xref: /linux/drivers/spi/spi-atmel.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/interrupt.h>
21 #include <linux/spi/spi.h>
22 #include <linux/slab.h>
23 #include <linux/platform_data/atmel.h>
24 #include <linux/platform_data/dma-atmel.h>
25 #include <linux/of.h>
26 
27 #include <linux/io.h>
28 #include <linux/gpio.h>
29 
30 /* SPI register offsets */
31 #define SPI_CR					0x0000
32 #define SPI_MR					0x0004
33 #define SPI_RDR					0x0008
34 #define SPI_TDR					0x000c
35 #define SPI_SR					0x0010
36 #define SPI_IER					0x0014
37 #define SPI_IDR					0x0018
38 #define SPI_IMR					0x001c
39 #define SPI_CSR0				0x0030
40 #define SPI_CSR1				0x0034
41 #define SPI_CSR2				0x0038
42 #define SPI_CSR3				0x003c
43 #define SPI_VERSION				0x00fc
44 #define SPI_RPR					0x0100
45 #define SPI_RCR					0x0104
46 #define SPI_TPR					0x0108
47 #define SPI_TCR					0x010c
48 #define SPI_RNPR				0x0110
49 #define SPI_RNCR				0x0114
50 #define SPI_TNPR				0x0118
51 #define SPI_TNCR				0x011c
52 #define SPI_PTCR				0x0120
53 #define SPI_PTSR				0x0124
54 
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET			0
57 #define SPI_SPIEN_SIZE				1
58 #define SPI_SPIDIS_OFFSET			1
59 #define SPI_SPIDIS_SIZE				1
60 #define SPI_SWRST_OFFSET			7
61 #define SPI_SWRST_SIZE				1
62 #define SPI_LASTXFER_OFFSET			24
63 #define SPI_LASTXFER_SIZE			1
64 
65 /* Bitfields in MR */
66 #define SPI_MSTR_OFFSET				0
67 #define SPI_MSTR_SIZE				1
68 #define SPI_PS_OFFSET				1
69 #define SPI_PS_SIZE				1
70 #define SPI_PCSDEC_OFFSET			2
71 #define SPI_PCSDEC_SIZE				1
72 #define SPI_FDIV_OFFSET				3
73 #define SPI_FDIV_SIZE				1
74 #define SPI_MODFDIS_OFFSET			4
75 #define SPI_MODFDIS_SIZE			1
76 #define SPI_WDRBT_OFFSET			5
77 #define SPI_WDRBT_SIZE				1
78 #define SPI_LLB_OFFSET				7
79 #define SPI_LLB_SIZE				1
80 #define SPI_PCS_OFFSET				16
81 #define SPI_PCS_SIZE				4
82 #define SPI_DLYBCS_OFFSET			24
83 #define SPI_DLYBCS_SIZE				8
84 
85 /* Bitfields in RDR */
86 #define SPI_RD_OFFSET				0
87 #define SPI_RD_SIZE				16
88 
89 /* Bitfields in TDR */
90 #define SPI_TD_OFFSET				0
91 #define SPI_TD_SIZE				16
92 
93 /* Bitfields in SR */
94 #define SPI_RDRF_OFFSET				0
95 #define SPI_RDRF_SIZE				1
96 #define SPI_TDRE_OFFSET				1
97 #define SPI_TDRE_SIZE				1
98 #define SPI_MODF_OFFSET				2
99 #define SPI_MODF_SIZE				1
100 #define SPI_OVRES_OFFSET			3
101 #define SPI_OVRES_SIZE				1
102 #define SPI_ENDRX_OFFSET			4
103 #define SPI_ENDRX_SIZE				1
104 #define SPI_ENDTX_OFFSET			5
105 #define SPI_ENDTX_SIZE				1
106 #define SPI_RXBUFF_OFFSET			6
107 #define SPI_RXBUFF_SIZE				1
108 #define SPI_TXBUFE_OFFSET			7
109 #define SPI_TXBUFE_SIZE				1
110 #define SPI_NSSR_OFFSET				8
111 #define SPI_NSSR_SIZE				1
112 #define SPI_TXEMPTY_OFFSET			9
113 #define SPI_TXEMPTY_SIZE			1
114 #define SPI_SPIENS_OFFSET			16
115 #define SPI_SPIENS_SIZE				1
116 
117 /* Bitfields in CSR0 */
118 #define SPI_CPOL_OFFSET				0
119 #define SPI_CPOL_SIZE				1
120 #define SPI_NCPHA_OFFSET			1
121 #define SPI_NCPHA_SIZE				1
122 #define SPI_CSAAT_OFFSET			3
123 #define SPI_CSAAT_SIZE				1
124 #define SPI_BITS_OFFSET				4
125 #define SPI_BITS_SIZE				4
126 #define SPI_SCBR_OFFSET				8
127 #define SPI_SCBR_SIZE				8
128 #define SPI_DLYBS_OFFSET			16
129 #define SPI_DLYBS_SIZE				8
130 #define SPI_DLYBCT_OFFSET			24
131 #define SPI_DLYBCT_SIZE				8
132 
133 /* Bitfields in RCR */
134 #define SPI_RXCTR_OFFSET			0
135 #define SPI_RXCTR_SIZE				16
136 
137 /* Bitfields in TCR */
138 #define SPI_TXCTR_OFFSET			0
139 #define SPI_TXCTR_SIZE				16
140 
141 /* Bitfields in RNCR */
142 #define SPI_RXNCR_OFFSET			0
143 #define SPI_RXNCR_SIZE				16
144 
145 /* Bitfields in TNCR */
146 #define SPI_TXNCR_OFFSET			0
147 #define SPI_TXNCR_SIZE				16
148 
149 /* Bitfields in PTCR */
150 #define SPI_RXTEN_OFFSET			0
151 #define SPI_RXTEN_SIZE				1
152 #define SPI_RXTDIS_OFFSET			1
153 #define SPI_RXTDIS_SIZE				1
154 #define SPI_TXTEN_OFFSET			8
155 #define SPI_TXTEN_SIZE				1
156 #define SPI_TXTDIS_OFFSET			9
157 #define SPI_TXTDIS_SIZE				1
158 
159 /* Constants for BITS */
160 #define SPI_BITS_8_BPT				0
161 #define SPI_BITS_9_BPT				1
162 #define SPI_BITS_10_BPT				2
163 #define SPI_BITS_11_BPT				3
164 #define SPI_BITS_12_BPT				4
165 #define SPI_BITS_13_BPT				5
166 #define SPI_BITS_14_BPT				6
167 #define SPI_BITS_15_BPT				7
168 #define SPI_BITS_16_BPT				8
169 
170 /* Bit manipulation macros */
171 #define SPI_BIT(name) \
172 	(1 << SPI_##name##_OFFSET)
173 #define SPI_BF(name,value) \
174 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
175 #define SPI_BFEXT(name,value) \
176 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
177 #define SPI_BFINS(name,value,old) \
178 	( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
179 	  | SPI_BF(name,value))
180 
181 /* Register access macros */
182 #define spi_readl(port,reg) \
183 	__raw_readl((port)->regs + SPI_##reg)
184 #define spi_writel(port,reg,value) \
185 	__raw_writel((value), (port)->regs + SPI_##reg)
186 
187 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
188  * cache operations; better heuristics consider wordsize and bitrate.
189  */
190 #define DMA_MIN_BYTES	16
191 
192 struct atmel_spi_dma {
193 	struct dma_chan			*chan_rx;
194 	struct dma_chan			*chan_tx;
195 	struct scatterlist		sgrx;
196 	struct scatterlist		sgtx;
197 	struct dma_async_tx_descriptor	*data_desc_rx;
198 	struct dma_async_tx_descriptor	*data_desc_tx;
199 
200 	struct at_dma_slave	dma_slave;
201 };
202 
203 struct atmel_spi_caps {
204 	bool	is_spi2;
205 	bool	has_wdrbt;
206 	bool	has_dma_support;
207 };
208 
209 /*
210  * The core SPI transfer engine just talks to a register bank to set up
211  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
212  * framework provides the base clock, subdivided for each spi_device.
213  */
214 struct atmel_spi {
215 	spinlock_t		lock;
216 	unsigned long		flags;
217 
218 	phys_addr_t		phybase;
219 	void __iomem		*regs;
220 	int			irq;
221 	struct clk		*clk;
222 	struct platform_device	*pdev;
223 	struct spi_device	*stay;
224 
225 	u8			stopping;
226 	struct list_head	queue;
227 	struct tasklet_struct	tasklet;
228 	struct spi_transfer	*current_transfer;
229 	unsigned long		current_remaining_bytes;
230 	struct spi_transfer	*next_transfer;
231 	unsigned long		next_remaining_bytes;
232 	int			done_status;
233 
234 	/* scratch buffer */
235 	void			*buffer;
236 	dma_addr_t		buffer_dma;
237 
238 	struct atmel_spi_caps	caps;
239 
240 	bool			use_dma;
241 	bool			use_pdc;
242 	/* dmaengine data */
243 	struct atmel_spi_dma	dma;
244 };
245 
246 /* Controller-specific per-slave state */
247 struct atmel_spi_device {
248 	unsigned int		npcs_pin;
249 	u32			csr;
250 };
251 
252 #define BUFFER_SIZE		PAGE_SIZE
253 #define INVALID_DMA_ADDRESS	0xffffffff
254 
255 /*
256  * Version 2 of the SPI controller has
257  *  - CR.LASTXFER
258  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
259  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
260  *  - SPI_CSRx.CSAAT
261  *  - SPI_CSRx.SBCR allows faster clocking
262  */
263 static bool atmel_spi_is_v2(struct atmel_spi *as)
264 {
265 	return as->caps.is_spi2;
266 }
267 
268 /*
269  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
270  * they assume that spi slave device state will not change on deselect, so
271  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
272  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
273  * controllers have CSAAT and friends.
274  *
275  * Since the CSAAT functionality is a bit weird on newer controllers as
276  * well, we use GPIO to control nCSx pins on all controllers, updating
277  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
278  * support active-high chipselects despite the controller's belief that
279  * only active-low devices/systems exists.
280  *
281  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
282  * right when driven with GPIO.  ("Mode Fault does not allow more than one
283  * Master on Chip Select 0.")  No workaround exists for that ... so for
284  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
285  * and (c) will trigger that first erratum in some cases.
286  */
287 
288 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
289 {
290 	struct atmel_spi_device *asd = spi->controller_state;
291 	unsigned active = spi->mode & SPI_CS_HIGH;
292 	u32 mr;
293 
294 	if (atmel_spi_is_v2(as)) {
295 		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
296 		/* For the low SPI version, there is a issue that PDC transfer
297 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
298 		 */
299 		spi_writel(as, CSR0, asd->csr);
300 		if (as->caps.has_wdrbt) {
301 			spi_writel(as, MR,
302 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
303 					| SPI_BIT(WDRBT)
304 					| SPI_BIT(MODFDIS)
305 					| SPI_BIT(MSTR));
306 		} else {
307 			spi_writel(as, MR,
308 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
309 					| SPI_BIT(MODFDIS)
310 					| SPI_BIT(MSTR));
311 		}
312 
313 		mr = spi_readl(as, MR);
314 		gpio_set_value(asd->npcs_pin, active);
315 	} else {
316 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
317 		int i;
318 		u32 csr;
319 
320 		/* Make sure clock polarity is correct */
321 		for (i = 0; i < spi->master->num_chipselect; i++) {
322 			csr = spi_readl(as, CSR0 + 4 * i);
323 			if ((csr ^ cpol) & SPI_BIT(CPOL))
324 				spi_writel(as, CSR0 + 4 * i,
325 						csr ^ SPI_BIT(CPOL));
326 		}
327 
328 		mr = spi_readl(as, MR);
329 		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
330 		if (spi->chip_select != 0)
331 			gpio_set_value(asd->npcs_pin, active);
332 		spi_writel(as, MR, mr);
333 	}
334 
335 	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
336 			asd->npcs_pin, active ? " (high)" : "",
337 			mr);
338 }
339 
340 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
341 {
342 	struct atmel_spi_device *asd = spi->controller_state;
343 	unsigned active = spi->mode & SPI_CS_HIGH;
344 	u32 mr;
345 
346 	/* only deactivate *this* device; sometimes transfers to
347 	 * another device may be active when this routine is called.
348 	 */
349 	mr = spi_readl(as, MR);
350 	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
351 		mr = SPI_BFINS(PCS, 0xf, mr);
352 		spi_writel(as, MR, mr);
353 	}
354 
355 	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
356 			asd->npcs_pin, active ? " (low)" : "",
357 			mr);
358 
359 	if (atmel_spi_is_v2(as) || spi->chip_select != 0)
360 		gpio_set_value(asd->npcs_pin, !active);
361 }
362 
363 static void atmel_spi_lock(struct atmel_spi *as)
364 {
365 	spin_lock_irqsave(&as->lock, as->flags);
366 }
367 
368 static void atmel_spi_unlock(struct atmel_spi *as)
369 {
370 	spin_unlock_irqrestore(&as->lock, as->flags);
371 }
372 
373 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
374 				struct spi_transfer *xfer)
375 {
376 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
377 }
378 
379 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
380 					struct spi_transfer *xfer)
381 {
382 	return msg->transfers.prev == &xfer->transfer_list;
383 }
384 
385 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
386 {
387 	return xfer->delay_usecs == 0 && !xfer->cs_change;
388 }
389 
390 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
391 				struct dma_slave_config *slave_config,
392 				u8 bits_per_word)
393 {
394 	int err = 0;
395 
396 	if (bits_per_word > 8) {
397 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
398 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
399 	} else {
400 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
401 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
402 	}
403 
404 	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
405 	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
406 	slave_config->src_maxburst = 1;
407 	slave_config->dst_maxburst = 1;
408 	slave_config->device_fc = false;
409 
410 	slave_config->direction = DMA_MEM_TO_DEV;
411 	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
412 		dev_err(&as->pdev->dev,
413 			"failed to configure tx dma channel\n");
414 		err = -EINVAL;
415 	}
416 
417 	slave_config->direction = DMA_DEV_TO_MEM;
418 	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
419 		dev_err(&as->pdev->dev,
420 			"failed to configure rx dma channel\n");
421 		err = -EINVAL;
422 	}
423 
424 	return err;
425 }
426 
427 static bool filter(struct dma_chan *chan, void *pdata)
428 {
429 	struct atmel_spi_dma *sl_pdata = pdata;
430 	struct at_dma_slave *sl;
431 
432 	if (!sl_pdata)
433 		return false;
434 
435 	sl = &sl_pdata->dma_slave;
436 	if (sl->dma_dev == chan->device->dev) {
437 		chan->private = sl;
438 		return true;
439 	} else {
440 		return false;
441 	}
442 }
443 
444 static int atmel_spi_configure_dma(struct atmel_spi *as)
445 {
446 	struct dma_slave_config	slave_config;
447 	struct device *dev = &as->pdev->dev;
448 	int err;
449 
450 	dma_cap_mask_t mask;
451 	dma_cap_zero(mask);
452 	dma_cap_set(DMA_SLAVE, mask);
453 
454 	as->dma.chan_tx = dma_request_slave_channel_compat(mask, filter,
455 							   &as->dma,
456 							   dev, "tx");
457 	if (!as->dma.chan_tx) {
458 		dev_err(dev,
459 			"DMA TX channel not available, SPI unable to use DMA\n");
460 		err = -EBUSY;
461 		goto error;
462 	}
463 
464 	as->dma.chan_rx = dma_request_slave_channel_compat(mask, filter,
465 							   &as->dma,
466 							   dev, "rx");
467 
468 	if (!as->dma.chan_rx) {
469 		dev_err(dev,
470 			"DMA RX channel not available, SPI unable to use DMA\n");
471 		err = -EBUSY;
472 		goto error;
473 	}
474 
475 	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
476 	if (err)
477 		goto error;
478 
479 	dev_info(&as->pdev->dev,
480 			"Using %s (tx) and %s (rx) for DMA transfers\n",
481 			dma_chan_name(as->dma.chan_tx),
482 			dma_chan_name(as->dma.chan_rx));
483 	return 0;
484 error:
485 	if (as->dma.chan_rx)
486 		dma_release_channel(as->dma.chan_rx);
487 	if (as->dma.chan_tx)
488 		dma_release_channel(as->dma.chan_tx);
489 	return err;
490 }
491 
492 static void atmel_spi_stop_dma(struct atmel_spi *as)
493 {
494 	if (as->dma.chan_rx)
495 		as->dma.chan_rx->device->device_control(as->dma.chan_rx,
496 							DMA_TERMINATE_ALL, 0);
497 	if (as->dma.chan_tx)
498 		as->dma.chan_tx->device->device_control(as->dma.chan_tx,
499 							DMA_TERMINATE_ALL, 0);
500 }
501 
502 static void atmel_spi_release_dma(struct atmel_spi *as)
503 {
504 	if (as->dma.chan_rx)
505 		dma_release_channel(as->dma.chan_rx);
506 	if (as->dma.chan_tx)
507 		dma_release_channel(as->dma.chan_tx);
508 }
509 
510 /* This function is called by the DMA driver from tasklet context */
511 static void dma_callback(void *data)
512 {
513 	struct spi_master	*master = data;
514 	struct atmel_spi	*as = spi_master_get_devdata(master);
515 
516 	/* trigger SPI tasklet */
517 	tasklet_schedule(&as->tasklet);
518 }
519 
520 /*
521  * Next transfer using PIO.
522  * lock is held, spi tasklet is blocked
523  */
524 static void atmel_spi_next_xfer_pio(struct spi_master *master,
525 				struct spi_transfer *xfer)
526 {
527 	struct atmel_spi	*as = spi_master_get_devdata(master);
528 
529 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
530 
531 	as->current_remaining_bytes = xfer->len;
532 
533 	/* Make sure data is not remaining in RDR */
534 	spi_readl(as, RDR);
535 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
536 		spi_readl(as, RDR);
537 		cpu_relax();
538 	}
539 
540 	if (xfer->tx_buf)
541 		if (xfer->bits_per_word > 8)
542 			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf));
543 		else
544 			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf));
545 	else
546 		spi_writel(as, TDR, 0);
547 
548 	dev_dbg(master->dev.parent,
549 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
550 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
551 		xfer->bits_per_word);
552 
553 	/* Enable relevant interrupts */
554 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
555 }
556 
557 /*
558  * Submit next transfer for DMA.
559  * lock is held, spi tasklet is blocked
560  */
561 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
562 				struct spi_transfer *xfer,
563 				u32 *plen)
564 {
565 	struct atmel_spi	*as = spi_master_get_devdata(master);
566 	struct dma_chan		*rxchan = as->dma.chan_rx;
567 	struct dma_chan		*txchan = as->dma.chan_tx;
568 	struct dma_async_tx_descriptor *rxdesc;
569 	struct dma_async_tx_descriptor *txdesc;
570 	struct dma_slave_config	slave_config;
571 	dma_cookie_t		cookie;
572 	u32	len = *plen;
573 
574 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
575 
576 	/* Check that the channels are available */
577 	if (!rxchan || !txchan)
578 		return -ENODEV;
579 
580 	/* release lock for DMA operations */
581 	atmel_spi_unlock(as);
582 
583 	/* prepare the RX dma transfer */
584 	sg_init_table(&as->dma.sgrx, 1);
585 	if (xfer->rx_buf) {
586 		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
587 	} else {
588 		as->dma.sgrx.dma_address = as->buffer_dma;
589 		if (len > BUFFER_SIZE)
590 			len = BUFFER_SIZE;
591 	}
592 
593 	/* prepare the TX dma transfer */
594 	sg_init_table(&as->dma.sgtx, 1);
595 	if (xfer->tx_buf) {
596 		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
597 	} else {
598 		as->dma.sgtx.dma_address = as->buffer_dma;
599 		if (len > BUFFER_SIZE)
600 			len = BUFFER_SIZE;
601 		memset(as->buffer, 0, len);
602 	}
603 
604 	sg_dma_len(&as->dma.sgtx) = len;
605 	sg_dma_len(&as->dma.sgrx) = len;
606 
607 	*plen = len;
608 
609 	if (atmel_spi_dma_slave_config(as, &slave_config, 8))
610 		goto err_exit;
611 
612 	/* Send both scatterlists */
613 	rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
614 					&as->dma.sgrx,
615 					1,
616 					DMA_FROM_DEVICE,
617 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
618 					NULL);
619 	if (!rxdesc)
620 		goto err_dma;
621 
622 	txdesc = txchan->device->device_prep_slave_sg(txchan,
623 					&as->dma.sgtx,
624 					1,
625 					DMA_TO_DEVICE,
626 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
627 					NULL);
628 	if (!txdesc)
629 		goto err_dma;
630 
631 	dev_dbg(master->dev.parent,
632 		"  start dma xfer %p: len %u tx %p/%08x rx %p/%08x\n",
633 		xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
634 		xfer->rx_buf, xfer->rx_dma);
635 
636 	/* Enable relevant interrupts */
637 	spi_writel(as, IER, SPI_BIT(OVRES));
638 
639 	/* Put the callback on the RX transfer only, that should finish last */
640 	rxdesc->callback = dma_callback;
641 	rxdesc->callback_param = master;
642 
643 	/* Submit and fire RX and TX with TX last so we're ready to read! */
644 	cookie = rxdesc->tx_submit(rxdesc);
645 	if (dma_submit_error(cookie))
646 		goto err_dma;
647 	cookie = txdesc->tx_submit(txdesc);
648 	if (dma_submit_error(cookie))
649 		goto err_dma;
650 	rxchan->device->device_issue_pending(rxchan);
651 	txchan->device->device_issue_pending(txchan);
652 
653 	/* take back lock */
654 	atmel_spi_lock(as);
655 	return 0;
656 
657 err_dma:
658 	spi_writel(as, IDR, SPI_BIT(OVRES));
659 	atmel_spi_stop_dma(as);
660 err_exit:
661 	atmel_spi_lock(as);
662 	return -ENOMEM;
663 }
664 
665 static void atmel_spi_next_xfer_data(struct spi_master *master,
666 				struct spi_transfer *xfer,
667 				dma_addr_t *tx_dma,
668 				dma_addr_t *rx_dma,
669 				u32 *plen)
670 {
671 	struct atmel_spi	*as = spi_master_get_devdata(master);
672 	u32			len = *plen;
673 
674 	/* use scratch buffer only when rx or tx data is unspecified */
675 	if (xfer->rx_buf)
676 		*rx_dma = xfer->rx_dma + xfer->len - *plen;
677 	else {
678 		*rx_dma = as->buffer_dma;
679 		if (len > BUFFER_SIZE)
680 			len = BUFFER_SIZE;
681 	}
682 
683 	if (xfer->tx_buf)
684 		*tx_dma = xfer->tx_dma + xfer->len - *plen;
685 	else {
686 		*tx_dma = as->buffer_dma;
687 		if (len > BUFFER_SIZE)
688 			len = BUFFER_SIZE;
689 		memset(as->buffer, 0, len);
690 		dma_sync_single_for_device(&as->pdev->dev,
691 				as->buffer_dma, len, DMA_TO_DEVICE);
692 	}
693 
694 	*plen = len;
695 }
696 
697 /*
698  * Submit next transfer for PDC.
699  * lock is held, spi irq is blocked
700  */
701 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
702 				struct spi_message *msg)
703 {
704 	struct atmel_spi	*as = spi_master_get_devdata(master);
705 	struct spi_transfer	*xfer;
706 	u32			len, remaining;
707 	u32			ieval;
708 	dma_addr_t		tx_dma, rx_dma;
709 
710 	if (!as->current_transfer)
711 		xfer = list_entry(msg->transfers.next,
712 				struct spi_transfer, transfer_list);
713 	else if (!as->next_transfer)
714 		xfer = list_entry(as->current_transfer->transfer_list.next,
715 				struct spi_transfer, transfer_list);
716 	else
717 		xfer = NULL;
718 
719 	if (xfer) {
720 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
721 
722 		len = xfer->len;
723 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
724 		remaining = xfer->len - len;
725 
726 		spi_writel(as, RPR, rx_dma);
727 		spi_writel(as, TPR, tx_dma);
728 
729 		if (msg->spi->bits_per_word > 8)
730 			len >>= 1;
731 		spi_writel(as, RCR, len);
732 		spi_writel(as, TCR, len);
733 
734 		dev_dbg(&msg->spi->dev,
735 			"  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
736 			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
737 			xfer->rx_buf, xfer->rx_dma);
738 	} else {
739 		xfer = as->next_transfer;
740 		remaining = as->next_remaining_bytes;
741 	}
742 
743 	as->current_transfer = xfer;
744 	as->current_remaining_bytes = remaining;
745 
746 	if (remaining > 0)
747 		len = remaining;
748 	else if (!atmel_spi_xfer_is_last(msg, xfer)
749 			&& atmel_spi_xfer_can_be_chained(xfer)) {
750 		xfer = list_entry(xfer->transfer_list.next,
751 				struct spi_transfer, transfer_list);
752 		len = xfer->len;
753 	} else
754 		xfer = NULL;
755 
756 	as->next_transfer = xfer;
757 
758 	if (xfer) {
759 		u32	total;
760 
761 		total = len;
762 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
763 		as->next_remaining_bytes = total - len;
764 
765 		spi_writel(as, RNPR, rx_dma);
766 		spi_writel(as, TNPR, tx_dma);
767 
768 		if (msg->spi->bits_per_word > 8)
769 			len >>= 1;
770 		spi_writel(as, RNCR, len);
771 		spi_writel(as, TNCR, len);
772 
773 		dev_dbg(&msg->spi->dev,
774 			"  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
775 			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
776 			xfer->rx_buf, xfer->rx_dma);
777 		ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
778 	} else {
779 		spi_writel(as, RNCR, 0);
780 		spi_writel(as, TNCR, 0);
781 		ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
782 	}
783 
784 	/* REVISIT: We're waiting for ENDRX before we start the next
785 	 * transfer because we need to handle some difficult timing
786 	 * issues otherwise. If we wait for ENDTX in one transfer and
787 	 * then starts waiting for ENDRX in the next, it's difficult
788 	 * to tell the difference between the ENDRX interrupt we're
789 	 * actually waiting for and the ENDRX interrupt of the
790 	 * previous transfer.
791 	 *
792 	 * It should be doable, though. Just not now...
793 	 */
794 	spi_writel(as, IER, ieval);
795 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
796 }
797 
798 /*
799  * Choose way to submit next transfer and start it.
800  * lock is held, spi tasklet is blocked
801  */
802 static void atmel_spi_dma_next_xfer(struct spi_master *master,
803 				struct spi_message *msg)
804 {
805 	struct atmel_spi	*as = spi_master_get_devdata(master);
806 	struct spi_transfer	*xfer;
807 	u32	remaining, len;
808 
809 	remaining = as->current_remaining_bytes;
810 	if (remaining) {
811 		xfer = as->current_transfer;
812 		len = remaining;
813 	} else {
814 		if (!as->current_transfer)
815 			xfer = list_entry(msg->transfers.next,
816 				struct spi_transfer, transfer_list);
817 		else
818 			xfer = list_entry(
819 				as->current_transfer->transfer_list.next,
820 					struct spi_transfer, transfer_list);
821 
822 		as->current_transfer = xfer;
823 		len = xfer->len;
824 	}
825 
826 	if (atmel_spi_use_dma(as, xfer)) {
827 		u32 total = len;
828 		if (!atmel_spi_next_xfer_dma_submit(master, xfer, &len)) {
829 			as->current_remaining_bytes = total - len;
830 			return;
831 		} else {
832 			dev_err(&msg->spi->dev, "unable to use DMA, fallback to PIO\n");
833 		}
834 	}
835 
836 	/* use PIO if error appened using DMA */
837 	atmel_spi_next_xfer_pio(master, xfer);
838 }
839 
840 static void atmel_spi_next_message(struct spi_master *master)
841 {
842 	struct atmel_spi	*as = spi_master_get_devdata(master);
843 	struct spi_message	*msg;
844 	struct spi_device	*spi;
845 
846 	BUG_ON(as->current_transfer);
847 
848 	msg = list_entry(as->queue.next, struct spi_message, queue);
849 	spi = msg->spi;
850 
851 	dev_dbg(master->dev.parent, "start message %p for %s\n",
852 			msg, dev_name(&spi->dev));
853 
854 	/* select chip if it's not still active */
855 	if (as->stay) {
856 		if (as->stay != spi) {
857 			cs_deactivate(as, as->stay);
858 			cs_activate(as, spi);
859 		}
860 		as->stay = NULL;
861 	} else
862 		cs_activate(as, spi);
863 
864 	if (as->use_pdc)
865 		atmel_spi_pdc_next_xfer(master, msg);
866 	else
867 		atmel_spi_dma_next_xfer(master, msg);
868 }
869 
870 /*
871  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
872  *  - The buffer is either valid for CPU access, else NULL
873  *  - If the buffer is valid, so is its DMA address
874  *
875  * This driver manages the dma address unless message->is_dma_mapped.
876  */
877 static int
878 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
879 {
880 	struct device	*dev = &as->pdev->dev;
881 
882 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
883 	if (xfer->tx_buf) {
884 		/* tx_buf is a const void* where we need a void * for the dma
885 		 * mapping */
886 		void *nonconst_tx = (void *)xfer->tx_buf;
887 
888 		xfer->tx_dma = dma_map_single(dev,
889 				nonconst_tx, xfer->len,
890 				DMA_TO_DEVICE);
891 		if (dma_mapping_error(dev, xfer->tx_dma))
892 			return -ENOMEM;
893 	}
894 	if (xfer->rx_buf) {
895 		xfer->rx_dma = dma_map_single(dev,
896 				xfer->rx_buf, xfer->len,
897 				DMA_FROM_DEVICE);
898 		if (dma_mapping_error(dev, xfer->rx_dma)) {
899 			if (xfer->tx_buf)
900 				dma_unmap_single(dev,
901 						xfer->tx_dma, xfer->len,
902 						DMA_TO_DEVICE);
903 			return -ENOMEM;
904 		}
905 	}
906 	return 0;
907 }
908 
909 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
910 				     struct spi_transfer *xfer)
911 {
912 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
913 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
914 				 xfer->len, DMA_TO_DEVICE);
915 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
916 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
917 				 xfer->len, DMA_FROM_DEVICE);
918 }
919 
920 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
921 {
922 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
923 }
924 
925 static void
926 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
927 		struct spi_message *msg, int stay)
928 {
929 	if (!stay || as->done_status < 0)
930 		cs_deactivate(as, msg->spi);
931 	else
932 		as->stay = msg->spi;
933 
934 	list_del(&msg->queue);
935 	msg->status = as->done_status;
936 
937 	dev_dbg(master->dev.parent,
938 		"xfer complete: %u bytes transferred\n",
939 		msg->actual_length);
940 
941 	atmel_spi_unlock(as);
942 	msg->complete(msg->context);
943 	atmel_spi_lock(as);
944 
945 	as->current_transfer = NULL;
946 	as->next_transfer = NULL;
947 	as->done_status = 0;
948 
949 	/* continue if needed */
950 	if (list_empty(&as->queue) || as->stopping) {
951 		if (as->use_pdc)
952 			atmel_spi_disable_pdc_transfer(as);
953 	} else {
954 		atmel_spi_next_message(master);
955 	}
956 }
957 
958 /* Called from IRQ
959  * lock is held
960  *
961  * Must update "current_remaining_bytes" to keep track of data
962  * to transfer.
963  */
964 static void
965 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
966 {
967 	u8		*txp;
968 	u8		*rxp;
969 	u16		*txp16;
970 	u16		*rxp16;
971 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
972 
973 	if (xfer->rx_buf) {
974 		if (xfer->bits_per_word > 8) {
975 			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
976 			*rxp16 = spi_readl(as, RDR);
977 		} else {
978 			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
979 			*rxp = spi_readl(as, RDR);
980 		}
981 	} else {
982 		spi_readl(as, RDR);
983 	}
984 	if (xfer->bits_per_word > 8) {
985 		as->current_remaining_bytes -= 2;
986 		if (as->current_remaining_bytes < 0)
987 			as->current_remaining_bytes = 0;
988 	} else {
989 		as->current_remaining_bytes--;
990 	}
991 
992 	if (as->current_remaining_bytes) {
993 		if (xfer->tx_buf) {
994 			if (xfer->bits_per_word > 8) {
995 				txp16 = (u16 *)(((u8 *)xfer->tx_buf)
996 							+ xfer_pos + 2);
997 				spi_writel(as, TDR, *txp16);
998 			} else {
999 				txp = ((u8 *)xfer->tx_buf) + xfer_pos + 1;
1000 				spi_writel(as, TDR, *txp);
1001 			}
1002 		} else {
1003 			spi_writel(as, TDR, 0);
1004 		}
1005 	}
1006 }
1007 
1008 /* Tasklet
1009  * Called from DMA callback + pio transfer and overrun IRQ.
1010  */
1011 static void atmel_spi_tasklet_func(unsigned long data)
1012 {
1013 	struct spi_master	*master = (struct spi_master *)data;
1014 	struct atmel_spi	*as = spi_master_get_devdata(master);
1015 	struct spi_message	*msg;
1016 	struct spi_transfer	*xfer;
1017 
1018 	dev_vdbg(master->dev.parent, "atmel_spi_tasklet_func\n");
1019 
1020 	atmel_spi_lock(as);
1021 
1022 	xfer = as->current_transfer;
1023 
1024 	if (xfer == NULL)
1025 		/* already been there */
1026 		goto tasklet_out;
1027 
1028 	msg = list_entry(as->queue.next, struct spi_message, queue);
1029 
1030 	if (as->current_remaining_bytes == 0) {
1031 		if (as->done_status < 0) {
1032 			/* error happened (overrun) */
1033 			if (atmel_spi_use_dma(as, xfer))
1034 				atmel_spi_stop_dma(as);
1035 		} else {
1036 			/* only update length if no error */
1037 			msg->actual_length += xfer->len;
1038 		}
1039 
1040 		if (atmel_spi_use_dma(as, xfer))
1041 			if (!msg->is_dma_mapped)
1042 				atmel_spi_dma_unmap_xfer(master, xfer);
1043 
1044 		if (xfer->delay_usecs)
1045 			udelay(xfer->delay_usecs);
1046 
1047 		if (atmel_spi_xfer_is_last(msg, xfer) || as->done_status < 0) {
1048 			/* report completed (or erroneous) message */
1049 			atmel_spi_msg_done(master, as, msg, xfer->cs_change);
1050 		} else {
1051 			if (xfer->cs_change) {
1052 				cs_deactivate(as, msg->spi);
1053 				udelay(1);
1054 				cs_activate(as, msg->spi);
1055 			}
1056 
1057 			/*
1058 			 * Not done yet. Submit the next transfer.
1059 			 *
1060 			 * FIXME handle protocol options for xfer
1061 			 */
1062 			atmel_spi_dma_next_xfer(master, msg);
1063 		}
1064 	} else {
1065 		/*
1066 		 * Keep going, we still have data to send in
1067 		 * the current transfer.
1068 		 */
1069 		atmel_spi_dma_next_xfer(master, msg);
1070 	}
1071 
1072 tasklet_out:
1073 	atmel_spi_unlock(as);
1074 }
1075 
1076 /* Interrupt
1077  *
1078  * No need for locking in this Interrupt handler: done_status is the
1079  * only information modified. What we need is the update of this field
1080  * before tasklet runs. This is ensured by using barrier.
1081  */
1082 static irqreturn_t
1083 atmel_spi_pio_interrupt(int irq, void *dev_id)
1084 {
1085 	struct spi_master	*master = dev_id;
1086 	struct atmel_spi	*as = spi_master_get_devdata(master);
1087 	u32			status, pending, imr;
1088 	struct spi_transfer	*xfer;
1089 	int			ret = IRQ_NONE;
1090 
1091 	imr = spi_readl(as, IMR);
1092 	status = spi_readl(as, SR);
1093 	pending = status & imr;
1094 
1095 	if (pending & SPI_BIT(OVRES)) {
1096 		ret = IRQ_HANDLED;
1097 		spi_writel(as, IDR, SPI_BIT(OVRES));
1098 		dev_warn(master->dev.parent, "overrun\n");
1099 
1100 		/*
1101 		 * When we get an overrun, we disregard the current
1102 		 * transfer. Data will not be copied back from any
1103 		 * bounce buffer and msg->actual_len will not be
1104 		 * updated with the last xfer.
1105 		 *
1106 		 * We will also not process any remaning transfers in
1107 		 * the message.
1108 		 *
1109 		 * All actions are done in tasklet with done_status indication
1110 		 */
1111 		as->done_status = -EIO;
1112 		smp_wmb();
1113 
1114 		/* Clear any overrun happening while cleaning up */
1115 		spi_readl(as, SR);
1116 
1117 		tasklet_schedule(&as->tasklet);
1118 
1119 	} else if (pending & SPI_BIT(RDRF)) {
1120 		atmel_spi_lock(as);
1121 
1122 		if (as->current_remaining_bytes) {
1123 			ret = IRQ_HANDLED;
1124 			xfer = as->current_transfer;
1125 			atmel_spi_pump_pio_data(as, xfer);
1126 			if (!as->current_remaining_bytes) {
1127 				/* no more data to xfer, kick tasklet */
1128 				spi_writel(as, IDR, pending);
1129 				tasklet_schedule(&as->tasklet);
1130 			}
1131 		}
1132 
1133 		atmel_spi_unlock(as);
1134 	} else {
1135 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1136 		ret = IRQ_HANDLED;
1137 		spi_writel(as, IDR, pending);
1138 	}
1139 
1140 	return ret;
1141 }
1142 
1143 static irqreturn_t
1144 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1145 {
1146 	struct spi_master	*master = dev_id;
1147 	struct atmel_spi	*as = spi_master_get_devdata(master);
1148 	struct spi_message	*msg;
1149 	struct spi_transfer	*xfer;
1150 	u32			status, pending, imr;
1151 	int			ret = IRQ_NONE;
1152 
1153 	atmel_spi_lock(as);
1154 
1155 	xfer = as->current_transfer;
1156 	msg = list_entry(as->queue.next, struct spi_message, queue);
1157 
1158 	imr = spi_readl(as, IMR);
1159 	status = spi_readl(as, SR);
1160 	pending = status & imr;
1161 
1162 	if (pending & SPI_BIT(OVRES)) {
1163 		int timeout;
1164 
1165 		ret = IRQ_HANDLED;
1166 
1167 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1168 				     | SPI_BIT(OVRES)));
1169 
1170 		/*
1171 		 * When we get an overrun, we disregard the current
1172 		 * transfer. Data will not be copied back from any
1173 		 * bounce buffer and msg->actual_len will not be
1174 		 * updated with the last xfer.
1175 		 *
1176 		 * We will also not process any remaning transfers in
1177 		 * the message.
1178 		 *
1179 		 * First, stop the transfer and unmap the DMA buffers.
1180 		 */
1181 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1182 		if (!msg->is_dma_mapped)
1183 			atmel_spi_dma_unmap_xfer(master, xfer);
1184 
1185 		/* REVISIT: udelay in irq is unfriendly */
1186 		if (xfer->delay_usecs)
1187 			udelay(xfer->delay_usecs);
1188 
1189 		dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
1190 			 spi_readl(as, TCR), spi_readl(as, RCR));
1191 
1192 		/*
1193 		 * Clean up DMA registers and make sure the data
1194 		 * registers are empty.
1195 		 */
1196 		spi_writel(as, RNCR, 0);
1197 		spi_writel(as, TNCR, 0);
1198 		spi_writel(as, RCR, 0);
1199 		spi_writel(as, TCR, 0);
1200 		for (timeout = 1000; timeout; timeout--)
1201 			if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1202 				break;
1203 		if (!timeout)
1204 			dev_warn(master->dev.parent,
1205 				 "timeout waiting for TXEMPTY");
1206 		while (spi_readl(as, SR) & SPI_BIT(RDRF))
1207 			spi_readl(as, RDR);
1208 
1209 		/* Clear any overrun happening while cleaning up */
1210 		spi_readl(as, SR);
1211 
1212 		as->done_status = -EIO;
1213 		atmel_spi_msg_done(master, as, msg, 0);
1214 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1215 		ret = IRQ_HANDLED;
1216 
1217 		spi_writel(as, IDR, pending);
1218 
1219 		if (as->current_remaining_bytes == 0) {
1220 			msg->actual_length += xfer->len;
1221 
1222 			if (!msg->is_dma_mapped)
1223 				atmel_spi_dma_unmap_xfer(master, xfer);
1224 
1225 			/* REVISIT: udelay in irq is unfriendly */
1226 			if (xfer->delay_usecs)
1227 				udelay(xfer->delay_usecs);
1228 
1229 			if (atmel_spi_xfer_is_last(msg, xfer)) {
1230 				/* report completed message */
1231 				atmel_spi_msg_done(master, as, msg,
1232 						xfer->cs_change);
1233 			} else {
1234 				if (xfer->cs_change) {
1235 					cs_deactivate(as, msg->spi);
1236 					udelay(1);
1237 					cs_activate(as, msg->spi);
1238 				}
1239 
1240 				/*
1241 				 * Not done yet. Submit the next transfer.
1242 				 *
1243 				 * FIXME handle protocol options for xfer
1244 				 */
1245 				atmel_spi_pdc_next_xfer(master, msg);
1246 			}
1247 		} else {
1248 			/*
1249 			 * Keep going, we still have data to send in
1250 			 * the current transfer.
1251 			 */
1252 			atmel_spi_pdc_next_xfer(master, msg);
1253 		}
1254 	}
1255 
1256 	atmel_spi_unlock(as);
1257 
1258 	return ret;
1259 }
1260 
1261 static int atmel_spi_setup(struct spi_device *spi)
1262 {
1263 	struct atmel_spi	*as;
1264 	struct atmel_spi_device	*asd;
1265 	u32			scbr, csr;
1266 	unsigned int		bits = spi->bits_per_word;
1267 	unsigned long		bus_hz;
1268 	unsigned int		npcs_pin;
1269 	int			ret;
1270 
1271 	as = spi_master_get_devdata(spi->master);
1272 
1273 	if (as->stopping)
1274 		return -ESHUTDOWN;
1275 
1276 	if (spi->chip_select > spi->master->num_chipselect) {
1277 		dev_dbg(&spi->dev,
1278 				"setup: invalid chipselect %u (%u defined)\n",
1279 				spi->chip_select, spi->master->num_chipselect);
1280 		return -EINVAL;
1281 	}
1282 
1283 	/* see notes above re chipselect */
1284 	if (!atmel_spi_is_v2(as)
1285 			&& spi->chip_select == 0
1286 			&& (spi->mode & SPI_CS_HIGH)) {
1287 		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1288 		return -EINVAL;
1289 	}
1290 
1291 	/* v1 chips start out at half the peripheral bus speed. */
1292 	bus_hz = clk_get_rate(as->clk);
1293 	if (!atmel_spi_is_v2(as))
1294 		bus_hz /= 2;
1295 
1296 	if (spi->max_speed_hz) {
1297 		/*
1298 		 * Calculate the lowest divider that satisfies the
1299 		 * constraint, assuming div32/fdiv/mbz == 0.
1300 		 */
1301 		scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
1302 
1303 		/*
1304 		 * If the resulting divider doesn't fit into the
1305 		 * register bitfield, we can't satisfy the constraint.
1306 		 */
1307 		if (scbr >= (1 << SPI_SCBR_SIZE)) {
1308 			dev_dbg(&spi->dev,
1309 				"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
1310 				spi->max_speed_hz, scbr, bus_hz/255);
1311 			return -EINVAL;
1312 		}
1313 	} else
1314 		/* speed zero means "as slow as possible" */
1315 		scbr = 0xff;
1316 
1317 	csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
1318 	if (spi->mode & SPI_CPOL)
1319 		csr |= SPI_BIT(CPOL);
1320 	if (!(spi->mode & SPI_CPHA))
1321 		csr |= SPI_BIT(NCPHA);
1322 
1323 	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1324 	 *
1325 	 * DLYBCT would add delays between words, slowing down transfers.
1326 	 * It could potentially be useful to cope with DMA bottlenecks, but
1327 	 * in those cases it's probably best to just use a lower bitrate.
1328 	 */
1329 	csr |= SPI_BF(DLYBS, 0);
1330 	csr |= SPI_BF(DLYBCT, 0);
1331 
1332 	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1333 	npcs_pin = (unsigned int)spi->controller_data;
1334 
1335 	if (gpio_is_valid(spi->cs_gpio))
1336 		npcs_pin = spi->cs_gpio;
1337 
1338 	asd = spi->controller_state;
1339 	if (!asd) {
1340 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1341 		if (!asd)
1342 			return -ENOMEM;
1343 
1344 		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1345 		if (ret) {
1346 			kfree(asd);
1347 			return ret;
1348 		}
1349 
1350 		asd->npcs_pin = npcs_pin;
1351 		spi->controller_state = asd;
1352 		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1353 	} else {
1354 		atmel_spi_lock(as);
1355 		if (as->stay == spi)
1356 			as->stay = NULL;
1357 		cs_deactivate(as, spi);
1358 		atmel_spi_unlock(as);
1359 	}
1360 
1361 	asd->csr = csr;
1362 
1363 	dev_dbg(&spi->dev,
1364 		"setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
1365 		bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
1366 
1367 	if (!atmel_spi_is_v2(as))
1368 		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1369 
1370 	return 0;
1371 }
1372 
1373 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
1374 {
1375 	struct atmel_spi	*as;
1376 	struct spi_transfer	*xfer;
1377 	struct device		*controller = spi->master->dev.parent;
1378 	u8			bits;
1379 	struct atmel_spi_device	*asd;
1380 
1381 	as = spi_master_get_devdata(spi->master);
1382 
1383 	dev_dbg(controller, "new message %p submitted for %s\n",
1384 			msg, dev_name(&spi->dev));
1385 
1386 	if (unlikely(list_empty(&msg->transfers)))
1387 		return -EINVAL;
1388 
1389 	if (as->stopping)
1390 		return -ESHUTDOWN;
1391 
1392 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1393 		if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1394 			dev_dbg(&spi->dev, "missing rx or tx buf\n");
1395 			return -EINVAL;
1396 		}
1397 
1398 		if (xfer->bits_per_word) {
1399 			asd = spi->controller_state;
1400 			bits = (asd->csr >> 4) & 0xf;
1401 			if (bits != xfer->bits_per_word - 8) {
1402 				dev_dbg(&spi->dev, "you can't yet change "
1403 					 "bits_per_word in transfers\n");
1404 				return -ENOPROTOOPT;
1405 			}
1406 		}
1407 
1408 		if (xfer->bits_per_word > 8) {
1409 			if (xfer->len % 2) {
1410 				dev_dbg(&spi->dev, "buffer len should be 16 bits aligned\n");
1411 				return -EINVAL;
1412 			}
1413 		}
1414 
1415 		/* FIXME implement these protocol options!! */
1416 		if (xfer->speed_hz < spi->max_speed_hz) {
1417 			dev_dbg(&spi->dev, "can't change speed in transfer\n");
1418 			return -ENOPROTOOPT;
1419 		}
1420 
1421 		/*
1422 		 * DMA map early, for performance (empties dcache ASAP) and
1423 		 * better fault reporting.
1424 		 */
1425 		if ((!msg->is_dma_mapped) && (atmel_spi_use_dma(as, xfer)
1426 			|| as->use_pdc)) {
1427 			if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1428 				return -ENOMEM;
1429 		}
1430 	}
1431 
1432 #ifdef VERBOSE
1433 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1434 		dev_dbg(controller,
1435 			"  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
1436 			xfer, xfer->len,
1437 			xfer->tx_buf, xfer->tx_dma,
1438 			xfer->rx_buf, xfer->rx_dma);
1439 	}
1440 #endif
1441 
1442 	msg->status = -EINPROGRESS;
1443 	msg->actual_length = 0;
1444 
1445 	atmel_spi_lock(as);
1446 	list_add_tail(&msg->queue, &as->queue);
1447 	if (!as->current_transfer)
1448 		atmel_spi_next_message(spi->master);
1449 	atmel_spi_unlock(as);
1450 
1451 	return 0;
1452 }
1453 
1454 static void atmel_spi_cleanup(struct spi_device *spi)
1455 {
1456 	struct atmel_spi	*as = spi_master_get_devdata(spi->master);
1457 	struct atmel_spi_device	*asd = spi->controller_state;
1458 	unsigned		gpio = (unsigned) spi->controller_data;
1459 
1460 	if (!asd)
1461 		return;
1462 
1463 	atmel_spi_lock(as);
1464 	if (as->stay == spi) {
1465 		as->stay = NULL;
1466 		cs_deactivate(as, spi);
1467 	}
1468 	atmel_spi_unlock(as);
1469 
1470 	spi->controller_state = NULL;
1471 	gpio_free(gpio);
1472 	kfree(asd);
1473 }
1474 
1475 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1476 {
1477 	return spi_readl(as, VERSION) & 0x00000fff;
1478 }
1479 
1480 static void atmel_get_caps(struct atmel_spi *as)
1481 {
1482 	unsigned int version;
1483 
1484 	version = atmel_get_version(as);
1485 	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1486 
1487 	as->caps.is_spi2 = version > 0x121;
1488 	as->caps.has_wdrbt = version >= 0x210;
1489 	as->caps.has_dma_support = version >= 0x212;
1490 }
1491 
1492 /*-------------------------------------------------------------------------*/
1493 
1494 static int atmel_spi_probe(struct platform_device *pdev)
1495 {
1496 	struct resource		*regs;
1497 	int			irq;
1498 	struct clk		*clk;
1499 	int			ret;
1500 	struct spi_master	*master;
1501 	struct atmel_spi	*as;
1502 
1503 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1504 	if (!regs)
1505 		return -ENXIO;
1506 
1507 	irq = platform_get_irq(pdev, 0);
1508 	if (irq < 0)
1509 		return irq;
1510 
1511 	clk = clk_get(&pdev->dev, "spi_clk");
1512 	if (IS_ERR(clk))
1513 		return PTR_ERR(clk);
1514 
1515 	/* setup spi core then atmel-specific driver state */
1516 	ret = -ENOMEM;
1517 	master = spi_alloc_master(&pdev->dev, sizeof *as);
1518 	if (!master)
1519 		goto out_free;
1520 
1521 	/* the spi->mode bits understood by this driver: */
1522 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1523 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1524 	master->dev.of_node = pdev->dev.of_node;
1525 	master->bus_num = pdev->id;
1526 	master->num_chipselect = master->dev.of_node ? 0 : 4;
1527 	master->setup = atmel_spi_setup;
1528 	master->transfer = atmel_spi_transfer;
1529 	master->cleanup = atmel_spi_cleanup;
1530 	platform_set_drvdata(pdev, master);
1531 
1532 	as = spi_master_get_devdata(master);
1533 
1534 	/*
1535 	 * Scratch buffer is used for throwaway rx and tx data.
1536 	 * It's coherent to minimize dcache pollution.
1537 	 */
1538 	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1539 					&as->buffer_dma, GFP_KERNEL);
1540 	if (!as->buffer)
1541 		goto out_free;
1542 
1543 	spin_lock_init(&as->lock);
1544 	INIT_LIST_HEAD(&as->queue);
1545 
1546 	as->pdev = pdev;
1547 	as->regs = ioremap(regs->start, resource_size(regs));
1548 	if (!as->regs)
1549 		goto out_free_buffer;
1550 	as->phybase = regs->start;
1551 	as->irq = irq;
1552 	as->clk = clk;
1553 
1554 	atmel_get_caps(as);
1555 
1556 	as->use_dma = false;
1557 	as->use_pdc = false;
1558 	if (as->caps.has_dma_support) {
1559 		if (atmel_spi_configure_dma(as) == 0)
1560 			as->use_dma = true;
1561 	} else {
1562 		as->use_pdc = true;
1563 	}
1564 
1565 	if (as->caps.has_dma_support && !as->use_dma)
1566 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1567 
1568 	if (as->use_pdc) {
1569 		ret = request_irq(irq, atmel_spi_pdc_interrupt, 0,
1570 					dev_name(&pdev->dev), master);
1571 	} else {
1572 		tasklet_init(&as->tasklet, atmel_spi_tasklet_func,
1573 					(unsigned long)master);
1574 
1575 		ret = request_irq(irq, atmel_spi_pio_interrupt, 0,
1576 					dev_name(&pdev->dev), master);
1577 	}
1578 	if (ret)
1579 		goto out_unmap_regs;
1580 
1581 	/* Initialize the hardware */
1582 	clk_enable(clk);
1583 	spi_writel(as, CR, SPI_BIT(SWRST));
1584 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1585 	if (as->caps.has_wdrbt) {
1586 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1587 				| SPI_BIT(MSTR));
1588 	} else {
1589 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1590 	}
1591 
1592 	if (as->use_pdc)
1593 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1594 	spi_writel(as, CR, SPI_BIT(SPIEN));
1595 
1596 	/* go! */
1597 	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1598 			(unsigned long)regs->start, irq);
1599 
1600 	ret = spi_register_master(master);
1601 	if (ret)
1602 		goto out_free_dma;
1603 
1604 	return 0;
1605 
1606 out_free_dma:
1607 	if (as->use_dma)
1608 		atmel_spi_release_dma(as);
1609 
1610 	spi_writel(as, CR, SPI_BIT(SWRST));
1611 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1612 	clk_disable(clk);
1613 	free_irq(irq, master);
1614 out_unmap_regs:
1615 	iounmap(as->regs);
1616 out_free_buffer:
1617 	if (!as->use_pdc)
1618 		tasklet_kill(&as->tasklet);
1619 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1620 			as->buffer_dma);
1621 out_free:
1622 	clk_put(clk);
1623 	spi_master_put(master);
1624 	return ret;
1625 }
1626 
1627 static int atmel_spi_remove(struct platform_device *pdev)
1628 {
1629 	struct spi_master	*master = platform_get_drvdata(pdev);
1630 	struct atmel_spi	*as = spi_master_get_devdata(master);
1631 	struct spi_message	*msg;
1632 	struct spi_transfer	*xfer;
1633 
1634 	/* reset the hardware and block queue progress */
1635 	spin_lock_irq(&as->lock);
1636 	as->stopping = 1;
1637 	if (as->use_dma) {
1638 		atmel_spi_stop_dma(as);
1639 		atmel_spi_release_dma(as);
1640 	}
1641 
1642 	spi_writel(as, CR, SPI_BIT(SWRST));
1643 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1644 	spi_readl(as, SR);
1645 	spin_unlock_irq(&as->lock);
1646 
1647 	/* Terminate remaining queued transfers */
1648 	list_for_each_entry(msg, &as->queue, queue) {
1649 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1650 			if (!msg->is_dma_mapped
1651 				&& (atmel_spi_use_dma(as, xfer)
1652 					|| as->use_pdc))
1653 				atmel_spi_dma_unmap_xfer(master, xfer);
1654 		}
1655 		msg->status = -ESHUTDOWN;
1656 		msg->complete(msg->context);
1657 	}
1658 
1659 	if (!as->use_pdc)
1660 		tasklet_kill(&as->tasklet);
1661 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1662 			as->buffer_dma);
1663 
1664 	clk_disable(as->clk);
1665 	clk_put(as->clk);
1666 	free_irq(as->irq, master);
1667 	iounmap(as->regs);
1668 
1669 	spi_unregister_master(master);
1670 
1671 	return 0;
1672 }
1673 
1674 #ifdef	CONFIG_PM
1675 
1676 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
1677 {
1678 	struct spi_master	*master = platform_get_drvdata(pdev);
1679 	struct atmel_spi	*as = spi_master_get_devdata(master);
1680 
1681 	clk_disable(as->clk);
1682 	return 0;
1683 }
1684 
1685 static int atmel_spi_resume(struct platform_device *pdev)
1686 {
1687 	struct spi_master	*master = platform_get_drvdata(pdev);
1688 	struct atmel_spi	*as = spi_master_get_devdata(master);
1689 
1690 	clk_enable(as->clk);
1691 	return 0;
1692 }
1693 
1694 #else
1695 #define	atmel_spi_suspend	NULL
1696 #define	atmel_spi_resume	NULL
1697 #endif
1698 
1699 #if defined(CONFIG_OF)
1700 static const struct of_device_id atmel_spi_dt_ids[] = {
1701 	{ .compatible = "atmel,at91rm9200-spi" },
1702 	{ /* sentinel */ }
1703 };
1704 
1705 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1706 #endif
1707 
1708 static struct platform_driver atmel_spi_driver = {
1709 	.driver		= {
1710 		.name	= "atmel_spi",
1711 		.owner	= THIS_MODULE,
1712 		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1713 	},
1714 	.suspend	= atmel_spi_suspend,
1715 	.resume		= atmel_spi_resume,
1716 	.probe		= atmel_spi_probe,
1717 	.remove		= atmel_spi_remove,
1718 };
1719 module_platform_driver(atmel_spi_driver);
1720 
1721 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1722 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1723 MODULE_LICENSE("GPL");
1724 MODULE_ALIAS("platform:atmel_spi");
1725