1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Atmel AT32 and AT91 SPI Controllers 4 * 5 * Copyright (C) 2006 Atmel Corporation 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/clk.h> 10 #include <linux/module.h> 11 #include <linux/platform_device.h> 12 #include <linux/delay.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/dmaengine.h> 15 #include <linux/err.h> 16 #include <linux/interrupt.h> 17 #include <linux/spi/spi.h> 18 #include <linux/slab.h> 19 #include <linux/platform_data/dma-atmel.h> 20 #include <linux/of.h> 21 22 #include <linux/io.h> 23 #include <linux/gpio/consumer.h> 24 #include <linux/pinctrl/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <trace/events/spi.h> 27 28 /* SPI register offsets */ 29 #define SPI_CR 0x0000 30 #define SPI_MR 0x0004 31 #define SPI_RDR 0x0008 32 #define SPI_TDR 0x000c 33 #define SPI_SR 0x0010 34 #define SPI_IER 0x0014 35 #define SPI_IDR 0x0018 36 #define SPI_IMR 0x001c 37 #define SPI_CSR0 0x0030 38 #define SPI_CSR1 0x0034 39 #define SPI_CSR2 0x0038 40 #define SPI_CSR3 0x003c 41 #define SPI_FMR 0x0040 42 #define SPI_FLR 0x0044 43 #define SPI_VERSION 0x00fc 44 #define SPI_RPR 0x0100 45 #define SPI_RCR 0x0104 46 #define SPI_TPR 0x0108 47 #define SPI_TCR 0x010c 48 #define SPI_RNPR 0x0110 49 #define SPI_RNCR 0x0114 50 #define SPI_TNPR 0x0118 51 #define SPI_TNCR 0x011c 52 #define SPI_PTCR 0x0120 53 #define SPI_PTSR 0x0124 54 55 /* Bitfields in CR */ 56 #define SPI_SPIEN_OFFSET 0 57 #define SPI_SPIEN_SIZE 1 58 #define SPI_SPIDIS_OFFSET 1 59 #define SPI_SPIDIS_SIZE 1 60 #define SPI_SWRST_OFFSET 7 61 #define SPI_SWRST_SIZE 1 62 #define SPI_LASTXFER_OFFSET 24 63 #define SPI_LASTXFER_SIZE 1 64 #define SPI_TXFCLR_OFFSET 16 65 #define SPI_TXFCLR_SIZE 1 66 #define SPI_RXFCLR_OFFSET 17 67 #define SPI_RXFCLR_SIZE 1 68 #define SPI_FIFOEN_OFFSET 30 69 #define SPI_FIFOEN_SIZE 1 70 #define SPI_FIFODIS_OFFSET 31 71 #define SPI_FIFODIS_SIZE 1 72 73 /* Bitfields in MR */ 74 #define SPI_MSTR_OFFSET 0 75 #define SPI_MSTR_SIZE 1 76 #define SPI_PS_OFFSET 1 77 #define SPI_PS_SIZE 1 78 #define SPI_PCSDEC_OFFSET 2 79 #define SPI_PCSDEC_SIZE 1 80 #define SPI_FDIV_OFFSET 3 81 #define SPI_FDIV_SIZE 1 82 #define SPI_MODFDIS_OFFSET 4 83 #define SPI_MODFDIS_SIZE 1 84 #define SPI_WDRBT_OFFSET 5 85 #define SPI_WDRBT_SIZE 1 86 #define SPI_LLB_OFFSET 7 87 #define SPI_LLB_SIZE 1 88 #define SPI_PCS_OFFSET 16 89 #define SPI_PCS_SIZE 4 90 #define SPI_DLYBCS_OFFSET 24 91 #define SPI_DLYBCS_SIZE 8 92 93 /* Bitfields in RDR */ 94 #define SPI_RD_OFFSET 0 95 #define SPI_RD_SIZE 16 96 97 /* Bitfields in TDR */ 98 #define SPI_TD_OFFSET 0 99 #define SPI_TD_SIZE 16 100 101 /* Bitfields in SR */ 102 #define SPI_RDRF_OFFSET 0 103 #define SPI_RDRF_SIZE 1 104 #define SPI_TDRE_OFFSET 1 105 #define SPI_TDRE_SIZE 1 106 #define SPI_MODF_OFFSET 2 107 #define SPI_MODF_SIZE 1 108 #define SPI_OVRES_OFFSET 3 109 #define SPI_OVRES_SIZE 1 110 #define SPI_ENDRX_OFFSET 4 111 #define SPI_ENDRX_SIZE 1 112 #define SPI_ENDTX_OFFSET 5 113 #define SPI_ENDTX_SIZE 1 114 #define SPI_RXBUFF_OFFSET 6 115 #define SPI_RXBUFF_SIZE 1 116 #define SPI_TXBUFE_OFFSET 7 117 #define SPI_TXBUFE_SIZE 1 118 #define SPI_NSSR_OFFSET 8 119 #define SPI_NSSR_SIZE 1 120 #define SPI_TXEMPTY_OFFSET 9 121 #define SPI_TXEMPTY_SIZE 1 122 #define SPI_SPIENS_OFFSET 16 123 #define SPI_SPIENS_SIZE 1 124 #define SPI_TXFEF_OFFSET 24 125 #define SPI_TXFEF_SIZE 1 126 #define SPI_TXFFF_OFFSET 25 127 #define SPI_TXFFF_SIZE 1 128 #define SPI_TXFTHF_OFFSET 26 129 #define SPI_TXFTHF_SIZE 1 130 #define SPI_RXFEF_OFFSET 27 131 #define SPI_RXFEF_SIZE 1 132 #define SPI_RXFFF_OFFSET 28 133 #define SPI_RXFFF_SIZE 1 134 #define SPI_RXFTHF_OFFSET 29 135 #define SPI_RXFTHF_SIZE 1 136 #define SPI_TXFPTEF_OFFSET 30 137 #define SPI_TXFPTEF_SIZE 1 138 #define SPI_RXFPTEF_OFFSET 31 139 #define SPI_RXFPTEF_SIZE 1 140 141 /* Bitfields in CSR0 */ 142 #define SPI_CPOL_OFFSET 0 143 #define SPI_CPOL_SIZE 1 144 #define SPI_NCPHA_OFFSET 1 145 #define SPI_NCPHA_SIZE 1 146 #define SPI_CSAAT_OFFSET 3 147 #define SPI_CSAAT_SIZE 1 148 #define SPI_BITS_OFFSET 4 149 #define SPI_BITS_SIZE 4 150 #define SPI_SCBR_OFFSET 8 151 #define SPI_SCBR_SIZE 8 152 #define SPI_DLYBS_OFFSET 16 153 #define SPI_DLYBS_SIZE 8 154 #define SPI_DLYBCT_OFFSET 24 155 #define SPI_DLYBCT_SIZE 8 156 157 /* Bitfields in RCR */ 158 #define SPI_RXCTR_OFFSET 0 159 #define SPI_RXCTR_SIZE 16 160 161 /* Bitfields in TCR */ 162 #define SPI_TXCTR_OFFSET 0 163 #define SPI_TXCTR_SIZE 16 164 165 /* Bitfields in RNCR */ 166 #define SPI_RXNCR_OFFSET 0 167 #define SPI_RXNCR_SIZE 16 168 169 /* Bitfields in TNCR */ 170 #define SPI_TXNCR_OFFSET 0 171 #define SPI_TXNCR_SIZE 16 172 173 /* Bitfields in PTCR */ 174 #define SPI_RXTEN_OFFSET 0 175 #define SPI_RXTEN_SIZE 1 176 #define SPI_RXTDIS_OFFSET 1 177 #define SPI_RXTDIS_SIZE 1 178 #define SPI_TXTEN_OFFSET 8 179 #define SPI_TXTEN_SIZE 1 180 #define SPI_TXTDIS_OFFSET 9 181 #define SPI_TXTDIS_SIZE 1 182 183 /* Bitfields in FMR */ 184 #define SPI_TXRDYM_OFFSET 0 185 #define SPI_TXRDYM_SIZE 2 186 #define SPI_RXRDYM_OFFSET 4 187 #define SPI_RXRDYM_SIZE 2 188 #define SPI_TXFTHRES_OFFSET 16 189 #define SPI_TXFTHRES_SIZE 6 190 #define SPI_RXFTHRES_OFFSET 24 191 #define SPI_RXFTHRES_SIZE 6 192 193 /* Bitfields in FLR */ 194 #define SPI_TXFL_OFFSET 0 195 #define SPI_TXFL_SIZE 6 196 #define SPI_RXFL_OFFSET 16 197 #define SPI_RXFL_SIZE 6 198 199 /* Constants for BITS */ 200 #define SPI_BITS_8_BPT 0 201 #define SPI_BITS_9_BPT 1 202 #define SPI_BITS_10_BPT 2 203 #define SPI_BITS_11_BPT 3 204 #define SPI_BITS_12_BPT 4 205 #define SPI_BITS_13_BPT 5 206 #define SPI_BITS_14_BPT 6 207 #define SPI_BITS_15_BPT 7 208 #define SPI_BITS_16_BPT 8 209 #define SPI_ONE_DATA 0 210 #define SPI_TWO_DATA 1 211 #define SPI_FOUR_DATA 2 212 213 /* Bit manipulation macros */ 214 #define SPI_BIT(name) \ 215 (1 << SPI_##name##_OFFSET) 216 #define SPI_BF(name, value) \ 217 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) 218 #define SPI_BFEXT(name, value) \ 219 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) 220 #define SPI_BFINS(name, value, old) \ 221 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ 222 | SPI_BF(name, value)) 223 224 /* Register access macros */ 225 #define spi_readl(port, reg) \ 226 readl_relaxed((port)->regs + SPI_##reg) 227 #define spi_writel(port, reg, value) \ 228 writel_relaxed((value), (port)->regs + SPI_##reg) 229 #define spi_writew(port, reg, value) \ 230 writew_relaxed((value), (port)->regs + SPI_##reg) 231 232 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 233 * cache operations; better heuristics consider wordsize and bitrate. 234 */ 235 #define DMA_MIN_BYTES 16 236 237 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) 238 239 #define AUTOSUSPEND_TIMEOUT 2000 240 241 struct atmel_spi_caps { 242 bool is_spi2; 243 bool has_wdrbt; 244 bool has_dma_support; 245 bool has_pdc_support; 246 }; 247 248 /* 249 * The core SPI transfer engine just talks to a register bank to set up 250 * DMA transfers; transfer queue progress is driven by IRQs. The clock 251 * framework provides the base clock, subdivided for each spi_device. 252 */ 253 struct atmel_spi { 254 spinlock_t lock; 255 unsigned long flags; 256 257 phys_addr_t phybase; 258 void __iomem *regs; 259 int irq; 260 struct clk *clk; 261 struct platform_device *pdev; 262 unsigned long spi_clk; 263 264 struct spi_transfer *current_transfer; 265 int current_remaining_bytes; 266 int done_status; 267 dma_addr_t dma_addr_rx_bbuf; 268 dma_addr_t dma_addr_tx_bbuf; 269 void *addr_rx_bbuf; 270 void *addr_tx_bbuf; 271 272 struct completion xfer_completion; 273 274 struct atmel_spi_caps caps; 275 276 bool use_dma; 277 bool use_pdc; 278 279 bool keep_cs; 280 281 u32 fifo_size; 282 u8 native_cs_free; 283 u8 native_cs_for_gpio; 284 }; 285 286 /* Controller-specific per-slave state */ 287 struct atmel_spi_device { 288 u32 csr; 289 }; 290 291 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */ 292 #define INVALID_DMA_ADDRESS 0xffffffff 293 294 /* 295 * Version 2 of the SPI controller has 296 * - CR.LASTXFER 297 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) 298 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) 299 * - SPI_CSRx.CSAAT 300 * - SPI_CSRx.SBCR allows faster clocking 301 */ 302 static bool atmel_spi_is_v2(struct atmel_spi *as) 303 { 304 return as->caps.is_spi2; 305 } 306 307 /* 308 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby 309 * they assume that spi slave device state will not change on deselect, so 310 * that automagic deselection is OK. ("NPCSx rises if no data is to be 311 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer 312 * controllers have CSAAT and friends. 313 * 314 * Even controller newer than ar91rm9200, using GPIOs can make sens as 315 * it lets us support active-high chipselects despite the controller's 316 * belief that only active-low devices/systems exists. 317 * 318 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work 319 * right when driven with GPIO. ("Mode Fault does not allow more than one 320 * Master on Chip Select 0.") No workaround exists for that ... so for 321 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, 322 * and (c) will trigger that first erratum in some cases. 323 */ 324 325 static void cs_activate(struct atmel_spi *as, struct spi_device *spi) 326 { 327 struct atmel_spi_device *asd = spi->controller_state; 328 int chip_select; 329 u32 mr; 330 331 if (spi->cs_gpiod) 332 chip_select = as->native_cs_for_gpio; 333 else 334 chip_select = spi->chip_select; 335 336 if (atmel_spi_is_v2(as)) { 337 spi_writel(as, CSR0 + 4 * chip_select, asd->csr); 338 /* For the low SPI version, there is a issue that PDC transfer 339 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS 340 */ 341 spi_writel(as, CSR0, asd->csr); 342 if (as->caps.has_wdrbt) { 343 spi_writel(as, MR, 344 SPI_BF(PCS, ~(0x01 << chip_select)) 345 | SPI_BIT(WDRBT) 346 | SPI_BIT(MODFDIS) 347 | SPI_BIT(MSTR)); 348 } else { 349 spi_writel(as, MR, 350 SPI_BF(PCS, ~(0x01 << chip_select)) 351 | SPI_BIT(MODFDIS) 352 | SPI_BIT(MSTR)); 353 } 354 355 mr = spi_readl(as, MR); 356 if (spi->cs_gpiod) 357 gpiod_set_value(spi->cs_gpiod, 1); 358 } else { 359 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; 360 int i; 361 u32 csr; 362 363 /* Make sure clock polarity is correct */ 364 for (i = 0; i < spi->master->num_chipselect; i++) { 365 csr = spi_readl(as, CSR0 + 4 * i); 366 if ((csr ^ cpol) & SPI_BIT(CPOL)) 367 spi_writel(as, CSR0 + 4 * i, 368 csr ^ SPI_BIT(CPOL)); 369 } 370 371 mr = spi_readl(as, MR); 372 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr); 373 if (spi->cs_gpiod) 374 gpiod_set_value(spi->cs_gpiod, 1); 375 spi_writel(as, MR, mr); 376 } 377 378 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr); 379 } 380 381 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) 382 { 383 int chip_select; 384 u32 mr; 385 386 if (spi->cs_gpiod) 387 chip_select = as->native_cs_for_gpio; 388 else 389 chip_select = spi->chip_select; 390 391 /* only deactivate *this* device; sometimes transfers to 392 * another device may be active when this routine is called. 393 */ 394 mr = spi_readl(as, MR); 395 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) { 396 mr = SPI_BFINS(PCS, 0xf, mr); 397 spi_writel(as, MR, mr); 398 } 399 400 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr); 401 402 if (!spi->cs_gpiod) 403 spi_writel(as, CR, SPI_BIT(LASTXFER)); 404 else 405 gpiod_set_value(spi->cs_gpiod, 0); 406 } 407 408 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock) 409 { 410 spin_lock_irqsave(&as->lock, as->flags); 411 } 412 413 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock) 414 { 415 spin_unlock_irqrestore(&as->lock, as->flags); 416 } 417 418 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer) 419 { 420 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf); 421 } 422 423 static inline bool atmel_spi_use_dma(struct atmel_spi *as, 424 struct spi_transfer *xfer) 425 { 426 return as->use_dma && xfer->len >= DMA_MIN_BYTES; 427 } 428 429 static bool atmel_spi_can_dma(struct spi_master *master, 430 struct spi_device *spi, 431 struct spi_transfer *xfer) 432 { 433 struct atmel_spi *as = spi_master_get_devdata(master); 434 435 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) 436 return atmel_spi_use_dma(as, xfer) && 437 !atmel_spi_is_vmalloc_xfer(xfer); 438 else 439 return atmel_spi_use_dma(as, xfer); 440 441 } 442 443 static int atmel_spi_dma_slave_config(struct atmel_spi *as, 444 struct dma_slave_config *slave_config, 445 u8 bits_per_word) 446 { 447 struct spi_master *master = platform_get_drvdata(as->pdev); 448 int err = 0; 449 450 if (bits_per_word > 8) { 451 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 452 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 453 } else { 454 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 455 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 456 } 457 458 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR; 459 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR; 460 slave_config->src_maxburst = 1; 461 slave_config->dst_maxburst = 1; 462 slave_config->device_fc = false; 463 464 /* 465 * This driver uses fixed peripheral select mode (PS bit set to '0' in 466 * the Mode Register). 467 * So according to the datasheet, when FIFOs are available (and 468 * enabled), the Transmit FIFO operates in Multiple Data Mode. 469 * In this mode, up to 2 data, not 4, can be written into the Transmit 470 * Data Register in a single access. 471 * However, the first data has to be written into the lowest 16 bits and 472 * the second data into the highest 16 bits of the Transmit 473 * Data Register. For 8bit data (the most frequent case), it would 474 * require to rework tx_buf so each data would actualy fit 16 bits. 475 * So we'd rather write only one data at the time. Hence the transmit 476 * path works the same whether FIFOs are available (and enabled) or not. 477 */ 478 slave_config->direction = DMA_MEM_TO_DEV; 479 if (dmaengine_slave_config(master->dma_tx, slave_config)) { 480 dev_err(&as->pdev->dev, 481 "failed to configure tx dma channel\n"); 482 err = -EINVAL; 483 } 484 485 /* 486 * This driver configures the spi controller for master mode (MSTR bit 487 * set to '1' in the Mode Register). 488 * So according to the datasheet, when FIFOs are available (and 489 * enabled), the Receive FIFO operates in Single Data Mode. 490 * So the receive path works the same whether FIFOs are available (and 491 * enabled) or not. 492 */ 493 slave_config->direction = DMA_DEV_TO_MEM; 494 if (dmaengine_slave_config(master->dma_rx, slave_config)) { 495 dev_err(&as->pdev->dev, 496 "failed to configure rx dma channel\n"); 497 err = -EINVAL; 498 } 499 500 return err; 501 } 502 503 static int atmel_spi_configure_dma(struct spi_master *master, 504 struct atmel_spi *as) 505 { 506 struct dma_slave_config slave_config; 507 struct device *dev = &as->pdev->dev; 508 int err; 509 510 dma_cap_mask_t mask; 511 dma_cap_zero(mask); 512 dma_cap_set(DMA_SLAVE, mask); 513 514 master->dma_tx = dma_request_chan(dev, "tx"); 515 if (IS_ERR(master->dma_tx)) { 516 err = PTR_ERR(master->dma_tx); 517 if (err != -EPROBE_DEFER) 518 dev_err(dev, "No TX DMA channel, DMA is disabled\n"); 519 goto error_clear; 520 } 521 522 master->dma_rx = dma_request_chan(dev, "rx"); 523 if (IS_ERR(master->dma_rx)) { 524 err = PTR_ERR(master->dma_rx); 525 /* 526 * No reason to check EPROBE_DEFER here since we have already 527 * requested tx channel. 528 */ 529 dev_err(dev, "No RX DMA channel, DMA is disabled\n"); 530 goto error; 531 } 532 533 err = atmel_spi_dma_slave_config(as, &slave_config, 8); 534 if (err) 535 goto error; 536 537 dev_info(&as->pdev->dev, 538 "Using %s (tx) and %s (rx) for DMA transfers\n", 539 dma_chan_name(master->dma_tx), 540 dma_chan_name(master->dma_rx)); 541 542 return 0; 543 error: 544 if (!IS_ERR(master->dma_rx)) 545 dma_release_channel(master->dma_rx); 546 if (!IS_ERR(master->dma_tx)) 547 dma_release_channel(master->dma_tx); 548 error_clear: 549 master->dma_tx = master->dma_rx = NULL; 550 return err; 551 } 552 553 static void atmel_spi_stop_dma(struct spi_master *master) 554 { 555 if (master->dma_rx) 556 dmaengine_terminate_all(master->dma_rx); 557 if (master->dma_tx) 558 dmaengine_terminate_all(master->dma_tx); 559 } 560 561 static void atmel_spi_release_dma(struct spi_master *master) 562 { 563 if (master->dma_rx) { 564 dma_release_channel(master->dma_rx); 565 master->dma_rx = NULL; 566 } 567 if (master->dma_tx) { 568 dma_release_channel(master->dma_tx); 569 master->dma_tx = NULL; 570 } 571 } 572 573 /* This function is called by the DMA driver from tasklet context */ 574 static void dma_callback(void *data) 575 { 576 struct spi_master *master = data; 577 struct atmel_spi *as = spi_master_get_devdata(master); 578 579 if (is_vmalloc_addr(as->current_transfer->rx_buf) && 580 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 581 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf, 582 as->current_transfer->len); 583 } 584 complete(&as->xfer_completion); 585 } 586 587 /* 588 * Next transfer using PIO without FIFO. 589 */ 590 static void atmel_spi_next_xfer_single(struct spi_master *master, 591 struct spi_transfer *xfer) 592 { 593 struct atmel_spi *as = spi_master_get_devdata(master); 594 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 595 596 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n"); 597 598 /* Make sure data is not remaining in RDR */ 599 spi_readl(as, RDR); 600 while (spi_readl(as, SR) & SPI_BIT(RDRF)) { 601 spi_readl(as, RDR); 602 cpu_relax(); 603 } 604 605 if (xfer->bits_per_word > 8) 606 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos)); 607 else 608 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos)); 609 610 dev_dbg(master->dev.parent, 611 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n", 612 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 613 xfer->bits_per_word); 614 615 /* Enable relevant interrupts */ 616 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES)); 617 } 618 619 /* 620 * Next transfer using PIO with FIFO. 621 */ 622 static void atmel_spi_next_xfer_fifo(struct spi_master *master, 623 struct spi_transfer *xfer) 624 { 625 struct atmel_spi *as = spi_master_get_devdata(master); 626 u32 current_remaining_data, num_data; 627 u32 offset = xfer->len - as->current_remaining_bytes; 628 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset); 629 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset); 630 u16 td0, td1; 631 u32 fifomr; 632 633 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n"); 634 635 /* Compute the number of data to transfer in the current iteration */ 636 current_remaining_data = ((xfer->bits_per_word > 8) ? 637 ((u32)as->current_remaining_bytes >> 1) : 638 (u32)as->current_remaining_bytes); 639 num_data = min(current_remaining_data, as->fifo_size); 640 641 /* Flush RX and TX FIFOs */ 642 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR)); 643 while (spi_readl(as, FLR)) 644 cpu_relax(); 645 646 /* Set RX FIFO Threshold to the number of data to transfer */ 647 fifomr = spi_readl(as, FMR); 648 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr)); 649 650 /* Clear FIFO flags in the Status Register, especially RXFTHF */ 651 (void)spi_readl(as, SR); 652 653 /* Fill TX FIFO */ 654 while (num_data >= 2) { 655 if (xfer->bits_per_word > 8) { 656 td0 = *words++; 657 td1 = *words++; 658 } else { 659 td0 = *bytes++; 660 td1 = *bytes++; 661 } 662 663 spi_writel(as, TDR, (td1 << 16) | td0); 664 num_data -= 2; 665 } 666 667 if (num_data) { 668 if (xfer->bits_per_word > 8) 669 td0 = *words++; 670 else 671 td0 = *bytes++; 672 673 spi_writew(as, TDR, td0); 674 num_data--; 675 } 676 677 dev_dbg(master->dev.parent, 678 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n", 679 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 680 xfer->bits_per_word); 681 682 /* 683 * Enable RX FIFO Threshold Flag interrupt to be notified about 684 * transfer completion. 685 */ 686 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES)); 687 } 688 689 /* 690 * Next transfer using PIO. 691 */ 692 static void atmel_spi_next_xfer_pio(struct spi_master *master, 693 struct spi_transfer *xfer) 694 { 695 struct atmel_spi *as = spi_master_get_devdata(master); 696 697 if (as->fifo_size) 698 atmel_spi_next_xfer_fifo(master, xfer); 699 else 700 atmel_spi_next_xfer_single(master, xfer); 701 } 702 703 /* 704 * Submit next transfer for DMA. 705 */ 706 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master, 707 struct spi_transfer *xfer, 708 u32 *plen) 709 __must_hold(&as->lock) 710 { 711 struct atmel_spi *as = spi_master_get_devdata(master); 712 struct dma_chan *rxchan = master->dma_rx; 713 struct dma_chan *txchan = master->dma_tx; 714 struct dma_async_tx_descriptor *rxdesc; 715 struct dma_async_tx_descriptor *txdesc; 716 struct dma_slave_config slave_config; 717 dma_cookie_t cookie; 718 719 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n"); 720 721 /* Check that the channels are available */ 722 if (!rxchan || !txchan) 723 return -ENODEV; 724 725 /* release lock for DMA operations */ 726 atmel_spi_unlock(as); 727 728 *plen = xfer->len; 729 730 if (atmel_spi_dma_slave_config(as, &slave_config, 731 xfer->bits_per_word)) 732 goto err_exit; 733 734 /* Send both scatterlists */ 735 if (atmel_spi_is_vmalloc_xfer(xfer) && 736 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 737 rxdesc = dmaengine_prep_slave_single(rxchan, 738 as->dma_addr_rx_bbuf, 739 xfer->len, 740 DMA_DEV_TO_MEM, 741 DMA_PREP_INTERRUPT | 742 DMA_CTRL_ACK); 743 } else { 744 rxdesc = dmaengine_prep_slave_sg(rxchan, 745 xfer->rx_sg.sgl, 746 xfer->rx_sg.nents, 747 DMA_DEV_TO_MEM, 748 DMA_PREP_INTERRUPT | 749 DMA_CTRL_ACK); 750 } 751 if (!rxdesc) 752 goto err_dma; 753 754 if (atmel_spi_is_vmalloc_xfer(xfer) && 755 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 756 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len); 757 txdesc = dmaengine_prep_slave_single(txchan, 758 as->dma_addr_tx_bbuf, 759 xfer->len, DMA_MEM_TO_DEV, 760 DMA_PREP_INTERRUPT | 761 DMA_CTRL_ACK); 762 } else { 763 txdesc = dmaengine_prep_slave_sg(txchan, 764 xfer->tx_sg.sgl, 765 xfer->tx_sg.nents, 766 DMA_MEM_TO_DEV, 767 DMA_PREP_INTERRUPT | 768 DMA_CTRL_ACK); 769 } 770 if (!txdesc) 771 goto err_dma; 772 773 dev_dbg(master->dev.parent, 774 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 775 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma, 776 xfer->rx_buf, (unsigned long long)xfer->rx_dma); 777 778 /* Enable relevant interrupts */ 779 spi_writel(as, IER, SPI_BIT(OVRES)); 780 781 /* Put the callback on the RX transfer only, that should finish last */ 782 rxdesc->callback = dma_callback; 783 rxdesc->callback_param = master; 784 785 /* Submit and fire RX and TX with TX last so we're ready to read! */ 786 cookie = rxdesc->tx_submit(rxdesc); 787 if (dma_submit_error(cookie)) 788 goto err_dma; 789 cookie = txdesc->tx_submit(txdesc); 790 if (dma_submit_error(cookie)) 791 goto err_dma; 792 rxchan->device->device_issue_pending(rxchan); 793 txchan->device->device_issue_pending(txchan); 794 795 /* take back lock */ 796 atmel_spi_lock(as); 797 return 0; 798 799 err_dma: 800 spi_writel(as, IDR, SPI_BIT(OVRES)); 801 atmel_spi_stop_dma(master); 802 err_exit: 803 atmel_spi_lock(as); 804 return -ENOMEM; 805 } 806 807 static void atmel_spi_next_xfer_data(struct spi_master *master, 808 struct spi_transfer *xfer, 809 dma_addr_t *tx_dma, 810 dma_addr_t *rx_dma, 811 u32 *plen) 812 { 813 *rx_dma = xfer->rx_dma + xfer->len - *plen; 814 *tx_dma = xfer->tx_dma + xfer->len - *plen; 815 if (*plen > master->max_dma_len) 816 *plen = master->max_dma_len; 817 } 818 819 static int atmel_spi_set_xfer_speed(struct atmel_spi *as, 820 struct spi_device *spi, 821 struct spi_transfer *xfer) 822 { 823 u32 scbr, csr; 824 unsigned long bus_hz; 825 int chip_select; 826 827 if (spi->cs_gpiod) 828 chip_select = as->native_cs_for_gpio; 829 else 830 chip_select = spi->chip_select; 831 832 /* v1 chips start out at half the peripheral bus speed. */ 833 bus_hz = as->spi_clk; 834 if (!atmel_spi_is_v2(as)) 835 bus_hz /= 2; 836 837 /* 838 * Calculate the lowest divider that satisfies the 839 * constraint, assuming div32/fdiv/mbz == 0. 840 */ 841 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz); 842 843 /* 844 * If the resulting divider doesn't fit into the 845 * register bitfield, we can't satisfy the constraint. 846 */ 847 if (scbr >= (1 << SPI_SCBR_SIZE)) { 848 dev_err(&spi->dev, 849 "setup: %d Hz too slow, scbr %u; min %ld Hz\n", 850 xfer->speed_hz, scbr, bus_hz/255); 851 return -EINVAL; 852 } 853 if (scbr == 0) { 854 dev_err(&spi->dev, 855 "setup: %d Hz too high, scbr %u; max %ld Hz\n", 856 xfer->speed_hz, scbr, bus_hz); 857 return -EINVAL; 858 } 859 csr = spi_readl(as, CSR0 + 4 * chip_select); 860 csr = SPI_BFINS(SCBR, scbr, csr); 861 spi_writel(as, CSR0 + 4 * chip_select, csr); 862 863 return 0; 864 } 865 866 /* 867 * Submit next transfer for PDC. 868 * lock is held, spi irq is blocked 869 */ 870 static void atmel_spi_pdc_next_xfer(struct spi_master *master, 871 struct spi_message *msg, 872 struct spi_transfer *xfer) 873 { 874 struct atmel_spi *as = spi_master_get_devdata(master); 875 u32 len; 876 dma_addr_t tx_dma, rx_dma; 877 878 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 879 880 len = as->current_remaining_bytes; 881 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 882 as->current_remaining_bytes -= len; 883 884 spi_writel(as, RPR, rx_dma); 885 spi_writel(as, TPR, tx_dma); 886 887 if (msg->spi->bits_per_word > 8) 888 len >>= 1; 889 spi_writel(as, RCR, len); 890 spi_writel(as, TCR, len); 891 892 dev_dbg(&msg->spi->dev, 893 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 894 xfer, xfer->len, xfer->tx_buf, 895 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 896 (unsigned long long)xfer->rx_dma); 897 898 if (as->current_remaining_bytes) { 899 len = as->current_remaining_bytes; 900 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 901 as->current_remaining_bytes -= len; 902 903 spi_writel(as, RNPR, rx_dma); 904 spi_writel(as, TNPR, tx_dma); 905 906 if (msg->spi->bits_per_word > 8) 907 len >>= 1; 908 spi_writel(as, RNCR, len); 909 spi_writel(as, TNCR, len); 910 911 dev_dbg(&msg->spi->dev, 912 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 913 xfer, xfer->len, xfer->tx_buf, 914 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 915 (unsigned long long)xfer->rx_dma); 916 } 917 918 /* REVISIT: We're waiting for RXBUFF before we start the next 919 * transfer because we need to handle some difficult timing 920 * issues otherwise. If we wait for TXBUFE in one transfer and 921 * then starts waiting for RXBUFF in the next, it's difficult 922 * to tell the difference between the RXBUFF interrupt we're 923 * actually waiting for and the RXBUFF interrupt of the 924 * previous transfer. 925 * 926 * It should be doable, though. Just not now... 927 */ 928 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES)); 929 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); 930 } 931 932 /* 933 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: 934 * - The buffer is either valid for CPU access, else NULL 935 * - If the buffer is valid, so is its DMA address 936 * 937 * This driver manages the dma address unless message->is_dma_mapped. 938 */ 939 static int 940 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) 941 { 942 struct device *dev = &as->pdev->dev; 943 944 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; 945 if (xfer->tx_buf) { 946 /* tx_buf is a const void* where we need a void * for the dma 947 * mapping */ 948 void *nonconst_tx = (void *)xfer->tx_buf; 949 950 xfer->tx_dma = dma_map_single(dev, 951 nonconst_tx, xfer->len, 952 DMA_TO_DEVICE); 953 if (dma_mapping_error(dev, xfer->tx_dma)) 954 return -ENOMEM; 955 } 956 if (xfer->rx_buf) { 957 xfer->rx_dma = dma_map_single(dev, 958 xfer->rx_buf, xfer->len, 959 DMA_FROM_DEVICE); 960 if (dma_mapping_error(dev, xfer->rx_dma)) { 961 if (xfer->tx_buf) 962 dma_unmap_single(dev, 963 xfer->tx_dma, xfer->len, 964 DMA_TO_DEVICE); 965 return -ENOMEM; 966 } 967 } 968 return 0; 969 } 970 971 static void atmel_spi_dma_unmap_xfer(struct spi_master *master, 972 struct spi_transfer *xfer) 973 { 974 if (xfer->tx_dma != INVALID_DMA_ADDRESS) 975 dma_unmap_single(master->dev.parent, xfer->tx_dma, 976 xfer->len, DMA_TO_DEVICE); 977 if (xfer->rx_dma != INVALID_DMA_ADDRESS) 978 dma_unmap_single(master->dev.parent, xfer->rx_dma, 979 xfer->len, DMA_FROM_DEVICE); 980 } 981 982 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as) 983 { 984 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 985 } 986 987 static void 988 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer) 989 { 990 u8 *rxp; 991 u16 *rxp16; 992 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 993 994 if (xfer->bits_per_word > 8) { 995 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos); 996 *rxp16 = spi_readl(as, RDR); 997 } else { 998 rxp = ((u8 *)xfer->rx_buf) + xfer_pos; 999 *rxp = spi_readl(as, RDR); 1000 } 1001 if (xfer->bits_per_word > 8) { 1002 if (as->current_remaining_bytes > 2) 1003 as->current_remaining_bytes -= 2; 1004 else 1005 as->current_remaining_bytes = 0; 1006 } else { 1007 as->current_remaining_bytes--; 1008 } 1009 } 1010 1011 static void 1012 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer) 1013 { 1014 u32 fifolr = spi_readl(as, FLR); 1015 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr); 1016 u32 offset = xfer->len - as->current_remaining_bytes; 1017 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset); 1018 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset); 1019 u16 rd; /* RD field is the lowest 16 bits of RDR */ 1020 1021 /* Update the number of remaining bytes to transfer */ 1022 num_bytes = ((xfer->bits_per_word > 8) ? 1023 (num_data << 1) : 1024 num_data); 1025 1026 if (as->current_remaining_bytes > num_bytes) 1027 as->current_remaining_bytes -= num_bytes; 1028 else 1029 as->current_remaining_bytes = 0; 1030 1031 /* Handle odd number of bytes when data are more than 8bit width */ 1032 if (xfer->bits_per_word > 8) 1033 as->current_remaining_bytes &= ~0x1; 1034 1035 /* Read data */ 1036 while (num_data) { 1037 rd = spi_readl(as, RDR); 1038 if (xfer->bits_per_word > 8) 1039 *words++ = rd; 1040 else 1041 *bytes++ = rd; 1042 num_data--; 1043 } 1044 } 1045 1046 /* Called from IRQ 1047 * 1048 * Must update "current_remaining_bytes" to keep track of data 1049 * to transfer. 1050 */ 1051 static void 1052 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer) 1053 { 1054 if (as->fifo_size) 1055 atmel_spi_pump_fifo_data(as, xfer); 1056 else 1057 atmel_spi_pump_single_data(as, xfer); 1058 } 1059 1060 /* Interrupt 1061 * 1062 * No need for locking in this Interrupt handler: done_status is the 1063 * only information modified. 1064 */ 1065 static irqreturn_t 1066 atmel_spi_pio_interrupt(int irq, void *dev_id) 1067 { 1068 struct spi_master *master = dev_id; 1069 struct atmel_spi *as = spi_master_get_devdata(master); 1070 u32 status, pending, imr; 1071 struct spi_transfer *xfer; 1072 int ret = IRQ_NONE; 1073 1074 imr = spi_readl(as, IMR); 1075 status = spi_readl(as, SR); 1076 pending = status & imr; 1077 1078 if (pending & SPI_BIT(OVRES)) { 1079 ret = IRQ_HANDLED; 1080 spi_writel(as, IDR, SPI_BIT(OVRES)); 1081 dev_warn(master->dev.parent, "overrun\n"); 1082 1083 /* 1084 * When we get an overrun, we disregard the current 1085 * transfer. Data will not be copied back from any 1086 * bounce buffer and msg->actual_len will not be 1087 * updated with the last xfer. 1088 * 1089 * We will also not process any remaning transfers in 1090 * the message. 1091 */ 1092 as->done_status = -EIO; 1093 smp_wmb(); 1094 1095 /* Clear any overrun happening while cleaning up */ 1096 spi_readl(as, SR); 1097 1098 complete(&as->xfer_completion); 1099 1100 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) { 1101 atmel_spi_lock(as); 1102 1103 if (as->current_remaining_bytes) { 1104 ret = IRQ_HANDLED; 1105 xfer = as->current_transfer; 1106 atmel_spi_pump_pio_data(as, xfer); 1107 if (!as->current_remaining_bytes) 1108 spi_writel(as, IDR, pending); 1109 1110 complete(&as->xfer_completion); 1111 } 1112 1113 atmel_spi_unlock(as); 1114 } else { 1115 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending); 1116 ret = IRQ_HANDLED; 1117 spi_writel(as, IDR, pending); 1118 } 1119 1120 return ret; 1121 } 1122 1123 static irqreturn_t 1124 atmel_spi_pdc_interrupt(int irq, void *dev_id) 1125 { 1126 struct spi_master *master = dev_id; 1127 struct atmel_spi *as = spi_master_get_devdata(master); 1128 u32 status, pending, imr; 1129 int ret = IRQ_NONE; 1130 1131 imr = spi_readl(as, IMR); 1132 status = spi_readl(as, SR); 1133 pending = status & imr; 1134 1135 if (pending & SPI_BIT(OVRES)) { 1136 1137 ret = IRQ_HANDLED; 1138 1139 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) 1140 | SPI_BIT(OVRES))); 1141 1142 /* Clear any overrun happening while cleaning up */ 1143 spi_readl(as, SR); 1144 1145 as->done_status = -EIO; 1146 1147 complete(&as->xfer_completion); 1148 1149 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { 1150 ret = IRQ_HANDLED; 1151 1152 spi_writel(as, IDR, pending); 1153 1154 complete(&as->xfer_completion); 1155 } 1156 1157 return ret; 1158 } 1159 1160 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as) 1161 { 1162 struct spi_delay *delay = &spi->word_delay; 1163 u32 value = delay->value; 1164 1165 switch (delay->unit) { 1166 case SPI_DELAY_UNIT_NSECS: 1167 value /= 1000; 1168 break; 1169 case SPI_DELAY_UNIT_USECS: 1170 break; 1171 default: 1172 return -EINVAL; 1173 } 1174 1175 return (as->spi_clk / 1000000 * value) >> 5; 1176 } 1177 1178 static void initialize_native_cs_for_gpio(struct atmel_spi *as) 1179 { 1180 int i; 1181 struct spi_master *master = platform_get_drvdata(as->pdev); 1182 1183 if (!as->native_cs_free) 1184 return; /* already initialized */ 1185 1186 if (!master->cs_gpiods) 1187 return; /* No CS GPIO */ 1188 1189 /* 1190 * On the first version of the controller (AT91RM9200), CS0 1191 * can't be used associated with GPIO 1192 */ 1193 if (atmel_spi_is_v2(as)) 1194 i = 0; 1195 else 1196 i = 1; 1197 1198 for (; i < 4; i++) 1199 if (master->cs_gpiods[i]) 1200 as->native_cs_free |= BIT(i); 1201 1202 if (as->native_cs_free) 1203 as->native_cs_for_gpio = ffs(as->native_cs_free); 1204 } 1205 1206 static int atmel_spi_setup(struct spi_device *spi) 1207 { 1208 struct atmel_spi *as; 1209 struct atmel_spi_device *asd; 1210 u32 csr; 1211 unsigned int bits = spi->bits_per_word; 1212 int chip_select; 1213 int word_delay_csr; 1214 1215 as = spi_master_get_devdata(spi->master); 1216 1217 /* see notes above re chipselect */ 1218 if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) { 1219 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n"); 1220 return -EINVAL; 1221 } 1222 1223 /* Setup() is called during spi_register_controller(aka 1224 * spi_register_master) but after all membmers of the cs_gpiod 1225 * array have been filled, so we can looked for which native 1226 * CS will be free for using with GPIO 1227 */ 1228 initialize_native_cs_for_gpio(as); 1229 1230 if (spi->cs_gpiod && as->native_cs_free) { 1231 dev_err(&spi->dev, 1232 "No native CS available to support this GPIO CS\n"); 1233 return -EBUSY; 1234 } 1235 1236 if (spi->cs_gpiod) 1237 chip_select = as->native_cs_for_gpio; 1238 else 1239 chip_select = spi->chip_select; 1240 1241 csr = SPI_BF(BITS, bits - 8); 1242 if (spi->mode & SPI_CPOL) 1243 csr |= SPI_BIT(CPOL); 1244 if (!(spi->mode & SPI_CPHA)) 1245 csr |= SPI_BIT(NCPHA); 1246 1247 if (!spi->cs_gpiod) 1248 csr |= SPI_BIT(CSAAT); 1249 csr |= SPI_BF(DLYBS, 0); 1250 1251 word_delay_csr = atmel_word_delay_csr(spi, as); 1252 if (word_delay_csr < 0) 1253 return word_delay_csr; 1254 1255 /* DLYBCT adds delays between words. This is useful for slow devices 1256 * that need a bit of time to setup the next transfer. 1257 */ 1258 csr |= SPI_BF(DLYBCT, word_delay_csr); 1259 1260 asd = spi->controller_state; 1261 if (!asd) { 1262 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); 1263 if (!asd) 1264 return -ENOMEM; 1265 1266 spi->controller_state = asd; 1267 } 1268 1269 asd->csr = csr; 1270 1271 dev_dbg(&spi->dev, 1272 "setup: bpw %u mode 0x%x -> csr%d %08x\n", 1273 bits, spi->mode, spi->chip_select, csr); 1274 1275 if (!atmel_spi_is_v2(as)) 1276 spi_writel(as, CSR0 + 4 * chip_select, csr); 1277 1278 return 0; 1279 } 1280 1281 static int atmel_spi_one_transfer(struct spi_master *master, 1282 struct spi_message *msg, 1283 struct spi_transfer *xfer) 1284 { 1285 struct atmel_spi *as; 1286 struct spi_device *spi = msg->spi; 1287 u8 bits; 1288 u32 len; 1289 struct atmel_spi_device *asd; 1290 int timeout; 1291 int ret; 1292 unsigned long dma_timeout; 1293 1294 as = spi_master_get_devdata(master); 1295 1296 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1297 dev_dbg(&spi->dev, "missing rx or tx buf\n"); 1298 return -EINVAL; 1299 } 1300 1301 asd = spi->controller_state; 1302 bits = (asd->csr >> 4) & 0xf; 1303 if (bits != xfer->bits_per_word - 8) { 1304 dev_dbg(&spi->dev, 1305 "you can't yet change bits_per_word in transfers\n"); 1306 return -ENOPROTOOPT; 1307 } 1308 1309 /* 1310 * DMA map early, for performance (empties dcache ASAP) and 1311 * better fault reporting. 1312 */ 1313 if ((!msg->is_dma_mapped) 1314 && as->use_pdc) { 1315 if (atmel_spi_dma_map_xfer(as, xfer) < 0) 1316 return -ENOMEM; 1317 } 1318 1319 atmel_spi_set_xfer_speed(as, msg->spi, xfer); 1320 1321 as->done_status = 0; 1322 as->current_transfer = xfer; 1323 as->current_remaining_bytes = xfer->len; 1324 while (as->current_remaining_bytes) { 1325 reinit_completion(&as->xfer_completion); 1326 1327 if (as->use_pdc) { 1328 atmel_spi_pdc_next_xfer(master, msg, xfer); 1329 } else if (atmel_spi_use_dma(as, xfer)) { 1330 len = as->current_remaining_bytes; 1331 ret = atmel_spi_next_xfer_dma_submit(master, 1332 xfer, &len); 1333 if (ret) { 1334 dev_err(&spi->dev, 1335 "unable to use DMA, fallback to PIO\n"); 1336 atmel_spi_next_xfer_pio(master, xfer); 1337 } else { 1338 as->current_remaining_bytes -= len; 1339 if (as->current_remaining_bytes < 0) 1340 as->current_remaining_bytes = 0; 1341 } 1342 } else { 1343 atmel_spi_next_xfer_pio(master, xfer); 1344 } 1345 1346 /* interrupts are disabled, so free the lock for schedule */ 1347 atmel_spi_unlock(as); 1348 dma_timeout = wait_for_completion_timeout(&as->xfer_completion, 1349 SPI_DMA_TIMEOUT); 1350 atmel_spi_lock(as); 1351 if (WARN_ON(dma_timeout == 0)) { 1352 dev_err(&spi->dev, "spi transfer timeout\n"); 1353 as->done_status = -EIO; 1354 } 1355 1356 if (as->done_status) 1357 break; 1358 } 1359 1360 if (as->done_status) { 1361 if (as->use_pdc) { 1362 dev_warn(master->dev.parent, 1363 "overrun (%u/%u remaining)\n", 1364 spi_readl(as, TCR), spi_readl(as, RCR)); 1365 1366 /* 1367 * Clean up DMA registers and make sure the data 1368 * registers are empty. 1369 */ 1370 spi_writel(as, RNCR, 0); 1371 spi_writel(as, TNCR, 0); 1372 spi_writel(as, RCR, 0); 1373 spi_writel(as, TCR, 0); 1374 for (timeout = 1000; timeout; timeout--) 1375 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) 1376 break; 1377 if (!timeout) 1378 dev_warn(master->dev.parent, 1379 "timeout waiting for TXEMPTY"); 1380 while (spi_readl(as, SR) & SPI_BIT(RDRF)) 1381 spi_readl(as, RDR); 1382 1383 /* Clear any overrun happening while cleaning up */ 1384 spi_readl(as, SR); 1385 1386 } else if (atmel_spi_use_dma(as, xfer)) { 1387 atmel_spi_stop_dma(master); 1388 } 1389 1390 if (!msg->is_dma_mapped 1391 && as->use_pdc) 1392 atmel_spi_dma_unmap_xfer(master, xfer); 1393 1394 return 0; 1395 1396 } else { 1397 /* only update length if no error */ 1398 msg->actual_length += xfer->len; 1399 } 1400 1401 if (!msg->is_dma_mapped 1402 && as->use_pdc) 1403 atmel_spi_dma_unmap_xfer(master, xfer); 1404 1405 spi_transfer_delay_exec(xfer); 1406 1407 if (xfer->cs_change) { 1408 if (list_is_last(&xfer->transfer_list, 1409 &msg->transfers)) { 1410 as->keep_cs = true; 1411 } else { 1412 cs_deactivate(as, msg->spi); 1413 udelay(10); 1414 cs_activate(as, msg->spi); 1415 } 1416 } 1417 1418 return 0; 1419 } 1420 1421 static int atmel_spi_transfer_one_message(struct spi_master *master, 1422 struct spi_message *msg) 1423 { 1424 struct atmel_spi *as; 1425 struct spi_transfer *xfer; 1426 struct spi_device *spi = msg->spi; 1427 int ret = 0; 1428 1429 as = spi_master_get_devdata(master); 1430 1431 dev_dbg(&spi->dev, "new message %p submitted for %s\n", 1432 msg, dev_name(&spi->dev)); 1433 1434 atmel_spi_lock(as); 1435 cs_activate(as, spi); 1436 1437 as->keep_cs = false; 1438 1439 msg->status = 0; 1440 msg->actual_length = 0; 1441 1442 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1443 trace_spi_transfer_start(msg, xfer); 1444 1445 ret = atmel_spi_one_transfer(master, msg, xfer); 1446 if (ret) 1447 goto msg_done; 1448 1449 trace_spi_transfer_stop(msg, xfer); 1450 } 1451 1452 if (as->use_pdc) 1453 atmel_spi_disable_pdc_transfer(as); 1454 1455 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1456 dev_dbg(&spi->dev, 1457 " xfer %p: len %u tx %p/%pad rx %p/%pad\n", 1458 xfer, xfer->len, 1459 xfer->tx_buf, &xfer->tx_dma, 1460 xfer->rx_buf, &xfer->rx_dma); 1461 } 1462 1463 msg_done: 1464 if (!as->keep_cs) 1465 cs_deactivate(as, msg->spi); 1466 1467 atmel_spi_unlock(as); 1468 1469 msg->status = as->done_status; 1470 spi_finalize_current_message(spi->master); 1471 1472 return ret; 1473 } 1474 1475 static void atmel_spi_cleanup(struct spi_device *spi) 1476 { 1477 struct atmel_spi_device *asd = spi->controller_state; 1478 1479 if (!asd) 1480 return; 1481 1482 spi->controller_state = NULL; 1483 kfree(asd); 1484 } 1485 1486 static inline unsigned int atmel_get_version(struct atmel_spi *as) 1487 { 1488 return spi_readl(as, VERSION) & 0x00000fff; 1489 } 1490 1491 static void atmel_get_caps(struct atmel_spi *as) 1492 { 1493 unsigned int version; 1494 1495 version = atmel_get_version(as); 1496 1497 as->caps.is_spi2 = version > 0x121; 1498 as->caps.has_wdrbt = version >= 0x210; 1499 as->caps.has_dma_support = version >= 0x212; 1500 as->caps.has_pdc_support = version < 0x212; 1501 } 1502 1503 static void atmel_spi_init(struct atmel_spi *as) 1504 { 1505 spi_writel(as, CR, SPI_BIT(SWRST)); 1506 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1507 1508 /* It is recommended to enable FIFOs first thing after reset */ 1509 if (as->fifo_size) 1510 spi_writel(as, CR, SPI_BIT(FIFOEN)); 1511 1512 if (as->caps.has_wdrbt) { 1513 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS) 1514 | SPI_BIT(MSTR)); 1515 } else { 1516 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); 1517 } 1518 1519 if (as->use_pdc) 1520 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1521 spi_writel(as, CR, SPI_BIT(SPIEN)); 1522 } 1523 1524 static int atmel_spi_probe(struct platform_device *pdev) 1525 { 1526 struct resource *regs; 1527 int irq; 1528 struct clk *clk; 1529 int ret; 1530 struct spi_master *master; 1531 struct atmel_spi *as; 1532 1533 /* Select default pin state */ 1534 pinctrl_pm_select_default_state(&pdev->dev); 1535 1536 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1537 if (!regs) 1538 return -ENXIO; 1539 1540 irq = platform_get_irq(pdev, 0); 1541 if (irq < 0) 1542 return irq; 1543 1544 clk = devm_clk_get(&pdev->dev, "spi_clk"); 1545 if (IS_ERR(clk)) 1546 return PTR_ERR(clk); 1547 1548 /* setup spi core then atmel-specific driver state */ 1549 master = spi_alloc_master(&pdev->dev, sizeof(*as)); 1550 if (!master) 1551 return -ENOMEM; 1552 1553 /* the spi->mode bits understood by this driver: */ 1554 master->use_gpio_descriptors = true; 1555 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1556 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16); 1557 master->dev.of_node = pdev->dev.of_node; 1558 master->bus_num = pdev->id; 1559 master->num_chipselect = 4; 1560 master->setup = atmel_spi_setup; 1561 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX); 1562 master->transfer_one_message = atmel_spi_transfer_one_message; 1563 master->cleanup = atmel_spi_cleanup; 1564 master->auto_runtime_pm = true; 1565 master->max_dma_len = SPI_MAX_DMA_XFER; 1566 master->can_dma = atmel_spi_can_dma; 1567 platform_set_drvdata(pdev, master); 1568 1569 as = spi_master_get_devdata(master); 1570 1571 spin_lock_init(&as->lock); 1572 1573 as->pdev = pdev; 1574 as->regs = devm_ioremap_resource(&pdev->dev, regs); 1575 if (IS_ERR(as->regs)) { 1576 ret = PTR_ERR(as->regs); 1577 goto out_unmap_regs; 1578 } 1579 as->phybase = regs->start; 1580 as->irq = irq; 1581 as->clk = clk; 1582 1583 init_completion(&as->xfer_completion); 1584 1585 atmel_get_caps(as); 1586 1587 as->use_dma = false; 1588 as->use_pdc = false; 1589 if (as->caps.has_dma_support) { 1590 ret = atmel_spi_configure_dma(master, as); 1591 if (ret == 0) { 1592 as->use_dma = true; 1593 } else if (ret == -EPROBE_DEFER) { 1594 return ret; 1595 } 1596 } else if (as->caps.has_pdc_support) { 1597 as->use_pdc = true; 1598 } 1599 1600 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 1601 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev, 1602 SPI_MAX_DMA_XFER, 1603 &as->dma_addr_rx_bbuf, 1604 GFP_KERNEL | GFP_DMA); 1605 if (!as->addr_rx_bbuf) { 1606 as->use_dma = false; 1607 } else { 1608 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev, 1609 SPI_MAX_DMA_XFER, 1610 &as->dma_addr_tx_bbuf, 1611 GFP_KERNEL | GFP_DMA); 1612 if (!as->addr_tx_bbuf) { 1613 as->use_dma = false; 1614 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1615 as->addr_rx_bbuf, 1616 as->dma_addr_rx_bbuf); 1617 } 1618 } 1619 if (!as->use_dma) 1620 dev_info(master->dev.parent, 1621 " can not allocate dma coherent memory\n"); 1622 } 1623 1624 if (as->caps.has_dma_support && !as->use_dma) 1625 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n"); 1626 1627 if (as->use_pdc) { 1628 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt, 1629 0, dev_name(&pdev->dev), master); 1630 } else { 1631 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt, 1632 0, dev_name(&pdev->dev), master); 1633 } 1634 if (ret) 1635 goto out_unmap_regs; 1636 1637 /* Initialize the hardware */ 1638 ret = clk_prepare_enable(clk); 1639 if (ret) 1640 goto out_free_irq; 1641 1642 as->spi_clk = clk_get_rate(clk); 1643 1644 as->fifo_size = 0; 1645 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size", 1646 &as->fifo_size)) { 1647 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size); 1648 } 1649 1650 atmel_spi_init(as); 1651 1652 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT); 1653 pm_runtime_use_autosuspend(&pdev->dev); 1654 pm_runtime_set_active(&pdev->dev); 1655 pm_runtime_enable(&pdev->dev); 1656 1657 ret = devm_spi_register_master(&pdev->dev, master); 1658 if (ret) 1659 goto out_free_dma; 1660 1661 /* go! */ 1662 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n", 1663 atmel_get_version(as), (unsigned long)regs->start, 1664 irq); 1665 1666 return 0; 1667 1668 out_free_dma: 1669 pm_runtime_disable(&pdev->dev); 1670 pm_runtime_set_suspended(&pdev->dev); 1671 1672 if (as->use_dma) 1673 atmel_spi_release_dma(master); 1674 1675 spi_writel(as, CR, SPI_BIT(SWRST)); 1676 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1677 clk_disable_unprepare(clk); 1678 out_free_irq: 1679 out_unmap_regs: 1680 spi_master_put(master); 1681 return ret; 1682 } 1683 1684 static int atmel_spi_remove(struct platform_device *pdev) 1685 { 1686 struct spi_master *master = platform_get_drvdata(pdev); 1687 struct atmel_spi *as = spi_master_get_devdata(master); 1688 1689 pm_runtime_get_sync(&pdev->dev); 1690 1691 /* reset the hardware and block queue progress */ 1692 if (as->use_dma) { 1693 atmel_spi_stop_dma(master); 1694 atmel_spi_release_dma(master); 1695 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 1696 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1697 as->addr_tx_bbuf, 1698 as->dma_addr_tx_bbuf); 1699 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1700 as->addr_rx_bbuf, 1701 as->dma_addr_rx_bbuf); 1702 } 1703 } 1704 1705 spin_lock_irq(&as->lock); 1706 spi_writel(as, CR, SPI_BIT(SWRST)); 1707 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1708 spi_readl(as, SR); 1709 spin_unlock_irq(&as->lock); 1710 1711 clk_disable_unprepare(as->clk); 1712 1713 pm_runtime_put_noidle(&pdev->dev); 1714 pm_runtime_disable(&pdev->dev); 1715 1716 return 0; 1717 } 1718 1719 #ifdef CONFIG_PM 1720 static int atmel_spi_runtime_suspend(struct device *dev) 1721 { 1722 struct spi_master *master = dev_get_drvdata(dev); 1723 struct atmel_spi *as = spi_master_get_devdata(master); 1724 1725 clk_disable_unprepare(as->clk); 1726 pinctrl_pm_select_sleep_state(dev); 1727 1728 return 0; 1729 } 1730 1731 static int atmel_spi_runtime_resume(struct device *dev) 1732 { 1733 struct spi_master *master = dev_get_drvdata(dev); 1734 struct atmel_spi *as = spi_master_get_devdata(master); 1735 1736 pinctrl_pm_select_default_state(dev); 1737 1738 return clk_prepare_enable(as->clk); 1739 } 1740 1741 #ifdef CONFIG_PM_SLEEP 1742 static int atmel_spi_suspend(struct device *dev) 1743 { 1744 struct spi_master *master = dev_get_drvdata(dev); 1745 int ret; 1746 1747 /* Stop the queue running */ 1748 ret = spi_master_suspend(master); 1749 if (ret) 1750 return ret; 1751 1752 if (!pm_runtime_suspended(dev)) 1753 atmel_spi_runtime_suspend(dev); 1754 1755 return 0; 1756 } 1757 1758 static int atmel_spi_resume(struct device *dev) 1759 { 1760 struct spi_master *master = dev_get_drvdata(dev); 1761 struct atmel_spi *as = spi_master_get_devdata(master); 1762 int ret; 1763 1764 ret = clk_prepare_enable(as->clk); 1765 if (ret) 1766 return ret; 1767 1768 atmel_spi_init(as); 1769 1770 clk_disable_unprepare(as->clk); 1771 1772 if (!pm_runtime_suspended(dev)) { 1773 ret = atmel_spi_runtime_resume(dev); 1774 if (ret) 1775 return ret; 1776 } 1777 1778 /* Start the queue running */ 1779 return spi_master_resume(master); 1780 } 1781 #endif 1782 1783 static const struct dev_pm_ops atmel_spi_pm_ops = { 1784 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume) 1785 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend, 1786 atmel_spi_runtime_resume, NULL) 1787 }; 1788 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops) 1789 #else 1790 #define ATMEL_SPI_PM_OPS NULL 1791 #endif 1792 1793 static const struct of_device_id atmel_spi_dt_ids[] = { 1794 { .compatible = "atmel,at91rm9200-spi" }, 1795 { /* sentinel */ } 1796 }; 1797 1798 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids); 1799 1800 static struct platform_driver atmel_spi_driver = { 1801 .driver = { 1802 .name = "atmel_spi", 1803 .pm = ATMEL_SPI_PM_OPS, 1804 .of_match_table = atmel_spi_dt_ids, 1805 }, 1806 .probe = atmel_spi_probe, 1807 .remove = atmel_spi_remove, 1808 }; 1809 module_platform_driver(atmel_spi_driver); 1810 1811 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); 1812 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 1813 MODULE_LICENSE("GPL"); 1814 MODULE_ALIAS("platform:atmel_spi"); 1815