE				1
119 #define SPI_TXBUFE_OFFSET			7
120 #define SPI_TXBUFE_SIZE				1
121 #define SPI_NSSR_OFFSET				8
122 #define SPI_NSSR_SIZE				1
123 #define SPI_TXEMPTY_OFFSET			9
124 #define SPI_TXEMPTY_SIZE			1
125 #define SPI_SPIENS_OFFSET			16
126 #define SPI_SPIENS_SIZE				1
127 #define SPI_TXFEF_OFFSET			24
128 #define SPI_TXFEF_SIZE				1
129 #define SPI_TXFFF_OFFSET			25
130 #define SPI_TXFFF_SIZE				1
131 #define SPI_TXFTHF_OFFSET			26
132 #define SPI_TXFTHF_SIZE				1
133 #define SPI_RXFEF_OFFSET			27
134 #define SPI_RXFEF_SIZE				1
135 #define SPI_RXFFF_OFFSET			28
136 #define SPI_RXFFF_SIZE				1
137 #define SPI_RXFTHF_OFFSET			29
138 #define SPI_RXFTHF_SIZE				1
139 #define SPI_TXFPTEF_OFFSET			30
140 #define SPI_TXFPTEF_SIZE			1
141 #define SPI_RXFPTEF_OFFSET			31
142 #define SPI_RXFPTEF_SIZE			1
143 
144 /* Bitfields in CSR0 */
145 #define SPI_CPOL_OFFSET				0
146 #define SPI_CPOL_SIZE				1
147 #define SPI_NCPHA_OFFSET			1
148 #define SPI_NCPHA_SIZE				1
149 #define SPI_CSAAT_OFFSET			3
150 #define SPI_CSAAT_SIZE				1
151 #define SPI_BITS_OFFSET				4
152 #define SPI_BITS_SIZE				4
153 #define SPI_SCBR_OFFSET				8
154 #define SPI_SCBR_SIZE				8
155 #define SPI_DLYBS_OFFSET			16
156 #define SPI_DLYBS_SIZE				8
157 #define SPI_DLYBCT_OFFSET			24
158 #define SPI_DLYBCT_SIZE				8
159 
160 /* Bitfields in RCR */
161 #define SPI_RXCTR_OFFSET			0
162 #define SPI_RXCTR_SIZE				16
163 
164 /* Bitfields in TCR */
165 #define SPI_TXCTR_OFFSET			0
166 #define SPI_TXCTR_SIZE				16
167 
168 /* Bitfields in RNCR */
169 #define SPI_RXNCR_OFFSET			0
170 #define SPI_RXNCR_SIZE				16
171 
172 /* Bitfields in TNCR */
173 #define SPI_TXNCR_OFFSET			0
174 #define SPI_TXNCR_SIZE				16
175 
176 /* Bitfields in PTCR */
177 #define SPI_RXTEN_OFFSET			0
178 #define SPI_RXTEN_SIZE				1
179 #define SPI_RXTDIS_OFFSET			1
180 #define SPI_RXTDIS_SIZE				1
181 #define SPI_TXTEN_OFFSET			8
182 #define SPI_TXTEN_SIZE				1
183 #define SPI_TXTDIS_OFFSET			9
184 #define SPI_TXTDIS_SIZE				1
185 
186 /* Bitfields in FMR */
187 #define SPI_TXRDYM_OFFSET			0
188 #define SPI_TXRDYM_SIZE				2
189 #define SPI_RXRDYM_OFFSET			4
190 #define SPI_RXRDYM_SIZE				2
191 #define SPI_TXFTHRES_OFFSET			16
192 #define SPI_TXFTHRES_SIZE			6
193 #define SPI_RXFTHRES_OFFSET			24
194 #define SPI_RXFTHRES_SIZE			6
195 
196 /* Bitfields in FLR */
197 #define SPI_TXFL_OFFSET				0
198 #define SPI_TXFL_SIZE				6
199 #define SPI_RXFL_OFFSET				16
200 #define SPI_RXFL_SIZE				6
201 
202 /* Constants for BITS */
203 #define SPI_BITS_8_BPT				0
204 #define SPI_BITS_9_BPT				1
205 #define SPI_BITS_10_BPT				2
206 #define SPI_BITS_11_BPT				3
207 #define SPI_BITS_12_BPT				4
208 #define SPI_BITS_13_BPT				5
209 #define SPI_BITS_14_BPT				6
210 #define SPI_BITS_15_BPT				7
211 #define SPI_BITS_16_BPT				8
212 #define SPI_ONE_DATA				0
213 #define SPI_TWO_DATA				1
214 #define SPI_FOUR_DATA				2
215 
216 /* Bit manipulation macros */
217 #define SPI_BIT(name) \
218 	(1 << SPI_##name##_OFFSET)
219 #define SPI_BF(name, value) \
220 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
221 #define SPI_BFEXT(name, value) \
222 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
223 #define SPI_BFINS(name, value, old) \
224 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
225 	  | SPI_BF(name, value))
226 
227 /* Register access macros */
228 #ifdef CONFIG_AVR32
229 #define spi_readl(port, reg) \
230 	__raw_readl((port)->regs + SPI_##reg)
231 #define spi_writel(port, reg, value) \
232 	__raw_writel((value), (port)->regs + SPI_##reg)
233 
234 #define spi_readw(port, reg) \
235 	__raw_readw((port)->regs + SPI_##reg)
236 #define spi_writew(port, reg, value) \
237 	__raw_writew((value), (port)->regs + SPI_##reg)
238 
239 #define spi_readb(port, reg) \
240 	__raw_readb((port)->regs + SPI_##reg)
241 #define spi_writeb(port, reg, value) \
242 	__raw_writeb((value), (port)->regs + SPI_##reg)
243 #else
244 #define spi_readl(port, reg) \
245 	readl_relaxed((port)->regs + SPI_##reg)
246 #define spi_writel(port, reg, value) \
247 	writel_relaxed((value), (port)->regs + SPI_##reg)
248 
249 #define spi_readw(port, reg) \
250 	readw_relaxed((port)->regs + SPI_##reg)
251 #define spi_writew(port, reg, value) \
252 	writew_relaxed((value), (port)->regs + SPI_##reg)
253 
254 #define spi_readb(port, reg) \
255 	readb_relaxed((port)->regs + SPI_##reg)
256 #define spi_writeb(port, reg, value) \
257 	writeb_relaxed((value), (port)->regs + SPI_##reg)
258 #endif
259 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
260  * cache operations; better heuristics consider wordsize and bitrate.
261  */
262 #define DMA_MIN_BYTES	16
263 
264 #define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
265 
266 #define AUTOSUSPEND_TIMEOUT	2000
267 
268 struct atmel_spi_caps {
269 	bool	is_spi2;
270 	bool	has_wdrbt;
271 	bool	has_dma_support;
272 	bool	has_pdc_support;
273 };
274 
275 /*
276  * The core SPI transfer engine just talks to a register bank to set up
277  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
278  * framework provides the base clock, subdivided for each spi_device.
279  */
280 struct atmel_spi {
281 	spinlock_t		lock;
282 	unsigned long		flags;
283 
284 	phys_addr_t		phybase;
285 	void __iomem		*regs;
286 	int			irq;
287 	struct clk		*clk;
288 	struct platform_device	*pdev;
289 	unsigned long		spi_clk;
290 
291 	struct spi_transfer	*current_transfer;
292 	int			current_remaining_bytes;
293 	int			done_status;
294 	dma_addr_t		dma_addr_rx_bbuf;
295 	dma_addr_t		dma_addr_tx_bbuf;
296 	void			*addr_rx_bbuf;
297 	void			*addr_tx_bbuf;
298 
299 	struct completion	xfer_completion;
300 
301 	struct atmel_spi_caps	caps;
302 
303 	bool			use_dma;
304 	bool			use_pdc;
305 	bool			use_cs_gpios;
306 
307 	bool			keep_cs;
308 	bool			cs_active;
309 
310 	u32			fifo_size;
311 };
312 
313 /* Controller-specific per-slave state */
314 struct atmel_spi_device {
315 	unsigned int		npcs_pin;
316 	u32			csr;
317 };
318 
319 #define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
320 #define INVALID_DMA_ADDRESS	0xffffffff
321 
322 /*
323  * Version 2 of the SPI controller has
324  *  - CR.LASTXFER
325  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
326  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
327  *  - SPI_CSRx.CSAAT
328  *  - SPI_CSRx.SBCR allows faster clocking
329  */
330 static bool atmel_spi_is_v2(struct atmel_spi *as)
331 {
332 	return as->caps.is_spi2;
333 }
334 
335 /*
336  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
337  * they assume that spi slave device state will not change on deselect, so
338  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
339  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
340  * controllers have CSAAT and friends.
341  *
342  * Since the CSAAT functionality is a bit weird on newer controllers as
343  * well, we use GPIO to control nCSx pins on all controllers, updating
344  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
345  * support active-high chipselects despite the controller's belief that
346  * only active-low devices/systems exists.
347  *
348  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
349  * right when driven with GPIO.  ("Mode Fault does not allow more than one
350  * Master on Chip Select 0.")  No workaround exists for that ... so for
351  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
352  * and (c) will trigger that first erratum in some cases.
353  */
354 
355 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
356 {
357 	struct atmel_spi_device *asd = spi->controller_state;
358 	unsigned active = spi->mode & SPI_CS_HIGH;
359 	u32 mr;
360 
361 	if (atmel_spi_is_v2(as)) {
362 		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
363 		/* For the low SPI version, there is a issue that PDC transfer
364 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
365 		 */
366 		spi_writel(as, CSR0, asd->csr);
367 		if (as->caps.has_wdrbt) {
368 			spi_writel(as, MR,
369 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
370 					| SPI_BIT(WDRBT)
371 					| SPI_BIT(MODFDIS)
372 					| SPI_BIT(MSTR));
373 		} else {
374 			spi_writel(as, MR,
375 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
376 					| SPI_BIT(MODFDIS)
377 					| SPI_BIT(MSTR));
378 		}
379 
380 		mr = spi_readl(as, MR);
381 		if (as->use_cs_gpios)
382 			gpio_set_value(asd->npcs_pin, active);
383 	} else {
384 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
385 		int i;
386 		u32 csr;
387 
388 		/* Make sure clock polarity is correct */
389 		for (i = 0; i < spi->master->num_chipselect; i++) {
390 			csr = spi_readl(as, CSR0 + 4 * i);
391 			if ((csr ^ cpol) & SPI_BIT(CPOL))
392 				spi_writel(as, CSR0 + 4 * i,
393 						csr ^ SPI_BIT(CPOL));
394 		}
395 
396 		mr = spi_readl(as, MR);
397 		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
398 		if (as->use_cs_gpios && spi->chip_select != 0)
399 			gpio_set_value(asd->npcs_pin, active);
400 		spi_writel(as, MR, mr);
401 	}
402 
403 	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
404 			asd->npcs_pin, active ? " (high)" : "",
405 			mr);
406 }
407 
408 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
409 {
410 	struct atmel_spi_device *asd = spi->controller_state;
411 	unsigned active = spi->mode & SPI_CS_HIGH;
412 	u32 mr;
413 
414 	/* only deactivate *this* device; sometimes transfers to
415 	 * another device may be active when this routine is called.
416 	 */
417 	mr = spi_readl(as, MR);
418 	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
419 		mr = SPI_BFINS(PCS, 0xf, mr);
420 		spi_writel(as, MR, mr);
421 	}
422 
423 	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
424 			asd->npcs_pin, active ? " (low)" : "",
425 			mr);
426 
427 	if (!as->use_cs_gpios)
428 		spi_writel(as, CR, SPI_BIT(LASTXFER));
429 	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
430 		gpio_set_value(asd->npcs_pin, !active);
431 }
432 
433 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
434 {
435 	spin_lock_irqsave(&as->lock, as->flags);
436 }
437 
438 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
439 {
440 	spin_unlock_irqrestore(&as->lock, as->flags);
441 }
442 
443 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
444 {
445 	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
446 }
447 
448 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
449 				struct spi_transfer *xfer)
450 {
451 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
452 }
453 
454 static bool atmel_spi_can_dma(struct spi_master *master,
455 			      struct spi_device *spi,
456 			      struct spi_transfer *xfer)
457 {
458 	struct atmel_spi *as = spi_master_get_devdata(master);
459 
460 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
461 		return atmel_spi_use_dma(as, xfer) &&
462 			!atmel_spi_is_vmalloc_xfer(xfer);
463 	else
464 		return atmel_spi_use_dma(as, xfer);
465 
466 }
467 
468 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
469 				struct dma_slave_config *slave_config,
470 				u8 bits_per_word)
471 {
472 	struct spi_master *master = platform_get_drvdata(as->pdev);
473 	int err = 0;
474 
475 	if (bits_per_word > 8) {
476 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
477 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
478 	} else {
479 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
480 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
481 	}
482 
483 	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
484 	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
485 	slave_config->src_maxburst = 1;
486 	slave_config->dst_maxburst = 1;
487 	slave_config->device_fc = false;
488 
489 	/*
490 	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
491 	 * the Mode Register).
492 	 * So according to the datasheet, when FIFOs are available (and
493 	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
494 	 * In this mode, up to 2 data, not 4, can be written into the Transmit
495 	 * Data Register in a single access.
496 	 * However, the first data has to be written into the lowest 16 bits and
497 	 * the second data into the highest 16 bits of the Transmit
498 	 * Data Register. For 8bit data (the most frequent case), it would
499 	 * require to rework tx_buf so each data would actualy fit 16 bits.
500 	 * So we'd rather write only one data at the time. Hence the transmit
501 	 * path works the same whether FIFOs are available (and enabled) or not.
502 	 */
503 	slave_config->direction = DMA_MEM_TO_DEV;
504 	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
505 		dev_err(&as->pdev->dev,
506 			"failed to configure tx dma channel\n");
507 		err = -EINVAL;
508 	}
509 
510 	/*
511 	 * This driver configures the spi controller for master mode (MSTR bit
512 	 * set to '1' in the Mode Register).
513 	 * So according to the datasheet, when FIFOs are available (and
514 	 * enabled), the Receive FIFO operates in Single Data Mode.
515 	 * So the receive path works the same whether FIFOs are available (and
516 	 * enabled) or not.
517 	 */
518 	slave_config->direction = DMA_DEV_TO_MEM;
519 	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
520 		dev_err(&as->pdev->dev,
521 			"failed to configure rx dma channel\n");
522 		err = -EINVAL;
523 	}
524 
525 	return err;
526 }
527 
528 static int atmel_spi_configure_dma(struct spi_master *master,
529 				   struct atmel_spi *as)
530 {
531 	struct dma_slave_config	slave_config;
532 	struct device *dev = &as->pdev->dev;
533 	int err;
534 
535 	dma_cap_mask_t mask;
536 	dma_cap_zero(mask);
537 	dma_cap_set(DMA_SLAVE, mask);
538 
539 	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
540 	if (IS_ERR(master->dma_tx)) {
541 		err = PTR_ERR(master->dma_tx);
542 		if (err == -EPROBE_DEFER) {
543 			dev_warn(dev, "no DMA channel available at the moment\n");
544 			goto error_clear;
545 		}
546 		dev_err(dev,
547 			"DMA TX channel not available, SPI unable to use DMA\n");
548 		err = -EBUSY;
549 		goto error_clear;
550 	}
551 
552 	/*
553 	 * No reason to check EPROBE_DEFER here since we have already requested
554 	 * tx channel. If it fails here, it's for another reason.
555 	 */
556 	master->dma_rx = dma_request_slave_channel(dev, "rx");
557 
558 	if (!master->dma_rx) {
559 		dev_err(dev,
560 			"DMA RX channel not available, SPI unable to use DMA\n");
561 		err = -EBUSY;
562 		goto error;
563 	}
564 
565 	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
566 	if (err)
567 		goto error;
568 
569 	dev_info(&as->pdev->dev,
570 			"Using %s (tx) and %s (rx) for DMA transfers\n",
571 			dma_chan_name(master->dma_tx),
572 			dma_chan_name(master->dma_rx));
573 
574 	return 0;
575 error:
576 	if (master->dma_rx)
577 		dma_release_channel(master->dma_rx);
578 	if (!IS_ERR(master->dma_tx))
579 		dma_release_channel(master->dma_tx);
580 error_clear:
581 	master->dma_tx = master->dma_rx = NULL;
582 	return err;
583 }
584 
585 static void atmel_spi_stop_dma(struct spi_master *master)
586 {
587 	if (master->dma_rx)
588 		dmaengine_terminate_all(master->dma_rx);
589 	if (master->dma_tx)
590 		dmaengine_terminate_all(master->dma_tx);
591 }
592 
593 static void atmel_spi_release_dma(struct spi_master *master)
594 {
595 	if (master->dma_rx) {
596 		dma_release_channel(master->dma_rx);
597 		master->dma_rx = NULL;
598 	}
599 	if (master->dma_tx) {
600 		dma_release_channel(master->dma_tx);
601 		master->dma_tx = NULL;
602 	}
603 }
604 
605 /* This function is called by the DMA driver from tasklet context */
606 static void dma_callback(void *data)
607 {
608 	struct spi_master	*master = data;
609 	struct atmel_spi	*as = spi_master_get_devdata(master);
610 
611 	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
612 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
613 		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
614 		       as->current_transfer->len);
615 	}
616 	complete(&as->xfer_completion);
617 }
618 
619 /*
620  * Next transfer using PIO without FIFO.
621  */
622 static void atmel_spi_next_xfer_single(struct spi_master *master,
623 				       struct spi_transfer *xfer)
624 {
625 	struct atmel_spi	*as = spi_master_get_devdata(master);
626 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
627 
628 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
629 
630 	/* Make sure data is not remaining in RDR */
631 	spi_readl(as, RDR);
632 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
633 		spi_readl(as, RDR);
634 		cpu_relax();
635 	}
636 
637 	if (xfer->bits_per_word > 8)
638 		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
639 	else
640 		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
641 
642 	dev_dbg(master->dev.parent,
643 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
644 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
645 		xfer->bits_per_word);
646 
647 	/* Enable relevant interrupts */
648 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
649 }
650 
651 /*
652  * Next transfer using PIO with FIFO.
653  */
654 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
655 				     struct spi_transfer *xfer)
656 {
657 	struct atmel_spi *as = spi_master_get_devdata(master);
658 	u32 current_remaining_data, num_data;
659 	u32 offset = xfer->len - as->current_remaining_bytes;
660 	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
661 	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
662 	u16 td0, td1;
663 	u32 fifomr;
664 
665 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
666 
667 	/* Compute the number of data to transfer in the current iteration */
668 	current_remaining_data = ((xfer->bits_per_word > 8) ?
669 				  ((u32)as->current_remaining_bytes >> 1) :
670 				  (u32)as->current_remaining_bytes);
671 	num_data = min(current_remaining_data, as->fifo_size);
672 
673 	/* Flush RX and TX FIFOs */
674 	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
675 	while (spi_readl(as, FLR))
676 		cpu_relax();
677 
678 	/* Set RX FIFO Threshold to the number of data to transfer */
679 	fifomr = spi_readl(as, FMR);
680 	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
681 
682 	/* Clear FIFO flags in the Status Register, especially RXFTHF */
683 	(void)spi_readl(as, SR);
684 
685 	/* Fill TX FIFO */
686 	while (num_data >= 2) {
687 		if (xfer->bits_per_word > 8) {
688 			td0 = *words++;
689 			td1 = *words++;
690 		} else {
691 			td0 = *bytes++;
692 			td1 = *bytes++;
693 		}
694 
695 		spi_writel(as, TDR, (td1 << 16) | td0);
696 		num_data -= 2;
697 	}
698 
699 	if (num_data) {
700 		if (xfer->bits_per_word > 8)
701 			td0 = *words++;
702 		else
703 			td0 = *bytes++;
704 
705 		spi_writew(as, TDR, td0);
706 		num_data--;
707 	}
708 
709 	dev_dbg(master->dev.parent,
710 		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
711 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
712 		xfer->bits_per_word);
713 
714 	/*
715 	 * Enable RX FIFO Threshold Flag interrupt to be notified about
716 	 * transfer completion.
717 	 */
718 	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
719 }
720 
721 /*
722  * Next transfer using PIO.
723  */
724 static void atmel_spi_next_xfer_pio(struct spi_master *master,
725 				    struct spi_transfer *xfer)
726 {
727 	struct atmel_spi *as = spi_master_get_devdata(master);
728 
729 	if (as->fifo_size)
730 		atmel_spi_next_xfer_fifo(master, xfer);
731 	else
732 		atmel_spi_next_xfer_single(master, xfer);
733 }
734 
735 /*
736  * Submit next transfer for DMA.
737  */
738 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
739 				struct spi_transfer *xfer,
740 				u32 *plen)
741 {
742 	struct atmel_spi	*as = spi_master_get_devdata(master);
743 	struct dma_chan		*rxchan = master->dma_rx;
744 	struct dma_chan		*txchan = master->dma_tx;
745 	struct dma_async_tx_descriptor *rxdesc;
746 	struct dma_async_tx_descriptor *txdesc;
747 	struct dma_slave_config	slave_config;
748 	dma_cookie_t		cookie;
749 
750 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
751 
752 	/* Check that the channels are available */
753 	if (!rxchan || !txchan)
754 		return -ENODEV;
755 
756 	/* release lock for DMA operations */
757 	atmel_spi_unlock(as);
758 
759 	*plen = xfer->len;
760 
761 	if (atmel_spi_dma_slave_config(as, &slave_config,
762 				       xfer->bits_per_word))
763 		goto err_exit;
764 
765 	/* Send both scatterlists */
766 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
767 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
768 		rxdesc = dmaengine_prep_slave_single(rxchan,
769 						     as->dma_addr_rx_bbuf,
770 						     xfer->len,
771 						     DMA_DEV_TO_MEM,
772 						     DMA_PREP_INTERRUPT |
773 						     DMA_CTRL_ACK);
774 	} else {
775 		rxdesc = dmaengine_prep_slave_sg(rxchan,
776 						 xfer->rx_sg.sgl,
777 						 xfer->rx_sg.nents,
778 						 DMA_DEV_TO_MEM,
779 						 DMA_PREP_INTERRUPT |
780 						 DMA_CTRL_ACK);
781 	}
782 	if (!rxdesc)
783 		goto err_dma;
784 
785 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
786 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
787 		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
788 		txdesc = dmaengine_prep_slave_single(txchan,
789 						     as->dma_addr_tx_bbuf,
790 						     xfer->len, DMA_MEM_TO_DEV,
791 						     DMA_PREP_INTERRUPT |
792 						     DMA_CTRL_ACK);
793 	} else {
794 		txdesc = dmaengine_prep_slave_sg(txchan,
795 						 xfer->tx_sg.sgl,
796 						 xfer->tx_sg.nents,
797 						 DMA_MEM_TO_DEV,
798 						 DMA_PREP_INTERRUPT |
799 						 DMA_CTRL_ACK);
800 	}
801 	if (!txdesc)
802 		goto err_dma;
803 
804 	dev_dbg(master->dev.parent,
805 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
806 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
807 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
808 
809 	/* Enable relevant interrupts */
810 	spi_writel(as, IER, SPI_BIT(OVRES));
811 
812 	/* Put the callback on the RX transfer only, that should finish last */
813 	rxdesc->callback = dma_callback;
814 	rxdesc->callback_param = master;
815 
816 	/* Submit and fire RX and TX with TX last so we're ready to read! */
817 	cookie = rxdesc->tx_submit(rxdesc);
818 	if (dma_submit_error(cookie))
819 		goto err_dma;
820 	cookie = txdesc->tx_submit(txdesc);
821 	if (dma_submit_error(cookie))
822 		goto err_dma;
823 	rxchan->device->device_issue_pending(rxchan);
824 	txchan->device->device_issue_pending(txchan);
825 
826 	/* take back lock */
827 	atmel_spi_lock(as);
828 	return 0;
829 
830 err_dma:
831 	spi_writel(as, IDR, SPI_BIT(OVRES));
832 	atmel_spi_stop_dma(master);
833 err_exit:
834 	atmel_spi_lock(as);
835 	return -ENOMEM;
836 }
837 
838 static void atmel_spi_next_xfer_data(struct spi_master *master,
839 				struct spi_transfer *xfer,
840 				dma_addr_t *tx_dma,
841 				dma_addr_t *rx_dma,
842 				u32 *plen)
843 {
844 	*rx_dma = xfer->rx_dma + xfer->len - *plen;
845 	*tx_dma = xfer->tx_dma + xfer->len - *plen;
846 	if (*plen > master->max_dma_len)
847 		*plen = master->max_dma_len;
848 }
849 
850 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
851 				    struct spi_device *spi,
852 				    struct spi_transfer *xfer)
853 {
854 	u32			scbr, csr;
855 	unsigned long		bus_hz;
856 
857 	/* v1 chips start out at half the peripheral bus speed. */
858 	bus_hz = as->spi_clk;
859 	if (!atmel_spi_is_v2(as))
860 		bus_hz /= 2;
861 
862 	/*
863 	 * Calculate the lowest divider that satisfies the
864 	 * constraint, assuming div32/fdiv/mbz == 0.
865 	 */
866 	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
867 
868 	/*
869 	 * If the resulting divider doesn't fit into the
870 	 * register bitfield, we can't satisfy the constraint.
871 	 */
872 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
873 		dev_err(&spi->dev,
874 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
875 			xfer->speed_hz, scbr, bus_hz/255);
876 		return -EINVAL;
877 	}
878 	if (scbr == 0) {
879 		dev_err(&spi->dev,
880 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
881 			xfer->speed_hz, scbr, bus_hz);
882 		return -EINVAL;
883 	}
884 	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
885 	csr = SPI_BFINS(SCBR, scbr, csr);
886 	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
887 
888 	return 0;
889 }
890 
891 /*
892  * Submit next transfer for PDC.
893  * lock is held, spi irq is blocked
894  */
895 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
896 					struct spi_message *msg,
897 					struct spi_transfer *xfer)
898 {
899 	struct atmel_spi	*as = spi_master_get_devdata(master);
900 	u32			len;
901 	dma_addr_t		tx_dma, rx_dma;
902 
903 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
904 
905 	len = as->current_remaining_bytes;
906 	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
907 	as->current_remaining_bytes -= len;
908 
909 	spi_writel(as, RPR, rx_dma);
910 	spi_writel(as, TPR, tx_dma);
911 
912 	if (msg->spi->bits_per_word > 8)
913 		len >>= 1;
914 	spi_writel(as, RCR, len);
915 	spi_writel(as, TCR, len);
916 
917 	dev_dbg(&msg->spi->dev,
918 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
919 		xfer, xfer->len, xfer->tx_buf,
920 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
921 		(unsigned long long)xfer->rx_dma);
922 
923 	if (as->current_remaining_bytes) {
924 		len = as->current_remaining_bytes;
925 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
926 		as->current_remaining_bytes -= len;
927 
928 		spi_writel(as, RNPR, rx_dma);
929 		spi_writel(as, TNPR, tx_dma);
930 
931 		if (msg->spi->bits_per_word > 8)
932 			len >>= 1;
933 		spi_writel(as, RNCR, len);
934 		spi_writel(as, TNCR, len);
935 
936 		dev_dbg(&msg->spi->dev,
937 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
938 			xfer, xfer->len, xfer->tx_buf,
939 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
940 			(unsigned long long)xfer->rx_dma);
941 	}
942 
943 	/* REVISIT: We're waiting for RXBUFF before we start the next
944 	 * transfer because we need to handle some difficult timing
945 	 * issues otherwise. If we wait for TXBUFE in one transfer and
946 	 * then starts waiting for RXBUFF in the next, it's difficult
947 	 * to tell the difference between the RXBUFF interrupt we're
948 	 * actually waiting for and the RXBUFF interrupt of the
949 	 * previous transfer.
950 	 *
951 	 * It should be doable, though. Just not now...
952 	 */
953 	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
954 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
955 }
956 
957 /*
958  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
959  *  - The buffer is either valid for CPU access, else NULL
960  *  - If the buffer is valid, so is its DMA address
961  *
962  * This driver manages the dma address unless message->is_dma_mapped.
963  */
964 static int
965 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
966 {
967 	struct device	*dev = &as->pdev->dev;
968 
969 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
970 	if (xfer->tx_buf) {
971 		/* tx_buf is a const void* where we need a void * for the dma
972 		 * mapping */
973 		void *nonconst_tx = (void *)xfer->tx_buf;
974 
975 		xfer->tx_dma = dma_map_single(dev,
976 				nonconst_tx, xfer->len,
977 				DMA_TO_DEVICE);
978 		if (dma_mapping_error(dev, xfer->tx_dma))
979 			return -ENOMEM;
980 	}
981 	if (xfer->rx_buf) {
982 		xfer->rx_dma = dma_map_single(dev,
983 				xfer->rx_buf, xfer->len,
984 				DMA_FROM_DEVICE);
985 		if (dma_mapping_error(dev, xfer->rx_dma)) {
986 			if (xfer->tx_buf)
987 				dma_unmap_single(dev,
988 						xfer->tx_dma, xfer->len,
989 						DMA_TO_DEVICE);
990 			return -ENOMEM;
991 		}
992 	}
993 	return 0;
994 }
995 
996 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
997 				     struct spi_transfer *xfer)
998 {
999 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1000 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
1001 				 xfer->len, DMA_TO_DEVICE);
1002 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1003 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
1004 				 xfer->len, DMA_FROM_DEVICE);
1005 }
1006 
1007 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1008 {
1009 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1010 }
1011 
1012 static void
1013 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1014 {
1015 	u8		*rxp;
1016 	u16		*rxp16;
1017 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1018 
1019 	if (xfer->bits_per_word > 8) {
1020 		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1021 		*rxp16 = spi_readl(as, RDR);
1022 	} else {
1023 		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1024 		*rxp = spi_readl(as, RDR);
1025 	}
1026 	if (xfer->bits_per_word > 8) {
1027 		if (as->current_remaining_bytes > 2)
1028 			as->current_remaining_bytes -= 2;
1029 		else
1030 			as->current_remaining_bytes = 0;
1031 	} else {
1032 		as->current_remaining_bytes--;
1033 	}
1034 }
1035 
1036 static void
1037 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1038 {
1039 	u32 fifolr = spi_readl(as, FLR);
1040 	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1041 	u32 offset = xfer->len - as->current_remaining_bytes;
1042 	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1043 	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1044 	u16 rd; /* RD field is the lowest 16 bits of RDR */
1045 
1046 	/* Update the number of remaining bytes to transfer */
1047 	num_bytes = ((xfer->bits_per_word > 8) ?
1048 		     (num_data << 1) :
1049 		     num_data);
1050 
1051 	if (as->current_remaining_bytes > num_bytes)
1052 		as->current_remaining_bytes -= num_bytes;
1053 	else
1054 		as->current_remaining_bytes = 0;
1055 
1056 	/* Handle odd number of bytes when data are more than 8bit width */
1057 	if (xfer->bits_per_word > 8)
1058 		as->current_remaining_bytes &= ~0x1;
1059 
1060 	/* Read data */
1061 	while (num_data) {
1062 		rd = spi_readl(as, RDR);
1063 		if (xfer->bits_per_word > 8)
1064 			*words++ = rd;
1065 		else
1066 			*bytes++ = rd;
1067 		num_data--;
1068 	}
1069 }
1070 
1071 /* Called from IRQ
1072  *
1073  * Must update "current_remaining_bytes" to keep track of data
1074  * to transfer.
1075  */
1076 static void
1077 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1078 {
1079 	if (as->fifo_size)
1080 		atmel_spi_pump_fifo_data(as, xfer);
1081 	else
1082 		atmel_spi_pump_single_data(as, xfer);
1083 }
1084 
1085 /* Interrupt
1086  *
1087  * No need for locking in this Interrupt handler: done_status is the
1088  * only information modified.
1089  */
1090 static irqreturn_t
1091 atmel_spi_pio_interrupt(int irq, void *dev_id)
1092 {
1093 	struct spi_master	*master = dev_id;
1094 	struct atmel_spi	*as = spi_master_get_devdata(master);
1095 	u32			status, pending, imr;
1096 	struct spi_transfer	*xfer;
1097 	int			ret = IRQ_NONE;
1098 
1099 	imr = spi_readl(as, IMR);
1100 	status = spi_readl(as, SR);
1101 	pending = status & imr;
1102 
1103 	if (pending & SPI_BIT(OVRES)) {
1104 		ret = IRQ_HANDLED;
1105 		spi_writel(as, IDR, SPI_BIT(OVRES));
1106 		dev_warn(master->dev.parent, "overrun\n");
1107 
1108 		/*
1109 		 * When we get an overrun, we disregard the current
1110 		 * transfer. Data will not be copied back from any
1111 		 * bounce buffer and msg->actual_len will not be
1112 		 * updated with the last xfer.
1113 		 *
1114 		 * We will also not process any remaning transfers in
1115 		 * the message.
1116 		 */
1117 		as->done_status = -EIO;
1118 		smp_wmb();
1119 
1120 		/* Clear any overrun happening while cleaning up */
1121 		spi_readl(as, SR);
1122 
1123 		complete(&as->xfer_completion);
1124 
1125 	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1126 		atmel_spi_lock(as);
1127 
1128 		if (as->current_remaining_bytes) {
1129 			ret = IRQ_HANDLED;
1130 			xfer = as->current_transfer;
1131 			atmel_spi_pump_pio_data(as, xfer);
1132 			if (!as->current_remaining_bytes)
1133 				spi_writel(as, IDR, pending);
1134 
1135 			complete(&as->xfer_completion);
1136 		}
1137 
1138 		atmel_spi_unlock(as);
1139 	} else {
1140 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1141 		ret = IRQ_HANDLED;
1142 		spi_writel(as, IDR, pending);
1143 	}
1144 
1145 	return ret;
1146 }
1147 
1148 static irqreturn_t
1149 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1150 {
1151 	struct spi_master	*master = dev_id;
1152 	struct atmel_spi	*as = spi_master_get_devdata(master);
1153 	u32			status, pending, imr;
1154 	int			ret = IRQ_NONE;
1155 
1156 	imr = spi_readl(as, IMR);
1157 	status = spi_readl(as, SR);
1158 	pending = status & imr;
1159 
1160 	if (pending & SPI_BIT(OVRES)) {
1161 
1162 		ret = IRQ_HANDLED;
1163 
1164 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1165 				     | SPI_BIT(OVRES)));
1166 
1167 		/* Clear any overrun happening while cleaning up */
1168 		spi_readl(as, SR);
1169 
1170 		as->done_status = -EIO;
1171 
1172 		complete(&as->xfer_completion);
1173 
1174 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1175 		ret = IRQ_HANDLED;
1176 
1177 		spi_writel(as, IDR, pending);
1178 
1179 		complete(&as->xfer_completion);
1180 	}
1181 
1182 	return ret;
1183 }
1184 
1185 static int atmel_spi_setup(struct spi_device *spi)
1186 {
1187 	struct atmel_spi	*as;
1188 	struct atmel_spi_device	*asd;
1189 	u32			csr;
1190 	unsigned int		bits = spi->bits_per_word;
1191 	unsigned int		npcs_pin;
1192 
1193 	as = spi_master_get_devdata(spi->master);
1194 
1195 	/* see notes above re chipselect */
1196 	if (!atmel_spi_is_v2(as)
1197 			&& spi->chip_select == 0
1198 			&& (spi->mode & SPI_CS_HIGH)) {
1199 		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1200 		return -EINVAL;
1201 	}
1202 
1203 	csr = SPI_BF(BITS, bits - 8);
1204 	if (spi->mode & SPI_CPOL)
1205 		csr |= SPI_BIT(CPOL);
1206 	if (!(spi->mode & SPI_CPHA))
1207 		csr |= SPI_BIT(NCPHA);
1208 	if (!as->use_cs_gpios)
1209 		csr |= SPI_BIT(CSAAT);
1210 
1211 	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1212 	 *
1213 	 * DLYBCT would add delays between words, slowing down transfers.
1214 	 * It could potentially be useful to cope with DMA bottlenecks, but
1215 	 * in those cases it's probably best to just use a lower bitrate.
1216 	 */
1217 	csr |= SPI_BF(DLYBS, 0);
1218 	csr |= SPI_BF(DLYBCT, 0);
1219 
1220 	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1221 	npcs_pin = (unsigned long)spi->controller_data;
1222 
1223 	if (!as->use_cs_gpios)
1224 		npcs_pin = spi->chip_select;
1225 	else if (gpio_is_valid(spi->cs_gpio))
1226 		npcs_pin = spi->cs_gpio;
1227 
1228 	asd = spi->controller_state;
1229 	if (!asd) {
1230 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1231 		if (!asd)
1232 			return -ENOMEM;
1233 
1234 		if (as->use_cs_gpios)
1235 			gpio_direction_output(npcs_pin,
1236 					      !(spi->mode & SPI_CS_HIGH));
1237 
1238 		asd->npcs_pin = npcs_pin;
1239 		spi->controller_state = asd;
1240 	}
1241 
1242 	asd->csr = csr;
1243 
1244 	dev_dbg(&spi->dev,
1245 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1246 		bits, spi->mode, spi->chip_select, csr);
1247 
1248 	if (!atmel_spi_is_v2(as))
1249 		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1250 
1251 	return 0;
1252 }
1253 
1254 static int atmel_spi_one_transfer(struct spi_master *master,
1255 					struct spi_message *msg,
1256 					struct spi_transfer *xfer)
1257 {
1258 	struct atmel_spi	*as;
1259 	struct spi_device	*spi = msg->spi;
1260 	u8			bits;
1261 	u32			len;
1262 	struct atmel_spi_device	*asd;
1263 	int			timeout;
1264 	int			ret;
1265 	unsigned long		dma_timeout;
1266 
1267 	as = spi_master_get_devdata(master);
1268 
1269 	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1270 		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1271 		return -EINVAL;
1272 	}
1273 
1274 	asd = spi->controller_state;
1275 	bits = (asd->csr >> 4) & 0xf;
1276 	if (bits != xfer->bits_per_word - 8) {
1277 		dev_dbg(&spi->dev,
1278 			"you can't yet change bits_per_word in transfers\n");
1279 		return -ENOPROTOOPT;
1280 	}
1281 
1282 	/*
1283 	 * DMA map early, for performance (empties dcache ASAP) and
1284 	 * better fault reporting.
1285 	 */
1286 	if ((!msg->is_dma_mapped)
1287 		&& as->use_pdc) {
1288 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1289 			return -ENOMEM;
1290 	}
1291 
1292 	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1293 
1294 	as->done_status = 0;
1295 	as->current_transfer = xfer;
1296 	as->current_remaining_bytes = xfer->len;
1297 	while (as->current_remaining_bytes) {
1298 		reinit_completion(&as->xfer_completion);
1299 
1300 		if (as->use_pdc) {
1301 			atmel_spi_pdc_next_xfer(master, msg, xfer);
1302 		} else if (atmel_spi_use_dma(as, xfer)) {
1303 			len = as->current_remaining_bytes;
1304 			ret = atmel_spi_next_xfer_dma_submit(master,
1305 								xfer, &len);
1306 			if (ret) {
1307 				dev_err(&spi->dev,
1308 					"unable to use DMA, fallback to PIO\n");
1309 				atmel_spi_next_xfer_pio(master, xfer);
1310 			} else {
1311 				as->current_remaining_bytes -= len;
1312 				if (as->current_remaining_bytes < 0)
1313 					as->current_remaining_bytes = 0;
1314 			}
1315 		} else {
1316 			atmel_spi_next_xfer_pio(master, xfer);
1317 		}
1318 
1319 		/* interrupts are disabled, so free the lock for schedule */
1320 		atmel_spi_unlock(as);
1321 		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1322 							  SPI_DMA_TIMEOUT);
1323 		atmel_spi_lock(as);
1324 		if (WARN_ON(dma_timeout == 0)) {
1325 			dev_err(&spi->dev, "spi transfer timeout\n");
1326 			as->done_status = -EIO;
1327 		}
1328 
1329 		if (as->done_status)
1330 			break;
1331 	}
1332 
1333 	if (as->done_status) {
1334 		if (as->use_pdc) {
1335 			dev_warn(master->dev.parent,
1336 				"overrun (%u/%u remaining)\n",
1337 				spi_readl(as, TCR), spi_readl(as, RCR));
1338 
1339 			/*
1340 			 * Clean up DMA registers and make sure the data
1341 			 * registers are empty.
1342 			 */
1343 			spi_writel(as, RNCR, 0);
1344 			spi_writel(as, TNCR, 0);
1345 			spi_writel(as, RCR, 0);
1346 			spi_writel(as, TCR, 0);
1347 			for (timeout = 1000; timeout; timeout--)
1348 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1349 					break;
1350 			if (!timeout)
1351 				dev_warn(master->dev.parent,
1352 					 "timeout waiting for TXEMPTY");
1353 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1354 				spi_readl(as, RDR);
1355 
1356 			/* Clear any overrun happening while cleaning up */
1357 			spi_readl(as, SR);
1358 
1359 		} else if (atmel_spi_use_dma(as, xfer)) {
1360 			atmel_spi_stop_dma(master);
1361 		}
1362 
1363 		if (!msg->is_dma_mapped
1364 			&& as->use_pdc)
1365 			atmel_spi_dma_unmap_xfer(master, xfer);
1366 
1367 		return 0;
1368 
1369 	} else {
1370 		/* only update length if no error */
1371 		msg->actual_length += xfer->len;
1372 	}
1373 
1374 	if (!msg->is_dma_mapped
1375 		&& as->use_pdc)
1376 		atmel_spi_dma_unmap_xfer(master, xfer);
1377 
1378 	if (xfer->delay_usecs)
1379 		udelay(xfer->delay_usecs);
1380 
1381 	if (xfer->cs_change) {
1382 		if (list_is_last(&xfer->transfer_list,
1383 				 &msg->transfers)) {
1384 			as->keep_cs = true;
1385 		} else {
1386 			as->cs_active = !as->cs_active;
1387 			if (as->cs_active)
1388 				cs_activate(as, msg->spi);
1389 			else
1390 				cs_deactivate(as, msg->spi);
1391 		}
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 static int atmel_spi_transfer_one_message(struct spi_master *master,
1398 						struct spi_message *msg)
1399 {
1400 	struct atmel_spi *as;
1401 	struct spi_transfer *xfer;
1402 	struct spi_device *spi = msg->spi;
1403 	int ret = 0;
1404 
1405 	as = spi_master_get_devdata(master);
1406 
1407 	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1408 					msg, dev_name(&spi->dev));
1409 
1410 	atmel_spi_lock(as);
1411 	cs_activate(as, spi);
1412 
1413 	as->cs_active = true;
1414 	as->keep_cs = false;
1415 
1416 	msg->status = 0;
1417 	msg->actual_length = 0;
1418 
1419 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1420 		ret = atmel_spi_one_transfer(master, msg, xfer);
1421 		if (ret)
1422 			goto msg_done;
1423 	}
1424 
1425 	if (as->use_pdc)
1426 		atmel_spi_disable_pdc_transfer(as);
1427 
1428 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1429 		dev_dbg(&spi->dev,
1430 			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1431 			xfer, xfer->len,
1432 			xfer->tx_buf, &xfer->tx_dma,
1433 			xfer->rx_buf, &xfer->rx_dma);
1434 	}
1435 
1436 msg_done:
1437 	if (!as->keep_cs)
1438 		cs_deactivate(as, msg->spi);
1439 
1440 	atmel_spi_unlock(as);
1441 
1442 	msg->status = as->done_status;
1443 	spi_finalize_current_message(spi->master);
1444 
1445 	return ret;
1446 }
1447 
1448 static void atmel_spi_cleanup(struct spi_device *spi)
1449 {
1450 	struct atmel_spi_device	*asd = spi->controller_state;
1451 
1452 	if (!asd)
1453 		return;
1454 
1455 	spi->controller_state = NULL;
1456 	kfree(asd);
1457 }
1458 
1459 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1460 {
1461 	return spi_readl(as, VERSION) & 0x00000fff;
1462 }
1463 
1464 static void atmel_get_caps(struct atmel_spi *as)
1465 {
1466 	unsigned int version;
1467 
1468 	version = atmel_get_version(as);
1469 
1470 	as->caps.is_spi2 = version > 0x121;
1471 	as->caps.has_wdrbt = version >= 0x210;
1472 	as->caps.has_dma_support = version >= 0x212;
1473 	as->caps.has_pdc_support = version < 0x212;
1474 }
1475 
1476 /*-------------------------------------------------------------------------*/
1477 static int atmel_spi_gpio_cs(struct platform_device *pdev)
1478 {
1479 	struct spi_master	*master = platform_get_drvdata(pdev);
1480 	struct atmel_spi	*as = spi_master_get_devdata(master);
1481 	struct device_node	*np = master->dev.of_node;
1482 	int			i;
1483 	int			ret = 0;
1484 	int			nb = 0;
1485 
1486 	if (!as->use_cs_gpios)
1487 		return 0;
1488 
1489 	if (!np)
1490 		return 0;
1491 
1492 	nb = of_gpio_named_count(np, "cs-gpios");
1493 	for (i = 0; i < nb; i++) {
1494 		int cs_gpio = of_get_named_gpio(pdev->dev.of_node,
1495 						"cs-gpios", i);
1496 
1497 		if (cs_gpio == -EPROBE_DEFER)
1498 			return cs_gpio;
1499 
1500 		if (gpio_is_valid(cs_gpio)) {
1501 			ret = devm_gpio_request(&pdev->dev, cs_gpio,
1502 						dev_name(&pdev->dev));
1503 			if (ret)
1504 				return ret;
1505 		}
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 static void atmel_spi_init(struct atmel_spi *as)
1512 {
1513 	spi_writel(as, CR, SPI_BIT(SWRST));
1514 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1515 
1516 	/* It is recommended to enable FIFOs first thing after reset */
1517 	if (as->fifo_size)
1518 		spi_writel(as, CR, SPI_BIT(FIFOEN));
1519 
1520 	if (as->caps.has_wdrbt) {
1521 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1522 				| SPI_BIT(MSTR));
1523 	} else {
1524 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1525 	}
1526 
1527 	if (as->use_pdc)
1528 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1529 	spi_writel(as, CR, SPI_BIT(SPIEN));
1530 }
1531 
1532 static int atmel_spi_probe(struct platform_device *pdev)
1533 {
1534 	struct resource		*regs;
1535 	int			irq;
1536 	struct clk		*clk;
1537 	int			ret;
1538 	struct spi_master	*master;
1539 	struct atmel_spi	*as;
1540 
1541 	/* Select default pin state */
1542 	pinctrl_pm_select_default_state(&pdev->dev);
1543 
1544 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1545 	if (!regs)
1546 		return -ENXIO;
1547 
1548 	irq = platform_get_irq(pdev, 0);
1549 	if (irq < 0)
1550 		return irq;
1551 
1552 	clk = devm_clk_get(&pdev->dev, "spi_clk");
1553 	if (IS_ERR(clk))
1554 		return PTR_ERR(clk);
1555 
1556 	/* setup spi core then atmel-specific driver state */
1557 	ret = -ENOMEM;
1558 	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1559 	if (!master)
1560 		goto out_free;
1561 
1562 	/* the spi->mode bits understood by this driver: */
1563 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1564 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1565 	master->dev.of_node = pdev->dev.of_node;
1566 	master->bus_num = pdev->id;
1567 	master->num_chipselect = master->dev.of_node ? 0 : 4;
1568 	master->setup = atmel_spi_setup;
1569 	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1570 	master->transfer_one_message = atmel_spi_transfer_one_message;
1571 	master->cleanup = atmel_spi_cleanup;
1572 	master->auto_runtime_pm = true;
1573 	master->max_dma_len = SPI_MAX_DMA_XFER;
1574 	master->can_dma = atmel_spi_can_dma;
1575 	platform_set_drvdata(pdev, master);
1576 
1577 	as = spi_master_get_devdata(master);
1578 
1579 	spin_lock_init(&as->lock);
1580 
1581 	as->pdev = pdev;
1582 	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1583 	if (IS_ERR(as->regs)) {
1584 		ret = PTR_ERR(as->regs);
1585 		goto out_unmap_regs;
1586 	}
1587 	as->phybase = regs->start;
1588 	as->irq = irq;
1589 	as->clk = clk;
1590 
1591 	init_completion(&as->xfer_completion);
1592 
1593 	atmel_get_caps(as);
1594 
1595 	as->use_cs_gpios = true;
1596 	if (atmel_spi_is_v2(as) &&
1597 	    pdev->dev.of_node &&
1598 	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1599 		as->use_cs_gpios = false;
1600 		master->num_chipselect = 4;
1601 	}
1602 
1603 	ret = atmel_spi_gpio_cs(pdev);
1604 	if (ret)
1605 		goto out_unmap_regs;
1606 
1607 	as->use_dma = false;
1608 	as->use_pdc = false;
1609 	if (as->caps.has_dma_support) {
1610 		ret = atmel_spi_configure_dma(master, as);
1611 		if (ret == 0) {
1612 			as->use_dma = true;
1613 		} else if (ret == -EPROBE_DEFER) {
1614 			return ret;
1615 		}
1616 	} else if (as->caps.has_pdc_support) {
1617 		as->use_pdc = true;
1618 	}
1619 
1620 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1621 		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1622 						      SPI_MAX_DMA_XFER,
1623 						      &as->dma_addr_rx_bbuf,
1624 						      GFP_KERNEL | GFP_DMA);
1625 		if (!as->addr_rx_bbuf) {
1626 			as->use_dma = false;
1627 		} else {
1628 			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1629 					SPI_MAX_DMA_XFER,
1630 					&as->dma_addr_tx_bbuf,
1631 					GFP_KERNEL | GFP_DMA);
1632 			if (!as->addr_tx_bbuf) {
1633 				as->use_dma = false;
1634 				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1635 						  as->addr_rx_bbuf,
1636 						  as->dma_addr_rx_bbuf);
1637 			}
1638 		}
1639 		if (!as->use_dma)
1640 			dev_info(master->dev.parent,
1641 				 "  can not allocate dma coherent memory\n");
1642 	}
1643 
1644 	if (as->caps.has_dma_support && !as->use_dma)
1645 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1646 
1647 	if (as->use_pdc) {
1648 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1649 					0, dev_name(&pdev->dev), master);
1650 	} else {
1651 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1652 					0, dev_name(&pdev->dev), master);
1653 	}
1654 	if (ret)
1655 		goto out_unmap_regs;
1656 
1657 	/* Initialize the hardware */
1658 	ret = clk_prepare_enable(clk);
1659 	if (ret)
1660 		goto out_free_irq;
1661 
1662 	as->spi_clk = clk_get_rate(clk);
1663 
1664 	as->fifo_size = 0;
1665 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1666 				  &as->fifo_size)) {
1667 		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1668 	}
1669 
1670 	atmel_spi_init(as);
1671 
1672 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1673 	pm_runtime_use_autosuspend(&pdev->dev);
1674 	pm_runtime_set_active(&pdev->dev);
1675 	pm_runtime_enable(&pdev->dev);
1676 
1677 	ret = devm_spi_register_master(&pdev->dev, master);
1678 	if (ret)
1679 		goto out_free_dma;
1680 
1681 	/* go! */
1682 	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1683 			atmel_get_version(as), (unsigned long)regs->start,
1684 			irq);
1685 
1686 	return 0;
1687 
1688 out_free_dma:
1689 	pm_runtime_disable(&pdev->dev);
1690 	pm_runtime_set_suspended(&pdev->dev);
1691 
1692 	if (as->use_dma)
1693 		atmel_spi_release_dma(master);
1694 
1695 	spi_writel(as, CR, SPI_BIT(SWRST));
1696 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1697 	clk_disable_unprepare(clk);
1698 out_free_irq:
1699 out_unmap_regs:
1700 out_free:
1701 	spi_master_put(master);
1702 	return ret;
1703 }
1704 
1705 static int atmel_spi_remove(struct platform_device *pdev)
1706 {
1707 	struct spi_master	*master = platform_get_drvdata(pdev);
1708 	struct atmel_spi	*as = spi_master_get_devdata(master);
1709 
1710 	pm_runtime_get_sync(&pdev->dev);
1711 
1712 	/* reset the hardware and block queue progress */
1713 	if (as->use_dma) {
1714 		atmel_spi_stop_dma(master);
1715 		atmel_spi_release_dma(master);
1716 		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1717 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1718 					  as->addr_tx_bbuf,
1719 					  as->dma_addr_tx_bbuf);
1720 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1721 					  as->addr_rx_bbuf,
1722 					  as->dma_addr_rx_bbuf);
1723 		}
1724 	}
1725 
1726 	spin_lock_irq(&as->lock);
1727 	spi_writel(as, CR, SPI_BIT(SWRST));
1728 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1729 	spi_readl(as, SR);
1730 	spin_unlock_irq(&as->lock);
1731 
1732 	clk_disable_unprepare(as->clk);
1733 
1734 	pm_runtime_put_noidle(&pdev->dev);
1735 	pm_runtime_disable(&pdev->dev);
1736 
1737 	return 0;
1738 }
1739 
1740 #ifdef CONFIG_PM
1741 static int atmel_spi_runtime_suspend(struct device *dev)
1742 {
1743 	struct spi_master *master = dev_get_drvdata(dev);
1744 	struct atmel_spi *as = spi_master_get_devdata(master);
1745 
1746 	clk_disable_unprepare(as->clk);
1747 	pinctrl_pm_select_sleep_state(dev);
1748 
1749 	return 0;
1750 }
1751 
1752 static int atmel_spi_runtime_resume(struct device *dev)
1753 {
1754 	struct spi_master *master = dev_get_drvdata(dev);
1755 	struct atmel_spi *as = spi_master_get_devdata(master);
1756 
1757 	pinctrl_pm_select_default_state(dev);
1758 
1759 	return clk_prepare_enable(as->clk);
1760 }
1761 
1762 #ifdef CONFIG_PM_SLEEP
1763 static int atmel_spi_suspend(struct device *dev)
1764 {
1765 	struct spi_master *master = dev_get_drvdata(dev);
1766 	int ret;
1767 
1768 	/* Stop the queue running */
1769 	ret = spi_master_suspend(master);
1770 	if (ret) {
1771 		dev_warn(dev, "cannot suspend master\n");
1772 		return ret;
1773 	}
1774 
1775 	if (!pm_runtime_suspended(dev))
1776 		atmel_spi_runtime_suspend(dev);
1777 
1778 	return 0;
1779 }
1780 
1781 static int atmel_spi_resume(struct device *dev)
1782 {
1783 	struct spi_master *master = dev_get_drvdata(dev);
1784 	struct atmel_spi *as = spi_master_get_devdata(master);
1785 	int ret;
1786 
1787 	ret = clk_prepare_enable(as->clk);
1788 	if (ret)
1789 		return ret;
1790 
1791 	atmel_spi_init(as);
1792 
1793 	clk_disable_unprepare(as->clk);
1794 
1795 	if (!pm_runtime_suspended(dev)) {
1796 		ret = atmel_spi_runtime_resume(dev);
1797 		if (ret)
1798 			return ret;
1799 	}
1800 
1801 	/* Start the queue running */
1802 	ret = spi_master_resume(master);
1803 	if (ret)
1804 		dev_err(dev, "problem starting queue (%d)\n", ret);
1805 
1806 	return ret;
1807 }
1808 #endif
1809 
1810 static const struct dev_pm_ops atmel_spi_pm_ops = {
1811 	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1812 	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1813 			   atmel_spi_runtime_resume, NULL)
1814 };
1815 #define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1816 #else
1817 #define ATMEL_SPI_PM_OPS	NULL
1818 #endif
1819 
1820 #if defined(CONFIG_OF)
1821 static const struct of_device_id atmel_spi_dt_ids[] = {
1822 	{ .compatible = "atmel,at91rm9200-spi" },
1823 	{ /* sentinel */ }
1824 };
1825 
1826 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1827 #endif
1828 
1829 static struct platform_driver atmel_spi_driver = {
1830 	.driver		= {
1831 		.name	= "atmel_spi",
1832 		.pm	= ATMEL_SPI_PM_OPS,
1833 		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1834 	},
1835 	.probe		= atmel_spi_probe,
1836 	.remove		= atmel_spi_remove,
1837 };
1838 module_platform_driver(atmel_spi_driver);
1839 
1840 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1841 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1842 MODULE_LICENSE("GPL");
1843 MODULE_ALIAS("platform:atmel_spi");
1844